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Notes on revisions: These notes were originally written at HAO in 1983. The fourth edition
was produced in September 1997, following a major reorganization of the code involving also the
addition or change of several input parameters. This was further updated in a fifth edition in 2002,
including the extension of the code to include rotational effects. This still needs further testing,
however.

The present edition is aimed to correspond to the version of the code adipls.c.d.x, as of July
2012. This is the version that is distributed in the updated distribution of the code (adipack.v0 1)
and used in the general package combining the evolution and pulsation codes, which has a rather
more restricted distribution. Relative to the previous distribution of the oscillation code from 1997
(adipack.n), several additions and updates have been made, including:

– The use of fourth-order integration in the shooting method, flagged by mdintg = 5.
– The use of the Takata (2006b) scheme for labelling dipolar modes, flagged by irsord = 20.
– The possibility of computing first-order rotational effects on frequencies and eigenfunctions,

following Soufi et al. (1998). This involves a new block of input parameters, rot, and is flagged
by irotsl = 1. This option still needs testing.

– The option of producing (generally discontinuous) solutions at arbitrary frequency, flagged by
itmax = 0 and nfmode > 10. This also includes the option for output of solutions during
scan in frequency, with iscan > 1, if nfmode > 0.

– In the 7th edition the sign of Φ′, the perturbation to the gravitational potential, has been
changed to conform with normal usage. There is no change in the internal variables y3 and y4

used in the code.
– Also, the possibility to output unconverged solutions is introduced (cf. Section 8.4).

It is recommended to consider also the notes given in the source to subroutine adipls, particu-
larly as far as input parameters to the programme are concerned, since the notes in the programme
source are generally updated when the programme is changed.
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1 Introduction

These notes describes a programme for calculation of adiabatic oscillations of stellar models. This
has been developed over several years, with a number of different uses in mind, and is therefore
fairly complex both in structure and in the control parameters possible. In particular it has not
been designed for general use, and so it has not been thoroughly tested in all conceivable cases.
On the other hand the programme is quite flexible, both in the physical situations it may consider,
and in the numerical schemes it employs. Thus both models with vanishing surface pressure (and
hence a singularity at the surface), and physical models terminating at a finite pressure can be
considered; and it is possible to consider models truncated at a finite distance from the centre, as
well as complete models. A description of the code was given by Christensen-Dalsgaard (2008).

A principal goal of the present notes has been to give a precise definition of the calculations
carried out by the programme. The notes also provide information intended to be sufficiently
detailed to permit easy use of the programme, describing the notation used, the form needed for
the equilibrium model that must be provided to the programme, and the output produced, as well
as some notes on the experience gained so far in running the programme. However, it is sufficiently
complex that modifications by users other than the author should be attempted only with care.

The programme uses equilibrium models in the form of so-called amdl files, produced by the
JC-D evolution code. They consist of an essentially minimal set of variables for computing adiabatic
oscillations. The variables are described in Section 5, and the input format is provided in Section
7.1. The programme is controlled by a vast number of control parameters, described in Section 7.2.
In most cases, particularly for computing p-mode frequencies of solar models, these parameters
barely need to be changed. Samples of suitable input files can be provided.

The output from the programme is described in Section 8. The most important output is the set
of frequencies and other mode data, and the mode eigenfunctions. The most extensive set of mode
data is provided in binary form in the grand summary file (Section 8.2), which also gives diagnostics
on the computation. A more compact set of mode data, also in binary form, is given in the short
summary (Section 8.3). The eigenfunctions can be provided as a comprehensive set, a set containing
just the displacement amplitudes, or a set giving the density-weighted displacement amplitudes
(Section 8.4); the latter set is the most appropriate for setting up kernels. The eigenfunction data
contain the grand summary. Note that, as the eigenfunction files are rather large, it is advisable
to output them only if explicitly needed. Of perhaps limited usefulness kernels may be output for
the effect on frequencies of changes in the adiabatic exponent Γ1 at fixed density ρ (Section 8.5).
Finally, the programme may output kernels for frequency spitting caused by spherically symmetric
rotation, as part of a more general treatment of the effects of rotation (Section 8.6)

In case of problems, diagnostic output is provided in a log file with the default name adipls-

status.log (see Section 8.8; the name may be changed in the input file). The programme also
produces output summarizing the calculation, and providing further diagnostics. This is typically
less useful, except for debugging; in particular, reports of problems should be accompanied by this
output file (see Section 8.1).

In Section 2 the equations and boundary conditions are briefly discussed; this section also
serves to define the notation used. A more detailed description of the equations is contained in
Appendix A. Section 3 describes the numerical techniques used to solve the equations. Section 4
defines the quantities computed by the programme. Section 6 provides a brief discussion of the
notation and data storage used in the programme, mainly serving to define the terms used in
Section 7. Finally Section 9 describes the main programme that must be supplied by the user to
set up storage for the calculation.

Very few references are given here. This evidently does not imply that the methods discussed
are original. Detailed discussions of non-radial stellar oscillations, as well as numerous references,
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may be found, e.g., in Unno et al. (1989) and Aerts et al. (2010).

I finally note that a separate short set of notes are available on the use of this and other related
programmes: Notes on using the solar models and adiabatic pulsations package.

2 Notation. Equations and boundary conditions

The notation used here in general follows that of Christensen-Dalsgaard (1981, 1982, 2008; in the
following CD81, CD82, CD08); however, it is described in part here. Words entirely in typewriter

type refer to names of variables in the programme.

2.1 Variables and equations

As usual the perturbations are assumed to be separated in θ and φ in terms of spherical harmonics,
and the time dependence to be given as a harmonic function. Thus the displacement vector is
written as

~δr = Re

{[
ξr(r)Y

m
l (θ, φ)ar + ξh(r)

(
∂Y ml
∂θ

aθ +
1

sin θ

∂Y ml
∂φ

aφ

)]
exp(−iωt)

}
. (2.1)

Similarly the perturbation to, e.g. pressure, may be written

δp = Re [δp(r)Y ml (θ, φ) exp(−iωt)] . (2.2)

Here Y ml is a spherical harmonic, ar, aθ, and aφ are unit vectors in the r, θ, and φ directions and
ω is the frequency. As the oscillations are adiabatic (and only conservative boundary conditions
are considered) ω is real, and the amplitude functions ξr(r), ξh(r), δp(r), etc. can be chosen to be
real.

The equations for non-radial oscillations can be found in a number of references (e.g. Unno et
al. 1989). However, the programme permits a modification of Poisson’s equation for the perturba-
tions, which is written as

1

r2

d

dr

(
r2 dΦ′

dr

)
− l(l + 1)

r2
Φ′ = 4πλGρ′ (2.3)

(the ordinary equation clearly corresponds to having λ = 1). This was done to investigate the
effect of making a gradual transition between the Cowling approximation, where Φ′ is neglected,
to the full set of equations (Christensen-Dalsgaard & Gough, in preparation); this can clearly be
accomplished by varying λ continuously from 0 to 1.

Nonradial oscillations may be considered both in the Cowling approximation (corresponding
to a second-order system of equations) and in the full case (corresponding to a fourth-order set).
For radial oscillations the perturbation to the gravitational potential can be eliminated analytically,
so that here the basic, complete set of equations is of second order.

A further restriction is that nonradial oscillations of a truncated model can only be treated
in the Cowling approximation; this is almost inevitable, as there seems to be no natural way to
specify the boundary conditions for the perturbation in the gravitational potential at the base of a
truncated model.
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In some equilibrium models a contribution to the equation of hydrostatic support from “tur-
bulent pressure” may be included. This is the case, e.g., for semi-empirical models of the solar
atmosphere or models based on averages of hydrodynamical simulations. This raises the ques-
tion of the appropriate treatment of the turbulent pressure in the perturbation equations. The
programme allows various options for treating (or, more precisely, neglecting) effects of turbulent
pressure. These are controlled by the definition of the equilibrium-model variables and/or the
parameter iturpr. The details are discussed in Section A.3. It should be noted that effects of
turbulent pressure may well dominate the differences between the observed solar frequencies and
frequencies of solar models where turbulent pressure is neglected (e.g. Rosenthal et al. 1999).

The degree l is treated as a real variable (clearly only integer values have physical meaning).
The transition between the nonradial and the radial equations is defined in the programme to take
place at l = 10−6.

In the calculation the frequency is expressed in terms of the dimensionless squared frequency

σ2 =
R3

GM
ω2 , (2.4)

where M and R are mass and photospheric radius of the equilibrium model. The eigenfunctions are
defined in terms of a set of dimensionless functions yi(x) where x = r/R. For nonradial oscillations
(l > 0)*

y1 =
ξr
R
,

y2 = x

(
p′

ρ
+ Φ′

)
l(l + 1)

ω2r2
=
l(l + 1)

R
ξh ,

y3 = −xΦ′

gr
,

y4 = x2 d

dx

(y3

x

)
.

(2.5a)

For radial oscillations only y1 and y2 are used, where y1 is defined as above, and

y2 =
p′

ω2R2ρ
. (2.5b)

2.2 Removing the xl variation near the centre

The dependent variables yi have been chosen in such a way that for l > 0 they all vary as xl−1

for x→ 0. For large l a considerable (and fundamentally unnecessary) computational effort would
be needed to represent this variation sufficiently accurately with, e.g., a finite difference technique,
if these variables were to be used in the numerical integration. Instead we introduce a new set of
dependent variables by

ŷi = x−l+1yi, i = 1, 2, 3, 4 . (2.6)

These variables are then O(1) in x near the centre. They are used in the region where the variation
in the yi is dominated by the xl−1 behaviour. Specifically one obtains from JWKB theory that

y1(x) ∼ exp

(∫ x

kdx

)
, (2.7)

* For historical reasons, y3 is defined in terms of −Φ′

3



where

k2 =
l(l + 1)

x2

(
1− Ñ2

σ2

)(
1− σ2

S̃2
l

)
, (2.8)

and Ñ and S̃l are the dimensionless buoyancy and Lamb frequencies (see Section 5 below). Here
Ñ2 and S̃−2

l → 0 as x→ 0. Thus close to the centre k2 ' l(l+1)/x2, and, to this order, the JWKB
result is that y1 ∼ xl+1/2. Writing k2 = h(x)l(l + 1)/x2 this behaviour is clearly dominant as long
as h(x) > 1/4. Thus placing the transition from ŷi to yi at a value xev of x where h(x) = 1/4,
such that the exponentially growing solution dominates for x > xev. The default is to choose the
smallest value of x where h(x) = 1/4; however, there is the option of restricting the search to be
outside a given value of x.†

This transformation is applied when non-radial oscillations are computed. It permits calcu-
lating modes of arbitrary high degree in a complete model; when the ŷi are multiplied by xl−1

to obtain the yi this is done in a special routine that replaces xl−1 by zero when it is below the
(machine-dependent) limit for underflow.

2.3 Inner boundary conditions

The inner conditions depend on whether one considers a full model, including the centre, or an enve-
lope model. In the former case, the boundary conditions are regularity conditions (e.g. Christensen-
Dalsgaard, Dilke & Gough 1974). In the latter case, there is considerably more flexibility in the
choice of condition.

2.3.1 Full model

When the centre is included in the equilibrium model, the solution must satisfy regularity conditions
at the innermost meshpoint. These are obtained by expansion around the centre, to terms that are
O(x2) times the leading terms. It is useful to note that it follows from the expansion that

ξr ' lξh or y2 ' (l + 1)y1 for x→ 0 , (2.9)

and
dΦ′

dr
' l

r
Φ′ or y4 ' (l − 2)y3 for x→ 0 . (2.10)

2.3.2 Truncated model

In a model truncated at a finite distance from the centre it is assumed that the calculation is for
radial oscillations, or in the Cowling approximation. Here the programme allows four types of
conditions, flagged by the input parameter ibotbc (cf. Section 7.2.3 below):

i) (ibotbc = 0) Applicable when the innermost meshpoint x1 is in an evanescent region. The
condition sets the relation between y1 and y2 so as to select the solution that decreases expo-
nentially towards the interior. From the JWKB relation for y1, Eqs (2.7) and (2.8), and the
differential equation for y1 one finds that approximately

y2(x1) ' x1|k(x1)|
1− σ2/S̃2

l (x1)
y1(x1) . (2.11)

† Modification 4/6/19: Since we are typically not interested in high-degree g modes, the defini-
tion of h for l > lac was changed to exclude the factor containing Ñ2; the transition is then secured
to be controlled by the acoustic lower turning point. For now, lac is hard-coded to 10.
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This condition is mainly useful for modes of relatively large degree.

ii) (ibotbc = 1) Specification of the ratio between y1 and y2 at the innermost mesh point x1 by

y1(x1) = α(1− FBC), y2(x1) = αFBC , (2.12)

where α is an arbitrary scale factor. Note that this condition can also be written as

FBCy1(x1)− (1− FBC)y2(x1) = 0 . (2.12a)

Here FBC is determined by the input parameter fcttbc (cf. Section 7.2.3).

iii) (ibotbc = 2) Setting
dy1

dx
= 0 at x = x1 . (2.13)

This can be expressed as a relation between y1(x1) and y2(x1) by using the differential equation
for y1 (cf. Appendix A).

iv) (ibotbc = 3) Setting
d

dx

(y1

x

)
= 0 at x = x1 . (2.14)

This can be expressed as a relation between y1(x1) and y2(x1) by using the differential equation
for y1 (cf. Appendix A).

2.4 Surface conditions

The surface conditions depend on whether or not the surface pressure of the model vanishes. For
vanishing surface pressure (as occurs, for example, in complete polytropic models) the surface is a
singular point where regularity conditions must be imposed. When the pressure is non-vanishing,
as in realistic stellar models truncated at a suitable point in the atmosphere, various conditions
can be used. These are selected by the input parameters istsbc and fctsbc.

For nonradial oscillations the condition on the gravitational potential perturbation is common
to the singular and nonsingular cases. It is obtained by demanding continuity of Φ′ and its first
derivative; in terms of the variables used here this may be expressed as

y4(xs) = −[l + U(xs)]y3 + λU(xs)y1 , (2.15)

where xs is the value of x at the surface, and U = 4πρr3/m. For vanishing surface density, as would
normally be the case for a singular surface, the terms in U(xs) vanish. However, for the iso-pycnic
model (corresponding to constant density, i.e., to a polytrope of index 0), U(xs) = 3.

2.4.1 Singular surface

When the surface pressure vanishes, the solution in the vicinity of the singular point is obtained by
expansion around this singularity, retaining terms that are O(t) times the leading order term, where
t is the depth below the surface (it might be noted here that the expansion depends qualitatively
on whether or not the surface density vanishes as well, i.e., whether or not the effective polytropic
index µ at the surface is non-zero). Details of this procedure, including expressions for the expansion
coefficients, were given by Christensen-Dalsgaard & Mullan (1994).
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2.4.2 Simple surface conditions

When the surface pressure is non-vanishing, as is the case for a realistic stellar model, the pro-
gramme allows various simple expressions for the surface pressure condition. These are selected by
setting istsbc = 0. One is to use the condition δp = 0, which in terms of the variables used here
becomes

y2(xs) =
l(l + 1)

x3
sσ

2
[y1(xs)− y3(xs)] (2.16a)

in the nonradial case, or

y2(xs) =
1

x2
sσ

2
y1(xs) (2.16b)

in the radial case.
To permit the use of different surface boundary conditions, a boundary condition on the form

y2(xs) =
l(l + 1)

x3
sσ

2
[(1− FSBC)y1(xs)− y3(xs)] (2.16c)

in the nonradial case, or

y2(xs) =
1

x2
sσ

2
(1− FSBC)y1(xs) (2.16d)

in the radial case, may be used. Here FSBC is an input parameter to the programme. For FSBC = 0
we recover the conditions (2.16a) or (2.16b), i.e., δp = 0, whereas for FSBC = 1 the condition is
equivalent to p′ = 0, i.e., the vanishing of the Eulerian pressure perturbation. FSBC is determined
by the input parameter fctsbc.

2.4.3 Match to the solution for an isothermal atmosphere

A more realistic condition is obtained by matching the solution onto the energetically confined of
the two (analytically known) solutions for adiabatic waves in an isothermal atmosphere matched
to the model (cf. Unno et al. 1989, pp 163 ff). This condition is selected by setting istsbc = 1.
It has been implemented in the following form: Introduce

Vg =
Gmρ

Γ1pr
, Ai = Vg(Γ1 − 1) , (2.17)

and set

γ = (Ai + 4− Vg)2 + 4(σ2x3 −Ai)

(
l(l + 1)

σ2x3
− Vg

)
, (2.18)

and

C =
1
2 (γ1/2 + Vg −Ai)− 2

Vg −
l(l + 1)
σ2x3

, (2.19)

evaluated at x = xs. Then the condition in the nonradial case is set to, for istsbc = 1,

y2(xs) =
l(l + 1)

σ2x3
s

{
Cy1(xs)−

[
1 +

(
l(l + 1)

σ2x3
s

− l − 1

)
(Vg +Ai)

−1

]
y3(xs)

}
; (2.20a)

see below for an update implemented in February 2021. In the radial case

y2(xs) =
C

x2σ2
y1(xs) . (2.20b)
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Note that in the nonradial case the term in y3 has been approximated by assuming that both the
frequency and the degree is “small” (cf. Unno et al. 1989); if this is not the case y3 is small and
the term is almost certainly negligible (it may well have negligible influence on the solution in any
case).

It should be noted that the expression for Ai is the value of A (cf. Eq. 5.1) in the isothermal
case, where d ln ρ/d ln r = d ln p/d ln r. This is the form specifically used in the programme.

To use this condition we must clearly require that γ ≥ 0; this corresponds to requiring that
the frequency be below the local acoustical cut-off frequency σac, and above the local gravity-wave
cut-off frequency σgc, at x = xs. If this were not the case, the solution in the isothermal atmosphere
would have a running-wave component, and the system would no be longer conservative; thus the
eigenfrequency and the eigenfunctions become complex, and the problem can no longer be treated
with the present programme. Specifically, according to Eq. (2.18)

x3
sσ

2
ac =

1

2
B +

[
1

4
B2 − l(l + 1)

Ai

Vg

]1/2

, (2.21a)

and

x3
sσ

2
gc =

1

2
B −

[
1

4
B2 − l(l + 1)

Ai

Vg

]1/2

, (2.21b)

where

B = V −1
g

[
l(l + 1) +AiVg +

1

4
(Ai + 4− Vg)2

]
. (2.22)

For modes of low or moderate degree B2 � 4l(l + 1)Ai/Vg, and hence

x3
sσ

2
gc ≈ l(l + 1)

Ai

VgB
. (2.23)

High-order low-degree g modes satisfy an asymptotic relation of the form

σ−1
nl ≈

Π̂0√
l(l + 1)

(|n|+ εg) . (2.24)

It follows that the radial order ngc corresponding to σgc is approximately independent of l.
If the code attempts a solution outside the limits [σgc, σac], the surface boundary condition

switches to the condition corresponding to istsbc = 0 is used, and a warning message is printed.
Furthermore, the value of istsbc used in setting icase (cf. Section 8.2) is set to zero. However,
in scanning for mode frequencies the options of sig1 < 0 and/or sig2 < 0 can be used to limit the
scan to the allowed range. For further detail, see Appendix E.

As discussed by Unno et al. (1989) the validity of the y3 term in Eq. (2.20a) assumes that

Ai, Vg � σ2,
l(l + 1)

σ2
, 1 .

Although the approximation is almost certainly sufficiently accurate in all realistic cases for com-
puting the frequencies, it has been found to affect the eigenfunctions such as to cause problems
in the determination of the mode order close to σgc (see Section B.2 for further details). Here, in
fact, l(l + 1)/σ2 ∼ Vg. Consequently, in February 2021 I implemented the full term in y3, flagged
by setting istsbc = 2, such that (Unno et al. Eq. 18.47)

y2(xs) =
l(l + 1)

σ2x2
s

Cy1(xs) +
l(l + 1)

σ2x2
s

(α1C − α2)y3(xs) . (2.25)
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Here1

α1 = − DAi + Vg(1 +Ai + l)

(Vg − 3 + l)(1 +Ai + l)−D(x3
sσ

2 −Ai)
(2.26)

α2 =
(x3

sσ
2 −Ai)Vg +Ai(Vg − 3 + l)

(Vg − 3 + l)(1 +Ai + l)−D(x3
sσ

2 −Ai)
, (2.27)

where

D =
l(l + 1)

x3
sσ

2
− Vg .

Note that both in Eq. (2.20a) and Eq. (2.25) the relation for y2 is singular when
l(l+1)/(σ2x3

s ) = Vg. This may cause a singularity in the iteration for the solution or, in particular,
when scanning for solutions. The option istsbc = 3 has been introduced to avoid this, using also
the relation (2.25) as for istsbc = 2 (see Section 3.1).

3 Numerical techniques

The numerical problem can be formulated generally as that of solving

dyi
dx

=
I∑
j=1

aij(x)yj(x) , for i = 1, . . . , I , (3.1)

with the boundary conditions

I∑
j=1

bijyj(x1) = 0 , for i = 1, . . . , I/2 , (3.2)

I∑
j=1

cijyj(xs) = 0 , for i = 1 , . . . , I/2 . (3.3)

Here the order I of the system is 4 for the full nonradial case, and 2 for radial oscillations or
nonradial oscillations in the Cowling approximation. This system only allows non-trivial solutions
for selected values of σ2 which is thus an eigenvalue of the problem.

The programme permits solving these equations with two basically different techniques, each
with some variants. The first is a shooting method, where solutions satisfying the boundary con-
ditions are integrated separately from the inner and outer boundary, and the eigenvalue is found
by matching these solutions at a suitable inner fitting point xf (defined by the input parameter
xfit). The second technique is to solve the equations, together with a normalization condition and
either all, or all but one, of the boundary conditions using a relaxation technique; the eigenvalue is
then found by requiring continuity of one of the eigenfunctions at an interior matching point when
all the boundary conditions are satisfied, or by requiring that the remaining boundary condition
be satisfied. The choice of integration method is controlled by the input parameter mdintg (cf.
Section 7.2.3).

1 Note a misprint in Unno et al. (1989): in the denominator of Eq. (18.38) ‘b21b21’ should be
replaced by ‘b12b21’.
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For simplicity we do not distinguish between ŷi and yi (cf. Section 2.2) in the bulk of this
Section. It is implicitly understood that the dependent variable (which is denoted yi) is ŷi for
x < xev and yi for x ≥ xev. The numerical treatment of the transition between ŷi and yi is
discussed in Section 3.3.

3.1 The shooting method

It is convenient here to distinguish between I = 2 and I = 4. For I = 2 the differential equations

(3.1) have a unique (apart from normalization) solution y
(i)
i satisfying the inner boundary conditions

(3.2), and a unique solution y
(o)
i satisfying the outer boundary conditions (3.3). These may be

obtained by numerical integration of the equations. The final solution can then be represented as

yj = C(i)y
(i)
j = C(o)y

(o)
j . The eigenvalue is obtained by requiring that the solutions agree at a

suitable matching point x = xf , say. Thus

C(i)y
(i)
1 (xf) = C(o)y

(o)
1 (xf) ,

C(i)y
(i)
2 (xf) = C(o)y

(o)
2 (xf) .

(3.4)

These equations clearly have a non-trivial solution (C(i), C(o)) only when their determinant vanishes,
i.e., when

∆ ≡ y(i)
1 (xf)y

(o)
2 (xf)− y(i)

2 (xf)y
(o)
1 (xf) = 0 . (3.5)

Equation (3.5) is therefore the eigenvalue equation.
For I = 4 there are two linearly independent solutions satisfying the inner boundary conditions,

and two linearly independent solutions satisfying the outer boundary conditions. The former set

{y(i,1)
i , y

(i,2)
i } is chosen by setting

y
(i,1)
1 (x1) = 1 , y

(i,1)
3 (x1) = 0 ,

y
(i,2)
1 (x1) = 1 , y

(i,2)
3 (x1) = 1 ,

(3.6)

and the latter set {y(o,1)
i , y

(o,2)
i } is chosen by setting

y
(o,1)
1 (xs) = 1 , y

(o,1)
3 (xs) = 0 ,

y
(o,2)
1 (xs) = 0 , y

(o,2)
3 (xs) = 1 ,

(3.7a)

or, for istsbc = 3 (see Section 2.4.3),

y
(o,1)
1 (xs) = C−1 , y

(o,1)
3 (xs) = 0 ,

y
(o,2)
1 (xs) = 0 , y

(o,2)
3 (xs) = C−1 .

(3.7b)

The inner and outer boundary conditions are such that, given y1 and y3, y2 and y4 may be calculated
from them; thus Eqs (3.6) and (3.7) completely specify the solutions, which may then be obtained
by integrating from the inner or outer boundary. The final solution can then be represented as

yj = C(i,1)y
(i,1)
j + C(i,2)y

(i,2)
j = C(o,1)y

(o,1)
j + C(o,2)y

(o,2)
j .

At the fitting point xf continuity of the solution requires that

C(i,1)y
(i,1)
j (xf) + C(i,2)y

(i,2)
j (xf) = C(o,1)y

(o,1)
j (xf) + C(o,2)y

(o,2)
j (xf) j = 1, 2, 3, 4 . (3.8)
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This set of equations only has a non-trivial solution if

∆ = det



y
(i,1)
1,f y

(i,2)
1,f y

(o,1)
1,f y

(o,2)
1,f

y
(i,1)
2,f y

(i,2)
2,f y

(o,1)
2,f y

(o,2)
2,f

y
(i,1)
3,f y

(i,2)
3,f y

(o,1)
3,f y

(o,2)
3,f

y
(i,1)
4,f y

(i,2)
4,f y

(o,1)
4,f y

(o,2)
4,f


= 0 , (3.9)

where, e.g., y
(i,1)
j,f ≡ y

(i,1)
j (xf). Thus Eq. (3.9) is the eigenvalue equation in this case.

Clearly ∆ as defined in either Eq. (3.5) or Eq. (3.9) is a smooth function of σ2, and the
eigenfrequencies are found as the zeros of this function. This is done in the programme using a
standard secant technique: given two values σ2

i−1 and σ2
i of σ2 and the associated values of ∆, the

new value of σ2 is found as

σ2
i+1 = σ2

i −∆i

σ2
i − σ2

i−1

∆i −∆i−1
, (3.10)

where ∆j ≡ ∆(σ2
j ). However, the programme also has the option for scanning through a given

interval in σ2 to look for change of sign of ∆, possibly iterating for the eigenfrequency at each
change of sign (see also Appendix E). Thus it is possible to search a given region of the spectrum
completely automatically.

The programme allows the use of three different techniques for solving the differential equa-
tions. One is the standard second-order centred difference technique, where the differential equa-
tions are replaced by the difference equations

yn+1
i − yni
xn+1 − xn

=
1

2

I∑
j=1

[
anijy

n
j + an+1

ij yn+1
j

]
, i = 1, . . . , I . (3.11)

Here we have introduced a mesh x1 = x1 < x2 < · · · < xN = xs in x, where N is the total number
of meshpoints; yni ≡ yi(x

n), and anij ≡ aij(x
n). These equations allow the solution at x = xn+1 to

be determined from the solution at x = xn.
The second technique was proposed by Gabriel & Noels (1976); here on each mesh interval

(xn, xn+1) we consider the equations

dy
(n)
i

dx
=

I∑
j=1

ānijy
(n)
j (x), for i = 1 , . . . , I , (3.12)

with constant coefficients, where ānij ≡ 1/2(anij +an+1
ij ). These equations may be solved analytically

on the mesh intervals, and the complete solution is obtained by continuous matching at the mesh-
points. This technique clearly permits the computation of solutions varying arbitrarily rapidly,
i.e., the calculation of modes of arbitrarily high order. On the other hand solving Eqs (3.12) in-
volves finding the eigenvalues and eigenvectors of the coefficient matrix, and therefore becomes
very complex and time consuming for higher-order systems. Thus in practice it has only been
implemented for systems of order 2, i.e., radial oscillations or non-radial oscillations in the Cowling
approximation.

The third technique uses the fourth-order difference scheme developed by Cash & Moore (1980).
This involves evaluating the right-hand side of the equations at points intermediate between the
meshpoints. To do so the code interpolates the model quantities linearly between the meshpoints
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(higher-order interpolation, to be formally consistent with the order of the scheme, would create
problems in the vicinity of sharp variations, e.g., in the composition in the model). Although the
scheme is therefore not formally of high order, in practice it appears to work very well for high-order
modes where the variation in the solution is far more rapid than the variation of the equilibrium
quantities. Unlike the scheme developed by Gabriel & Noels (1976), this scheme can also be used
for the full fourth-order system. Note that Richardson extrapolation (cf. Section 3.4) has not been
implemented with this technique.

3.2 The relaxation technique

Two variants of this technique have been implemented. In the first one of the boundary conditions
(to be definite we assume here that it is the first surface condition) is set aside to be used for
determining the eigenfrequency. The difference Eqs (3.11) for n = 1, 2, . . . ,N − 1, the boundary
conditions (3.2), the normalization condition y1(xs) = 1, and, for I = 4, the remaining surface
boundary condition, are then solved to give the solution {yni } at each mesh point. Notice that the
equations and boundary conditions constitute a set of linear equations for the solution, and this
set may be solved efficiently by forward elimination and backsubstitution (e.g. Baker, Moore &
Spiegel 1974). The eigenvalue is then found by requiring that the remaining boundary condition
be satisfied; thus we evaluate

∆ =

∑I
j=1 c1jyj(xs)[∑I

j=1

(
y

(norm)
j

)2
]1/2

, (3.13)

where y
(norm)
j = yj(x

(norm)) is the solution at a suitably chosen normalization point; in the present

case, where a surface boundary condition is used, x(norm) is typically the innermost mesh point
(the added flexibility of being able to vary x(norm) has occasionally been found to be useful). ∆ is
then a smooth function of σ2, and the eigenvalues may be found as the zeros of ∆, essentially as
described in connection with the shooting technique.

As both boundaries, at least in a complete model, are either singular or very nearly singular,
the removal of one of the boundary conditions tends to produce solutions that are somewhat ill-
behaved, in particular for modes of high degree. This in turn is reflected in the behaviour of ∆ as
a function of σ2. This problem is avoided in the second variant of the relaxation technique. Here
the difference equations are solved separately for x ≤ xf and x ≥ xf , by introducing a double point
x−f = xnf = xnf+1 = x+

f in the mesh. The solution is furthermore required to satisfy the boundary
conditions (3.2) and (3.3), a suitable normalization condition (e.g. y1(xs) = 1), and continuity of
all but one of the variables at x = xf , i.e.,

y1(x−f ) = y1(x+
f ) ,

y3(x−f ) = y3(x+
f ) ,

y4(x−f ) = y4(x+
f ) ,

(3.14)

(when I = 2 clearly only the first continuity condition is used) We then set

∆ = y2(x−f )− y2(x+
f ) , (3.15)

and the eigenvalues are found as the zeros of ∆, regarded as a function of σ2; in practice the
difference is normalized (see Eq. D.6). It should be noticed, however, that with this definition, ∆
may have singularities with discontinuous sign changes that are not associated with an eigenvalue.
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Assuming that the normalization is at the outer boundary, as used above, this occurs when y1(x−f )
is very close to a zero. Then the continuous fitting to y1(x+

f ), which is in general not close to a zero,
forces the interior solution, and hence ∆, to be very large. Thus care is needed when searching for
the eigenvalues by stepping through a range in σ2, when this method is used. However, close to an
eigenvalue ∆ is generally well-behaved, and the secant iteration (cf. Eq. 3.10) may be used without
problems. Issues with the relaxation technique are discussed in more detail in Appendix D.

There is a third variant of the relaxation technique, which has not, however, been implemented
in the current version of the programme (cf. Unno et al. 1989, pp. 167 – 178). Here the difference
equations, the boundary conditions and a normalization condition are solved simultaneously for the
solution {yni } and the eigenvalue σ2. As the eigenvalue is included as an unknown when solving the
equations, the system is non-linear and must be solved by Newton-Raphson iteration. This method
in principle gives quadratic convergence towards the solution (provided analytical derivatives of
the equations and boundary conditions with respect to the yni and σ2 are used), as opposed to the
somewhat slower convergence obtained with the secant iteration. However, it requires an initial
guess for both the eigenvalue and the eigenfunction; experience with this method in a different
programme suggests that this guess has to be fairly close to the correct solution, at least for modes
that are predominantly trapped in a restricted region of the model. Furthermore there is no natural
way to scan the spectrum. Thus this method in practice almost certainly has to be combined with
a version of one of the methods discussed above, to provide an initial estimate of the eigenvalue
and eigenfunction. It could then be used with some advantage for the final iterations towards the
solution, where its faster convergence could be exploited. This would be a fairly straightforward
extension of the existing programme, and may be implemented in future.

3.3 The transition from ŷi to yi

In practice, the variables ŷi are defined as

ŷi(x) =

(
x

xev

)−l+1

yi(x) , (3.16)

rather than by Eq. (2.6). Also the transition point xev is taken at an existing point in the mesh.
To simplify the logic in the programme xev is forced to be closer to the centre than the fitting point
xf ; if xf has been specified such that this puts constraints on xev , a warning is printed (note that,
as discussed in Section 3.5 below, the fitting point should not be placed in the evanescent region).

From the definition (3.16) it follows that

ŷi(xev) = yi(xev) . (3.17)

When using the shooting technique the integration is carried out separately for x between x1

and xev, and x between xev and xf , and Eqs (3.17) are used to provide initial conditions for the
integration on the latter region. When the relaxation technique is used, the integration is carried
out over the entire region between x1 and xf ; to ensure that the conditions (3.17) are satisfied a
double point (x−ev, x

+
ev) is introduced where x−ev = xev, x+

ev = xev +ε, and ε should be chosen close to
machine accuracy; in this way the difference Eqs (3.11) approximately ensures that Eqs (3.17) are
satisfied. It would be possible, at the price of making the programme somewhat more complicated,
to enforce Eqs (3.17) strictly, but this is unlikely to have any significant effect on the results.

3.4 Richardson extrapolation

The difference scheme (3.11), which is used by one version of the shooting technique, and the
relaxation technique, is of second order. Consequently the truncation errors in the eigenfrequency
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and eigenfunction scale as N−2. If ω( 1
2N ) and ω(N ) are the eigenfrequencies obtained from

solutions with 1
2N and N meshpoints, the leading order error term therefore cancels in

σRi =
1

3
[4σ(N )− σ(

1

2
N )] . (3.18)

This procedure, known as Richardson extrapolation, was used by Shibahashi & Osaki (1981). It
provides an estimate of the eigenfrequency that is substantially more accurate than σ(N ), although
of course at some added computational expense.

It is obviously essential that the iteration converges to the same mode in the calculations
with N and N/2 meshpoints. To check this, the order of the solution obtained in the two cases
is calculated, according to the procedure described in Eq. (4.1) below. If the two solutions have
different orders, the combined solution should in principle be rejected. In practice, the situation
may sometimes be more complex, due to problems with the definition of the order. It happens,
particularly for l = 1 in evolved models, that the computed order jumps during evolution, due
to a slight shift in the eigenfunction which eliminates a zero (see section 4.2; as discussed there
this problem may largely be avoided by using a determination of the order developed by Takata).
Similarly, corresponding differences between the eigenfunctions computed with N/2 and N points
can lead to different orders being inferred in the two cases, even though this is in fact the same
mode, and Richardson extrapolation therefore justified. This is handled by the programme in
the following way: if different orders are detected, the difference between the eigenfunctions is
estimated, in terms of the norm defined by the energy integral (Eq. 4.3), relative to the norm of
one of the eigenfunctions. If this norm is comparable with the difference between the frequencies,
in a suitable sense, the mode is accepted, otherwise it is rejected. In the former case a warning
message, in the latter an error message, is written to adipls-status.log. The details of the
tests (which are handled by the subroutine testri) may still have to be fine-tuned. For high-order
modes problems may also occur if the thinned-out mesh is not sufficient to resolve the eigenfunction,
identifying a mode that is actually of different order in the vicinity of the frequency based on the
full mesh. In such cases, it may be necessary to forego the Richardson extrapolation.

3.5 Operational experience

As implemented here the shooting technique is considerably faster than the relaxation technique,
and so should be used whenever possible (notice that both techniques may use the difference
Eqs (3.11) and so they are numerically equivalent, in regions of the spectrum where they both work).
For second-order systems the shooting technique can probably always be used; the integrations of
the inner and outer solutions should cause no problems, and the matching determinant in Eq. (3.5)
is well-behaved. For fourth-order systems, however, this need not be the case. For modes where the

perturbation in the gravitational potential has little effect on the solution, the two solutions y
(i,1)
j

and y
(i,2)
j , and similarly the two solutions y

(o,1)
j and y

(o,2)
j , are almost linearly dependent, and so

the matching determinant nearly vanishes for any value of σ2. This is therefore the situation where
the relaxation technique may be used with advantage. The point where the shooting method fails
depends on the precision. With 4-byte real variables, such as is used in the single-precision version
on the Aarhus Alliant, experience has shown that for a solar model the shooting technique may
give problems for the full fourth order system for 5 min modes of degree higher than 4. On the
NCAR Cray, with 8 byte real variables, it was possible to go as high as l = 40 for 5 min solar p
modes; for strongly trapped g modes there were problems at degree higher than about 15. However,
in general a little experimentation may be required to determine the conditions under which one
method should be preferred over another.
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It should be noticed that the conditions under which the shooting technique for the full system
gives problems are precisely the conditions where the Cowling approximation (of neglecting the
perturbation to the gravitational potential) might be expected to be applicable. Thus here the
Cowling approximation may be adequate, and the resulting second-order system can be solved using
the shooting technique; the resulting eigenfrequency may, if desired, be corrected for the effects of
the perturbations in the gravitational potential by using Cowling’s perturbation expression, and the
perturbation in the potential may be computed from the eigenfunction by using the integral solution
of Poisson’s equation (this option is built into the programme). If a solution of the full system is
desired, a reasonable strategy is to first compute the solution in the Cowling approximation with
the shooting technique (possibly stepping in σ2 to search for the eigenvalues), and to then solve
the full set using the relaxation technique, starting from the eigenvalues found in the Cowling
approximation.

The ability to specify the fitting point xf gives considerably flexibility in the calculation, and
correct choice of xf is often essential to obtain a solution. As a rule of thumb when using the
shooting technique xf should be chosen near the general maximum in the eigenfunction, so that the
integration both from the inner and from the outer boundary is in a direction where the solution
is predominantly increasing. However, the fitting point may not placed too close to the surface, as
otherwise the almost singular solution at the surface may cause problems.

Problems are almost certain to arise if the fitting point is placed deep within the region where
the solution is evanescent. In particular, in older versions of the code the point xev where the
transition from scaled to unscaled variables takes place was restricted to lie deeper than the fitting
point. For very high-degree modes, where the turning point is within a fraction of a per cent of
the radius from the surface, this may easily happen, unless xf is very close to unity. In the present
version of the code, this can be controlled in two slightly different ways:

i) if the parameter irsevn is set to 2, the fitting point is automatically reset to xev if it is found
that xf < xev. The fitting point is reset to the input value before the next mode is calculated.

ii) if the parameter xfit is set to -1, the fitting point is always set to the boundary of the
evanescent region.

Roughly the same rules apply when using the relaxation technique with fitting, although here
the rate (or even success) of convergence appears to somewhat more sensitive to the proper choice
of xf . It has been found that the programme occasionally fails to converge to a single mode, out
of a large sample or converges to a neighbouring mode. The missing mode can then usually be
found by choosing a slightly different value for xf . The programme has the option of automatically
resetting xf if the iteration fails or the wrong mode is obtained, by setting the parameter nftmax

to a value greater than one. If this succeeds, a warning message is written to adipls-status.log.
After completing the given mode, xf is reset to the original value.

(As indicated previously the use of the relaxation technique, removing one of the boundary
conditions, can cause problems; in particular it seems to give trouble for precisely the modes where
the relaxation technique is indicated, i.e., modes of high degree. This option was implemented
before the relaxation technique with interior matching, and has been left in the programme to allow
possible future experiments with its properties; however, for practical calculations the relaxation
technique with interior matching should be preferred.)

In calculations for red-giant models the extremely high-order g modes typically found cause
special problems. A large number of meshpoints is required properly to resolve the eigenfunctions.
Also, the use of the second-order scheme with Richardson extrapolation becomes problematic, since
the calculation with N/2 points close to a given frequency may converge to a mode of different
order from the calculation on the full mesh with N points, as a result of the very dense frequency
spectrum. For such a model the use of the fourth-order integration scheme (mdintg = 5) is strongly
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recommended. Further tests are required to evaluate the relative merit of this scheme, compared
with second-order integration and Richardson extrapolation, for less extreme models.

4 Results of the calculation

The principal results of the calculation are the eigenfrequency σ and the eigenfunction yi(x). How-
ever, the programme computes and prints a number of other quantities, which are described in this
section.

4.1 Frequency correction in the Cowling approximation

When the equations are solved in the Cowling approximation for a complete model, the correction
δσ2 to σ2 caused by the perturbation to the gravitational potential is calculated from Cowling’s
(1941) perturbation expression, as well as the corrected squared frequency σ2

c = σ2 + δσ2; here
σ2 denotes the value obtained as an eigenvalue. The calculation is carried out by the subroutine
gravpo. In addition the perturbation of the gravitational potential, in the form of y3 is calculated
from the integral solution to Poisson’s equation; currently y4 is not set.

4.2 Mode order

The programme finds the order of the mode according to the Scuflaire (1974) definition (see also
Unno et al. 1989, p. 149 – 158), through calling subroutine order. Specifically the order is defined
by

n = −
∑
xz1>0

sign

(
y2

dy1

dx

)
+ n0 . (4.1)

Here the sum is over the zeros {xz1} in y1 (excluding the centre), and sign is the sign function,
sign (z) = 1 if z > 0 and sign (z) = −1 if z < 0. The value of n0 depends on the behaviour of
the solution close to the innermost boundary: if y1 and y2 have the same sign at the innermost
mesh point, excluding the centre, n0 = 0, otherwise n0 = 1. In particular, for a complete model
that includes the centre, it follows from the expansion of the solution at the centre that n0 = 1 for
radial oscillations and n0 = 0 for non-radial oscillations. Thus the fundamental radial oscillation
has order n = 1. Although this is contrary to the commonly used convention of assigning order 0
to the fundamental radial oscillation, the convention used here is in fact the more reasonable, in
the sense that it ensures that n is invariant under a continuous variation of l from 0 to 1. With
this definition n > 0 for p modes, n = 0 for f modes, and n < 0 for g modes.

It may be shown that this labelling is mathematically satisfactory in the Cowling approxi-
mation, in the sense of being invariant under continuous variations of the equilibrium model, or
under continuous changes in l (Gabriel & Scuflaire 1979; Christensen-Dalsgaard 1980). However,
this is not always the case for modes corresponding to the full set of equations. In particular, for
sufficiently centrally condensed models an unreasonable order is calculated for the lowest-order p
modes with l = 1; such models include models of the present Sun and more highly evolved models,
as well as polytropic models of sufficiently high polytropic index (see Christensen-Dalsgaard &
Mullan 1994). This problem affects a very broad range of dipolar modes in models of red giants.
The correct mode labelling can in principle be inferred for such models by following the modes
through a sequence of models starting from a less centrally condensed model, e.g., from a ZAMS
model where such problems apparently do not occur.
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The programme contains the option for correcting the order set as in Eq. (4.1), controlled by
the input parameter irsord: if 1 ≤ irsord ≤ 10, the order n as calculated using Eq. (4.1) is
replaced by ñ = n + 1 when l = 1 and 0 ≤ n ≤ irsord. Thus irsord = 1 makes the correct
resetting in the case of a traditional model of the present Sun. It is important to realize, however,
that the correction depends strongly on the nature of the model. In particular, for more evolved
1 M� models the problems extend to higher order.

An alternative method for setting the order was proposed by Lee (1985), on the basis of δΦ
and p′. It may be obtained in the programme by setting irsord = 11 or -11. The success with
this approach has been less than convincing so far. However, in a major breakthrough Takata
(2005, 2006a,b) showed that the eigenfunctions of dipolar modes satisfy an identity which allows
the oscillation equations to be cast as a second-order system. This allows a rigorous determination
of the mode order based on the functions

Y1 =
1

g

[
δΦ

r
− δ

(
dΦ

dr

)]
, Y2 =

δp

p
. (4.2)

A variant of the scheme has been implemented in the code by Gülnur Doğan and appears generally
to produce reliable orders of dipolar modes for a broad range of models, including models of red
giants (see Appendix B for details). It is used by setting irsord = 20. It should be noted, however,
that the functions used for setting the order depend on 3 − U , where U = d lnm/d ln r. Hence
there can be problems with the resulting order if U does not tend properly towards 3 from below
as r → 0 in the model.

4.3 Mode energy, scaled eigenfunctions

The programme calls subroutine ekin to calculate a dimensionless measure of the kinetic energy of
pulsation. Two different normalizations may be chosen, depending on the value of the parameter
iekinr. For iekinr = 0 (the default) the quantity calculated is

E =

∫ Rs

r1
[ξ2
r + l(l + 1)ξ2

h]ρr2dr

Mξr(Rs)2
=

∫ xs

x1

[
y2

1 + y2
2/l(l + 1)

]
qUdx/x

4πy1(xs)2
, (4.3a)

whereas for iekinr = 1,

E =

∫ Rs

r1
[ξ2
r + l(l + 1)ξ2

h]ρr2dr

M [ξr(Rphot)2 + l(l + 1)ξh(Rphot)2]
=

∫ xs

x1

[
y2

1 + y2
2/l(l + 1)

]
qUdx/x

4π[y1(xphot)2 + y2(xphot)2/l(l + 1)]
. (4.3b)

(For radial modes the terms in y2 are not included.) Here r1 ≡ Rx1, Rs ≡ Rxs and Rphot ≡ R are
the distance of the innermost mesh point from the centre and the surface and photospheric radii of
the model, respectively; q = m/M and U = 4πρr3/m. Note that, as defined here, E is related to
the commonly used mode mass Mmode by E = Mmode/(4πM).

To indicate the region where the mode predominantly resides (in an energetical sense)

z1(x) =

(
4πr3ρ

M

)1/2

y1(x) =

(
4πr3ρ

M

)1/2
ξr(r)

R
,

z2(x) =
1√

l(l + 1)

(
4πr3ρ

M

)1/2

y2(x) =
√
l(l + 1)

(
4πr3ρ

M

)1/2
ξh(r)

R
,

(4.4)
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are calculated (for radial modes only z1 is found). These are defined in such a way that

E =
1

4πy1(xs)2

∫ xs

x1

[z2
1 + z2

2 ]
dx

x
(4.5)

[assuming the definition (4.3a) of E]. For output purposes the normalized functions

ẑ1 =
z1

z1,max
and ẑ2 =

z2

z1,max
, (4.6)

where z1,max is the maximum value of z1, are generally used.
As a further, global, indication of the predominant location of the mode we introduce Ecore,

defined as in Eqs (4.3) but integrating only over the g-mode trapping region, defined by ω2 < N2

and ω2 < S2
l , and

ζ =
Ecore

E
, (4.7)

following, e.g., Goupil et al. (2013). This has proven very useful in the characterization of oscilla-
tions of red giants.

The Takata identity also provides an excellent test of the consistency of the solution. It has
been found that an inconsistency in the equilibrium model may also be reflected in how well the
identity is satisfied. The identity, formulated in terms of the variables used in the code, is discussed
in Appendix B.

4.4 Variational frequency

The programme has the option of calculating the frequency and period based on the variational
expression for ω2, in the subroutine varfrq [see Christensen-Dalsgaard (1982) for details]. As
discussed there, different formulations have to be used for p and for g modes, selected by the input
parameter ivarf. It might also be noticed that, as implemented, the calculation is based on only y1

and y2, with the contribution from the perturbation to the gravitational potential being calculated
using the integral solution to Poisson’s equation. Thus even for modes calculated in the Cowling
approximation the perturbation of the gravitational potential is taken into account, essentially by
using the perturbation technique, in the calculation of the variational period.

Notice that the programme normally uses a different formulation for radial and for nonradial
modes. There is an option (selected by setting the parameter ivarf to 3), where essentially
the nonradial formulation of the variational integral (in its p-mode form) may be used for radial
modes; this may be useful to get strict consistency between the calculation for radial and non-radial
modes. However, this formulation apparently leads to fairly severe cancellation and consequent loss
of accuracy. Thus it probably cannot be recommended, although the modes for which it might be
of use must be investigated.

4.5 Kernels

For a rotation law depending on r only the rotational splitting may be written

∆ωnlm = mβnl

∫ xs

0

Knl(x)Ω(x)dx , (4.8)

where Ω(x) is the angular velocity. Here Knl is normalized to have unit integral over [0, xs]. The
programme has an option of calculating and printing βnl and Knl; this is done by subroutine rotker
when the parameter irotkr is set to 1.
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The programme contains also the option for computing the kernel for computing the frequency

change caused by a change in Γ1 at fixed p and ρ. Specifically, the kernel K
(Γ1)
nl is defined such that

δω

ω
=

∫ xs

0

K
(Γ1)
nl δΓ1dx . (4.9)

It is calculated by subroutine gm1ker when the parameter igm1kr is set to 1.

5 Equilibrium model variables

The following variables are needed at each mesh point in the model:

x ≡ r/R ,

A1 ≡ q/x3, where q = m/M ,

A2 = Vg ≡ −
1

Γ1

d ln p

d ln r
=
Gmρ

Γ1pr
,

A3 ≡ Γ1 ,

A4 = A ≡ 1

Γ1

d ln p

d ln r
− d ln ρ

d ln r
,

A5 = U ≡ 4πρr3

m
.

(5.1)

These are clearly all dimensionless. (In some cases an additional variable A6 is needed; see below.)
In addition we use the following “global” quantities for the model:

D1 ≡M ,

D2 ≡ R ,

D3 ≡ pc ,

D4 ≡ ρc ,

D5 ≡ −
(

1

Γ1p

d2p

dx2

)
c

,

D6 ≡ −
(

1

ρ

d2ρ

dx2

)
c

,

D7 ≡ µ ,
D8 : see below .

(5.2)

Here R and M are photospheric radius and mass of the model (the photosphere being defined as
the point where the temperature equals the effective temperature). In a complete model pc and
ρc are central pressure and density, and D5 and D6 are evaluated at the centre. The dimensional
variables (i.e., D1 −D4) must be given in cgs units. Note that D5 and D6 are defined such that,
near the centre, A2 ' D5x

2 + . . . and A4 ' (−D5 + D6)x2 + . . .. In an envelope model (that
does not include the centre) D3 and D4 should be set to the values of pressure and density at the
innermost mesh point, and D5 and D6 may be set to zero.
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For a model with vanishing surface pressure µ is the effective polytropic index at the surface, so
that in particular µ is the polytropic index of a complete polytrope (the polytropic index elsewhere
is not needed in the calculation, and so mixed polytropes can be considered); models with non-
vanishing surface pressure are flagged by having µ < 0. The notation is otherwise standard. The
model may include an atmosphere (for solar models a simplified atmosphere extending out to
roughly the temperature minimum is typically used). Thus at the surface possibly x > 1.

These variables are convenient when the equations are formulated as by e.g. Dziembowski;
but it should be possible to derive any set of variables required for adiabatic oscillation calculations
from them. D5 and D6 are needed for the expansion of the solution around the centre. In models
with vanishing surface pressure D7 is used in the expansion at the surface singular point.

For a plane-parallel equilibrium model, or when the equilibrium model is affected by turbulent
pressure, the definition of the equilibrium variables must be somewhat modified. These modifica-
tions are discussed in Sections A.2 and A.3, respectively.

The quantity D8 is used to flag for a different number of variables in the file, or otherwise a
different structure. Currently the non-standard options are to have D8 = 10 or 20. In both cases,
the file contains 6 variables A1−A6 at each mesh point. For D8 = 10, A6 is related to the gradient
in turbulent pressure (see Section A.3.2); for D8 = 20, A6 is related to the ratio between the full
and reduced gravitational acceleration, in cases with rotation (see Sections 8.6 and A.4). The value
of D8 is checked when the file is opened in subroutine readml; hence the structure must be the
same for all models in a given file. For the use of D8 to flag the setting of the redistributed mesh,
see Appendix C.

Relations between the variables defined here and more “physical” variables are often useful.
Here we provide relations valid when A6 is not included; for the case including rotation, see Section
A.4. We obtain:

p =
GM2

4πR4

x2A2
1A5

A2A3
,

dp

dr
= −GM

2

4πR5
xA2

1A5 , ρ =
M

4πR3
A1A5 . (5.3)

We may also express the characteristic frequencies for adiabatic oscillations in terms of these vari-
ables. Thus if N is the buoyancy frequency, Sl is the Lamb frequency and ωa is the acoustical
cut-off frequency for an isothermal atmosphere, we have

N2 ≡ GM

R3
Ñ2 =

GM

R3
A1A4 , (5.4)

S2
l ≡

l(l + 1)c2

r2
≡ GM

R3
S̃2
l =

GM

R3

l(l + 1)A1

A2
, (5.5)

and

ω2
a ≡

c2

4H2
p

=
1

4

GM

R3
A1A2A

2
3 , (5.6)

where c is the adiabatic sound speed, and Hp = p/(gρ) is the pressure scale height. Finally it may
be noted that the squared sound speed is given by

c2 =
GM

R
x2A1

A2
. (5.7)

6 Notation and data storage in the programme

6.1 Model storage

Only a limited description of the notation in the programme is given in this section, aimed at
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facilitating the later discussion of input to and output from the programme. A detailed description
of the code is outside the scope of these notes.

In the programme a mesh {xn} is used, with x1 being the point closest to the centre and xN at
the surface; this is stored in a one-dimensional array x(n) = xn, n = 1, 2, . . . ,N . The Ai are stored
in the array aa(1:iaa,1:nn). Here the first dimension iaa is currently set to 10. The variables
are stored as

aa(i, n) = Ai(x
n), i = 1, . . . , ia, n = 1, . . . , nn ,

where ia is normally 5, but may be 6 in models including one possible treatment of turbulent
pressure (cf. section A.3.2); aa(10,n) is used for additional storage related to a different way of
handling turbulent pressure. Finally the Di are stored in the array data(1:8) as

data(i) = Di, i = 1, . . . , 7 ;

data(8) is used only as a flag on model input (cf. Section 5).

6.2 Storage of solution

The squared eigenfrequency σ2 is denoted by sig (and sig1, sig2, sigp, . . .) in the programme.
Furthermore the degree l of the modes is stored in el; as discussed in Section 2.1 l is treated as a
real variable.

The solution at x(n) is set into y(i,n), as

y(i, n) = yi(x
n), i = 1, . . . , ii, n = nw1, . . . , nn .

Here ii is the order of the system, i.e., 2 for radial oscillations or non-radial oscillations in the
Cowling approximation, and 4 for non-radial oscillations with the full system. Further nw1 = 1
if the model is not truncated in the interior, otherwise nw1 = ntrnct, the truncation mesh point;
nnw = nn - nw1 + 1 is used for the total number of points in the solution.

The inner boundary conditions are applied at the point nibc. When nw1 = 1, and x(1) is at
the centre of the model, nibc = 2. Otherwise nibc = nw1.

A more detailed description of the data storage is given in the source for the programme.

6.3 Terminal input, and terminal and printed output

The unit numbers for these types of input and output are defined in

common/cstdio/ istdin, istdou, istdpr

Here istdin is the unit number for input (typically 5), istdou is the unit number for output to
the terminal, and istdpr is the unit number for printed output. For batch processing, one would
obviously have istdou = istdpr. These quantities are initialized in

block data blstio

which must be set, depending on the installation. istdpr is contained in the list of control pa-
rameters, and may be changed during the operation of the programme. This allows, say, sending a
short summary of the operation of the programme, to verify that it is successful, to the terminal,
and the detailed printed output to a file.
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7 Input to the programme

7.1 The equilibrium model

The equilibrium model must be supplied to the programme in a single, unformatted record, to be
read by the statement

read(imlds) nmod, nnmodl, (data(i), i=1,8), (x(n), (aa(i,n), i=1,ia),

* n=1,nnmodl)

Here nmod is an identification number of the model, which is not used in the calculation. Also, ia
should be 5, unless anything else is flagged by setting data(8). Note that the model storage must
start at the centre.

It is important that the model supplied to the programme must have a reasonable distribution
of meshpoints. There is currently no possibility for resetting the mesh in the programme, apart
from possibly reducing the number of points by taking every in-th point (cf. Section 7.2). This is
of course particularly important for high-order modes, where it is essential to use different meshes
for p and for g modes. A separate programme exists for resetting the mesh from that supplied by,
e.g., the evolution programme.

7.2 Control parameters

7.2.1 Input of control parameters

In the original version of the programme control parameters were input by means of namelist.
However, namelist is not a standard Fortran77 feature, unfortunately; in particular, certain im-
plementations under UNIX have not permitted namelist. Also namelist may not be optimal for
interactive use of the programme.

Thus the programme uses list-directed input. This takes place in separate lines, containing
up to 9 variables. On input, each line is prompted by printing the names of the variable, and the
current values, as in

itrsig, sig1, istsig, inomde, itrds ?

0 10.00 1 1 10

The new values are then input. Note that if a value is not given for a variable, it is not changed.
Thus by inputting, e.g.,

,5.,,2,,

in response, sig1 is set to 5.0, inomde to 2, and the remaining variables are unchanged. If a line
consisting solely of commas is input, all variables are unchanged.

Although it is possible in this way to enter the data from the terminal, this is somewhat
impractical, given the large number of parameters. The usual way of providing input to the code
is through the use of an input file. This may conveniently be given the following structure:

.

.

mod:

ifind, xmod, imlds, in, nprmod,
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,,,,,,, @

xtrnct, xtrnsf, imdmod,

0.,,,,,,,,,,,,,,,,,,,,,, @

osc:

el, nsel, els1, dels, dfsig1, dfsig2, nsig1, nsig2

,4,0,1,0,0,,,,,,, @

itrsig, sig1, istsig, inomde, itrds,

1, 5 0 , 10,10,,,,,,,, @

dfsig, nsig, iscan, sig2,

,2,50,30,,,,,,,,,,,,,,,,,,,,,,, @

eltrw1, eltrw2, sgtrw1, sgtrw2

,,0,-1,,,,,,,,,,,,,,,,,,,,,,,,,,,, @

.

.

Here lines of headers giving variable names are followed by lines setting their values. The latter
are indicated by the character “@” at the end of the line. Only these data lines should be passed
to the programme. This is achieved by passing the input file through a filter, before the data are
read in.* In practice the extraction is handled automatically by the UNIX script which is invoked
to run the programme (cf. Notes on using the solar models and adiabatic pulsations package).

The output gives a line with the variable names, and a line giving their values, as

itrsig, sig1, istsig, inomde, itrds

0 5.0 1 2 10 @

Note the addition of the character “@”. This is included in all output lines that correspond to a
parameter input line to the programme; in this way, the output contains essentially the information
required to repeat the given run.

As the programme has a very large number of control parameters (about 85!), these are sepa-
rated into 5 groups. The first control parameter, cntrd, is a string which controls which of these
groups are modified. Each group is indicated by a three-letter string, defined by

dsn: read dataset controls.
mod: read model controls.
osc: read controls for mode selection.
rot: read controls for including rotational effects
cst: read new values of fundamental constants (currently just gravitational constant)
int: read controls for type of equations or integration procedure.
out: read controls for output.
dgn: read controls for diagnostics.
msh: read controls mesh trailer.

The fields may be separated by, e.g., “.” (but not comma or blank, as they act as variable
separators in the list-directed input). Thus if cntrd is “mod.osc.int”, the groups defining the
model, mode selection and integration procedures are read. Note that this input quantity must be
specified explicitly (i.e., it cannot be set to default values by means of “,,,”).

* This extraction is trivially done under UNIX by using the grep programme. More generally,
it would be simple to write a Fortran programme to perform the same task.
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7.2.2 Assignment of unit numbers to files

In the current version of the programme, files are accessed by unit numbers which are assigned
once and for all. This is therefore very similar to the procedure used on traditional main-frames,
where the assignment takes place with the appropriate JCL statements. – In future a more flexible
scheme may be implemented.

The assignment takes place in the programme, to make it as installation independent as pos-
sible. It is defined by means of a list, read from normal input, on the form

<unit number> <file name>

and terminated by

-1 ’’

As an example, the following block of an input file

2 ’model’ @

10 ’/usr/jcd/agsm/gsm’ @

11 ’new.gsm’ @

15 ’new.ssm’ @

-1 ’’ @

assigns unit number 2 to the file “model”, unit number 10 to the file /usr/jcd/agsm/gsm, and
so on (note that the “ ’ ” are required here to ensure input of the entire string; the file name
format is peculiar to UNIX). Notice the addition of “@” to make these into input lines passed to
the programme.

The programme prompts for input of the file data, giving information about the files required
and the format. The input data is echoed, with the addition to each line of the character “@”, in
accordance with the usage described above in connection with list-directed input/output.

7.2.3 Description of control parameters

Below is a complete list of the control variables and their meaning. This is essentially copied from
the list given in the programme. To facilitate the use of the programme a discussion of some of the
options is given in Sections 7.3 – 7.5.

Note that to separate the variables in the programme from the other variables, the former have
been written in typewriter type.

cntrd: String determining which control fields are read. See description in Section 7.2.2 above.
(default: cntrd = ’mod.osc.int.out.dgn’. This reads all the control fields, except funda-
mental constants.) The full set of fields is dsn.mod.osc.rot.cst.int.out.dgn.msh.

a) Dataset controls (group dsn):

idsgsm, idsssm, idsefn, idsrkr, idsgkr, idslog: See Section 8 for definitions and defaults.

b) Equilibrium model controls (group mod):

ifind, xmod: determines which model is used.
ifind < 0: do not read new model, except if no model has been read so far.
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ifind = –2: possibly reset model with subroutine modmod or set new truncation, even if no
new model was read.

ifind = 0: rewind data set before reading model.
ifind = 1: read next model on data set.
ifind = 2: read model no. xmod on dataset.
xmod is currently assumed be integer-valued. Non-integer xmod may be implemented later,

with interpolation between models.
(default: ifind = -1

xmod = 0)
imlds: models are read from unit imlds

(default: imlds = 2)
in: after reading model, take every in-th point

(default: in = 1)
nprmod: if nprmod > 0 print the model at nprmod points.

(default: nprmod = 0)
xtrnct: if xtrnct > 0 truncate the model fractional radius r/R = xtrnct. This is only imple-

mented for radial oscillations, or in the Cowling approximation. Thus if l > 0 and the model
is truncated, icow = 2 is forced, and a diagnostics is printed.

(default: xtrnct = 0)
xtrnsf: if xtrnsf > 1 stop model at point no. xtrnsf from the surface. If xtrnsf < 0, truncate

model at r/R = |xtrnsf|, interpolating in model to this point (see Note (a) below).
(default: xtrnsf = 0)

imdmod: when imdmod 6= 0 call s/r modmod, which may be user-specified to modify the model.
(default: imdmod = 0)

c) Controls for l and the trial frequency (group osc):

el, nsel, els1, dels: controls for determining the value of the degree l.
el: when nsel ≤ 0 (and itrsig 6= 2; see below) use l = el as input.

(default: el = 1)
nsel: when nsel ≥ 1 step through l = els1 + i ∗ dels, i = 0, . . . , nsel − 1. When iscan ≤

1 (see below) sig is given the initial value in sig1. The increment from one value of l to
the next may be controlled by the parameters dfsig1, nsig1 (see below).
(default: nsel = 0

els1 = 10

dels = 1)
dfsig1, dfsig2, nsig1, nsig2: allows resetting of the sig1 and sig2 during step in l for nsel

> 1. For each new value of l, sig1 and sig2 are incremented as determined by (nsig1,
dfsig1), (nsig2, dfsig2), in the same manner as in the definition of nsig and dfsig below.
Note: currently dfsig1, dfsig2 refer to the scan limits in squared dimensionless frequency,
regardless of the value of istsig.

(default: dfsig1 = 0

dfsig2 = 0

nsig1 = 1

nsig2 = 1)
sig1, sig2, itrsig, inomde, istsig, itrds, dfsig, nsig: determine trial frequency.

itrsig = 0: trial frequency taken from sig1.
itrsig = 1: sig is found initially from sig1, and then, for jstsig = 2, . . ., istsig, from

previous value sigp and dfsig.
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Meaning of dfsig depends on nsig:
nsig = 1: sig = sigp + dfsig

nsig = 2: dfsig is increment in frequency (i.e., in
√
sig),

sig = (
√
sigp + dfsig)2.

nsig = 3: dfsig is increment in 1/(frequency) (i.e., in 1/
√
sig),

sig = (1/
√
sigp + dfsig)−2.

(Note that itrsig and nsig have a special meaning when iscan > 1, see below.)
itrsig = 2 or 3: find trial frequency from values on grand summary residing on unit itrds.

If itrsig = 2 mode no inomde + jstsig - 1 is taken, and el is reset to the value for
this mode. If itrsig = 3 the mode with the value of l input as el and of order inomde

+ jstsig - 1 is used. Here jstsig is stepped through 1, . . . , istsig. If the results on
unit itrds were obtained in the Cowling approximation the default is to use the corrected
frequencies; use of uncorrected frequencies is forced by setting dfsig = –1.

itrsig = 4 or 5: find trial frequency from values on short summary residing on unit itrds.
Otherwise corresponds to itrsig = 2 or 3 above.

itrsig = 6 or 7: find trial frequency from cyclic frequencies (in µHz) from file residing on d/s
itrds; the file is in ASCII, each record containing l, n, ν, where ν is the cyclic frequency
in µHz. Otherwise itrsig = 6 and 7 corresponds to itrsig = 2 and 3 above.

itrsig = –2 — –5: Find trial frequencies from single-precision files of grand or short sum-
maries, as above for itrsig = 2 — 5.

When iscan > 1 and istsig ≤ 1, sig1 < 0 and/or sig2 < 0 are used in a frequency scan to
limit the range in σ2 to the range allowed by the isothermal-atmosphere boundary condi-
tion (see Section 2.4.3 and Appendix E). When sig1 = 0, start scan at σ2 =

√
l(l + 1),

the f-mode value, unless this is below a preset limit.
(Note that istsig and inomde have special meaning when iscan > 1; see below.)

(default: itrsig = 0

sig1 = 10

sig2 = 0

dfsig = 0.

nsig = 1

istsig = 1

inomde = 1

itrds = 10)
iscan: flag for scan in sig. When iscan > 1 step in sig between frequency limits sig1 and

sig2 (see Appendix E for further details). When istsig ≤ 1, sig1 and sig2 are limits in
squared dimensionless frequency σ2; otherwise sig1 and sig2 are the limits in cyclic frequency
ν, measured in mHz.
The details of the scan depend on nsig:

nsig = 1: Scan is uniform in σ2, with nsig steps between sig1 and sig2

nsig = 2: Scan is uniform in σ, with nsig steps between sig1 and sig2

nsig = 3: Scan is uniform in 1/σ, with nsig steps between sig1 and sig2

nsig = 4: Scan is uniform in 1/σ at low frequency and σ at high frequency, with nsig

steps between sig1 and sig2

nsig ≥ 10: iscan defines the estimated number of steps between eigenfrequencies, the
spacing between eigenfrequencies being estimated asymptotically.

nsig ≥ 20: In addition, limit the lower limit sig1 of the scan to avoid underresolved
modes with the given number of meshpoints.

When itrsig = 1 check for change of sign in the matching determinant and iterate for eigen-
frequency at each change of sign.
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If inomde ≥ 2 stop scan after diagnostics from integration. (Currently only for diagnostics
from setbcs, particularly when the frequency exceeds the acoustical cut-off frequency.)

When scanning for the frequencies, sig1 < 0 flags for start of the scan at the lower cutoff
frequency σgc corresponding to an isothermal atmosphere (or from σ2 = 3, for l = 0);
sig2 < 0 flags for stopping the scan at the upper cutoff frequency σac (see Appendix E).
(default: iscan = 1)

eltrw1, eltrw2, sgtrw1, sgtrw2: windows applied to trial l or σ2. Only takes effect if eltrw1 ≤
eltrw2, respectively sgtrw1 ≤ sgtrw2.

(default: eltrw1 = 0

eltrw2 = -1

sgtrw1 = 0

sgtrw2 = -1)
See also note (a) below.

d) Controls for the inclusion of rotation (group rot):

irotsl: if irotsl = 1, calculate solution including first-order rotational effects as in Soufi et al.
(1998) for azimuthal order em.

(default: irotsl = 0

em = 0)
nsem, ems1, dems: Controls step in azimuthal order, for irotsl = 1.

nsem = -1: step with step dems, from -el to el

nsem .gt. 0: take nsem steps, starting from ems1, with step dems

(default:
nsem = 0

ems1 = 0

dems = 0)

e) Fundamental constants (group cst):

cgrav: Value of gravitational constant (the default is value hardcoded in the programme before
23/3/88)

(default: cgrav = 6.6732× 10−8)

f) Controls for equations, boundary conditions and integration method (group int):

iplneq: when iplneq = 1 use equations for plane-parallel layer (note that model coefficients should
then also correspond to plane-parallel case). Only implemented for non-radial oscillations;
attempted calculations with l = 0 are skipped, and a diagnostics is printed.

(default: iplneq = 0)
iturpr: flag for turbulent pressure in equilibrium model (see Section A.3; probably requires

further testing)
(default: iturpr = 0)

icow: flag for Cowling approximation.
icow = 0: solve full equations.
icow = 1: solve equations in Cowling approximation and go back and solve full equations with

Cowling result as trial.
icow = 2: solve equations in Cowling approximation only. Also sets frequencies corrected by

perturbation technique.
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icow = 3: as icow = 2, except that Richardson extrapolation of cyclic frequency is based on
uncorrected eigenfrequency.

(default: icow = 0)

alb: fudge factor in Poisson’s equation (the λ in Eq. 2.3). Should be 1, except when studying
gradual transition between Cowling approximation and full case.

(default: alb = 1.)

istsbc, fctsbc: determines surface pressure boundary condition.

istsbc = 1: find condition by matching to exponentially decaying solution in an isothermal
atmosphere matched to the outermost mesh point [i.e., use conditions (2.17) - (2.20)].
This assumes that the frequency is above the gravity-wave and below the acoustical cut-
off frequencies at that point. Otherwise a message is printed and the condition for istsbc
= 0 is used.

istsbc = 2: find condition by matching to exponentially decaying solution in isothermal
atmosphere as above, but using the full expression for the term in y3 (cf. Eq. 2.25).
(Added 10/2/21.)

istsbc = 0: use simple surface condition as given in Eqs (2.16c) and (2.16d). When fctsbc

= 0 (the default) this corresponds to δp = 0.

istsbc = 9: use δr = 0 on surface.

fctsbc: determines condition when istsbc = 0: the conditions (2.16c) or (2.16d) with FSBC =
fctsbc. Note that fctsbc = 0 corresponds to using δp = 0, and fctsbc = 1 corresponds
to using p′ = 0. However, all intermediate cases are allowed.

(default: istsbc = 1

fctsbc = 0)

ibotbc, fcttbc: determines bottom boundary condition in truncated model.

ibotbc = 0: set relation between y1 and y2 at bottom to isolate solution that decreases
exponentially towards the interior (i.e., use condition 2.11). This assumes that the bottom
is in an evanescent region for the l-value and frequency used. Otherwise the condition
corresponding to ibotbc = 1 is used.

ibotbc = 1: use condition (2.12), with FBC = fcttbc.

ibotbc = 2: use condition (2.13), i.e., vanishing gradient of displacement.

ibotbc = 3: use condition (2.14), i.e., vanishing gradient of relative displacement.

(default: ibotbc = 0

fcttbc = 0)

mdintg: determines type of integration used (see Sections 3.1 and 3.2).

mdintg = 1: use shooting method with centred differences Eq. (3.11).

mdintg = 2: use shooting method with constant coefficient integration on each mesh interval
(only implemented for second-order systems, i.e., radial or Cowling approximation; if
mdintg = 2 and l > 0 icow = 2 is forced, and a diagnostics is printed).

mdintg = 3: use relaxation method. Find frequency by iterating on interior boundary condition
for xfit = 0, on outer boundary condition for xfit = 1, or on matching at an internal
point for 0 < xfit < 1.

mdintg = 5: use shooting method with fourth-order scheme of Cash & More (1980).

(default: mdintg = 1)

iriche: if iriche = 1, Richardson extrapolation is used to improve the computed frequency (but
not the other quantities), by solving initially the equations on every second meshpoint. Note:
trial frequency is decreased by dsigre. This option is currently only implemented for mdintg
= 1 or 3.

(default: iriche = 0).
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xfit: match solution at mesh point xf = xnf = xfit. (Note that fitting point may be reset auto-
matically by programme; see Section 3.5).
For xfit = −1 and l > 0 match solution at edge of inner evanescent region.
For xfit = −2 match solution at r/R = 0.95 for radial modes and at the first reasonable max-
imum of the buoyancy frequency for nonradial modes (added 17/12/18; still needs refinement).
For −1 < xfit < 0, combined with iscan > 0, test that |xfit| is outside evanescent region, for
l > 0. If so, use |xfit|, otherwise set fitting point just outside the boundary of the evanescent
region at the beginning of the scan (added 1/6/19).

(default: xfit = 0.5)
fcnorm: for mdintg = 3 and xfit = 0 or 1, normalize boundary condition by solution at point

x(norm) = xnnorm , where nnorm = fcnorm*nn.
(default: fcnorm = 0.5)

eps: convergence of sig assumed when relative change in sig between two iterations is less than
eps.

(default: depends on internal precision, as set in variable epsprc in common/cprcns/).
epssol: when mdintg = 1, 2 or 5 convergence criterion for eigenfunction is assumed to be that

relative discontinuity at matching point is less than epsol. When mdintg = 3 convergence
criterion is assumed to be that the mean relative change in the eigenfunction between two
iterations is less than epssol.

(default: epssol = 10−5)
itmax: maximum number of iterations.

When itmax = 0 just integrates once and, when mdintg = 1, 2 or 5, tests the continuity of
the eigenfunction. This is useful for re-computing eigenfunctions when the eigenfrequency
is known. This may also be used to output solution for given frequency, regardless of
whether it has converged, for nfmod1 = 1 (see nfmode below).
(default: itmax = 8)

dsigre: when using Richardson extrapolation, make relative change in trial sig by dsigre before
iteration on full mesh.
In addition, dsigre ≤ −1 is used to flag for frequency resetting if orders do not agree with
Richardson extrapolation.

(default: dsigre = 0)
fsig: in the secant iteration for sig, the second value is (1+fsig)*(the first trial value)

(default: fsig = 0.001)
dsigmx: the relative change in sig during the iteration is limited to be less than dsigmx in absolute

value.
(default: dsigmx = 0.1)

irsevn: Controls scaling of solution in evanescent region (cf. Section 3.3).
irsevn = −1: do not use scaling in evanescent region.
irsevn ≥ 1: reset transition point xev between modified and standard equations (at boundary

of evanescent inner region for the trial sig) before iterating for each eigenvalue, when
iterating for eigenfrequency during scan (i.e., for iscan > 1, itrsig = 1).

irsevn = 2: reset fitting point if it is deeper than the evanescent transition (the default is to
shift instead the evanescent transition to fitting point).

irsenv = 3: in addition do not rescale inner boundary values with xl−1, even if that factor is
not taken out in the solution. This is useful to ensure a smooth scanning, when the onset
of the rescaling takes place during the scan.
(default: irsevn = 2)

xmnevn: Search for evanescent transition is restricted to x ≥ xmnevn.
(default: xmnevn = 0)
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nftmax, itsord: When nftmax > 1, controls attempts to change fitting point.
nftmax = nftmx1 + 10*nftrcs.

Attempt changing fitting point up to nftmx1 times, if iteration does not converge or the correct
order is not obtained for itsord = 1.
Mode of resetting is controlled by nftrcs.
For nftrcs = 0, base resetting on mesh-point number.
For nftrcs = 1, base resetting on mesh in x.
If nftmx1 = 0, a large number of resets is allowed. In this case nftrcs should be set to 1.
Note that resetting is most likely to be effective for mdintg = 3.
If nftmax < 0, resetting of fitting point is suppressed.

itsord: If itsord = 1 test on order obtained from trial solution. This is only usable for
itrsig = 2 – 7.

(default: nftmax = 3

itsord = 0)

g) Controls for output (group out):

istdpr: unit number for printed output. Default set in block data subprogram blstio.

nout: when nout > 0 print solution at nout points

(default: nout = 50)

nprcen: if nprcen > 1 print solution at all the nprcen points closest to the centre.

(default: nprcen = 0)

irsord: Controls setting of order for modes of degree l = 1, when the Cowling approximation is
not used (cf. Section 4.2).

irsord between 1 and 10: Increment Scuflaire order between 0 and irsord by 1.

irsord = – 11 or 11: Set order according to Lee’s scheme. When irsord = –11, evaluate both
values of the order, and write diagnostics if they differ.

irsord = 20: Use the Takata (2006b) scheme for dipolar modes.

(default: irsord = 0).

iekinr: Determines normalization of energy (cf. Section 4.3).

iekinr = 0: normalize energy with surface vertical displacement.

iekinr = 1: normalize with total photospheric displacement.

(default: iekinr = 0).

iper, ivarf, kvarf, npvarf: controls for calculation of the variational frequency.

iper: when iper = 1 calculate variational frequency.

(default: iper = 0)

ivarf = 1: use p-mode formulation (Eqs (D2) and (D3) of CD82).

ivarf = 2: use g-mode formulation (Eqs (D7) and (D8) of CD82).

ivarf = 3: use nonradial p-mode formulation also for radial modes. (see note in Section 4.4).

(default: ivarf = 1)

kvarf: numerical differentiation and integration in calculation of variational frequency uses
polynomials of degree 2*kvarf

(default: kvarf = 2)

npvarf: for npvarf > 0 print integrands and integrals in variational calculation at npvarf

points.

(default: npvarf = 0)
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nfmode: nfmode = nfmod0 + 10*nfmod1 controls output of solutions to file. For nfmod0 = 1, 2
or 3 write eigenfunctions to file on unit 4. The normal usage, with nfmod1 = 0, is to output
eigenfunctions of converged solutions. The output format depends on the value of nfmod0 (see
also Section 8.4):
nfmod0 = 1: full set of variables.
nfmod0 = 2: displacement eigenfunctions y1(xn), y2(xn).
nfmod0 = 3: density-weighted displacement eigenfunctions ẑ1(xn), ẑ2(xn) (cf. Eq. 4.4).
nfmod1 = 1 is used to output possibly unconverged solution for a given frequency, computed

with itmax = 0, to file. nfmod0 ≥ 1 can be used to output unconverged solutions to file
for iscan > 1, with itrsig 6= 1 (see also Section 8.4).
(default: nfmode = 0)

irotkr, nprtkr: for irotkr ≥ 1 calculate rotational kernels. If in addition nprtkr > 1 rotational
kernel is printed at nprtkr points.
Rotational kernels are only output to file if idsrkr > 0, but may be used for computing rota-
tional splittings in the following cases (see also note (b) below, as well as Section 8.6):
For irotkr = 11 in addition compute rotational splitting from angular velocity in com-

mon/comgrp/.
For irotkr = 21 in addition compute second-order rotational splitting from angular velocity
in common/comgrp/.

(default: irotkr = 0

nprtkr = 50)
igm1kr, npgmkr: for igm1kr = 1 calculate Γ1 kernels (cf. Eq. 4.9). If in addition npgmkr > 1, Γ1

kernel is printed at npgmkr points.
(default: igm1kr = 0

npgmkr = 50)
ispcpr: if ispcpr 6= 0 special output may be produced by call of user-supplied routine spcout adi.

Also used to define type of frequency stored in common/cobs param/, when mdintg 6= 2 or 5
(see s/r setobs st for details):
ispcpr = 1: variational frequency.
ispcpr = 4: from eigenfrequency in cs(20). Note that this allows setting Cowling approxi-

mation frequency.
ispcpr = 5: from Richardson extrapolation frequency in cs(37), if this is set. Otherwise

variational frequency is used.
ispcpr = 6: from (possibly corrected) eigenfrequency in cs(21).

(default: ispcpr = 0)
icaswn: If icaswn ≥ 0, only output modes to file for which icase = icaswn

(default: icaswn = −1)
sigwn1, sigwn2, frqwn1, frqwn2, iorwn1, iorwn2, frlwn1, frlwn2: Windows for output of modes

to file. Windowing is applied only if first parameter is ≤ second parameter (e.g. sigwn1 ≤
sigwn2). Defaults are no windowing.
sigwn1, sigwn2: Window in σ2

frqwn1, frqwn2: Window in cyclic frequency ν (in µHz)
iorwn1, iorwn2: Window in mode order
frlwn1, frlwn2: Window in ν/(l + 1/2) (ν in µHz)

(default: sigwn1 = 0

sigwn2 = −1
frqwn1 = 0

frqwn2 = −1
iorwn1 = 0
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iorwn2 = −1
frlwn1 = 0

frlwn2 = −1)

h) Controls for diagnostics (group dgn):

itssol: when itssol = 1 test solution with nrkm right hand side routine. For idgtss = 1
additional details about solution etc. are printed.

(default: itssol = 0

idgtss = 0)
moddet, iprdet: flags for modifying and printing matching determinant, for mdintg = 1 or 2.

(default: moddet = 0

iprdet = 0)
npout: when finding eigenfrequency by matching and npout > 0 print the separate solutions at

npout points.
(default: npout = 0)

imstsl, imissl, imjssl: Parameters controlling the determination of the matching coefficients in
the full case. The equation no. imissl is ignored, and the coefficient no. imjssl is given a
fixed value. If imstsl 6= 1, imissl and imjssl are taken as input. Otherwise imissl and
imjssl are determined to minimize the error.

(default: imstsl = 1

imissl = 2

imjssl = 2)
idgnrk: determines level of diagnostics in nrkint solution, for mdintg = 3.

(default: idgnrk = 0).

i) Mesh trailer (group msh):

msh trailer: Mesh trailer for output with parameter passing
(default: msh trailer = ’p2’)

Notes:
(a) The truncation at the surface was modified 5/11/19, where ntrnsf was changed to xtrnsf,

introducing the option of truncation at given r/R = |xtrnsf|, if xtrnsf < 0.
(b) Notes on preference in determining trial el and sig:

– nsel ≥ 1 may be combined with iscan > 1 to produce a scan between sig1 and sig2 in
sig for each el = els1, els1+dels, ..., els1+(nsel-1)*dels.

– Test on iscan takes place before test on itrsig.
– nsel > 1 cannot currently be combined with itrsig > 1. when itrsig > 1 (or itrsig

= 1 for iscan ≤ 1) the value of the degree in el is always used.
(b) Notes on computation of rotational splittings:

When the model is passed as an argument to s/r adipls (i.e., with i inout = 0) the an-
gular velocity must be set in common/comgrp/ before the call of adipls; in this case it will
often be transferred from the evolution code but could also be set by an external call of s/r
set rotation. When the model is read in during the calculation, set rotation is called af-
ter the model read. In this case the parameter input file should contain the file name of the
file describing the angular velocity (if required in set rotation) and the file name for ‘obs’
output including rotational results, after the parameter input. See also Section 8.6. [Further
description is needed of the use of adipls as a subroutine].
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7.3 Comments on the input parameters

The number of parameters may appear overwhelming. They have been introduced to provide a
great deal of flexibility in the handling of the input model, the choice of setting up trial frequencies,
the execution of the calculation, and the control of the output to file. In practice, standard settings
of most parameters are quite adequate; furthermore, template input files can be provided which
illustrate the various usages. As a further aid, this section discusses some of the possibilities.

Certain settings of the parameters are inconsistent. I have attempted to catch these cases.
When the intended usage is fairly clear, the offending parameters is reset, with a warning message;
otherwise an error message is written and the programme proceeds to the next set of input. There
is no guarantee that all possible combinations are checked and caught, however.

To select modes on input or output, ‘windowing parameters’ are typically used. For example,
on output modes in a selected frequency range ν1 ≤ ν ≤ ν2 can be selected by setting frqwn1 = ν1,
frqwn2 = ν2. Windowing is not invoked (fairly obviously) when the lower limit exceeds the upper
one, in the present case when frqwn1 > frqwn2.

7.3.1 Notes on model

The default ifind =−1 ensures reading the first model on unit imlds and using it in all the
calculations. If the unit number imlds is changed in a subsequent read of control input, however,
ifind must be set ≥ 0 to force reading a new model.

Modifications of the model are controlled by the parameters xtrnct, ntrnsf and imdmod.
These modifications may be applied to a model previously read in by setting ifind = −2.

Choosing in > 1 allows using a coarser model than provided on the file. This may be useful,
in saving computing time, for computing low-order modes where high resolution is not required, or
for an initial survey of the modes in a model; it is also useful for estimating the effect of truncation
errors on the eigenvalues and eigenfunctions. Note that the truncation parameter ntrnsf refers to
the mesh after taking every in-th point.

7.3.2 Notes on l and trial eigenfrequency

The large number of parameters may make this somewhat complex. However the default values
allow simple use, while on the other hand the parameters permit very efficient computation of large
sets of modes. The two chief options are

a) To search for modes without any prior information about their location. This would typically
be used for general stellar models, where no previously computed set of frequencies is likely to
be available.

b) To use a previously computed set of frequencies for trial. This would often be used for solar
models which are likely to be quite similar to existing models for which extensive mode sets
are available.

a) Searching for modes

To find a mode with a given degree l and near a given trial frequency σtr, user only has to provide
l in el σ2

tr in in sig1, leaving all other parameters in the group osc at their default values. To
obtain a sequence of modes with the same l, for which the separation between consecutive modes is
approximately known, one uses itrsig = 1, and sets istsig > 1. Then the programme attempts
to find istsig modes, the first with σ2 at sig1, and the remaining determined from the last
obtained eigenvalue and the increment dfsig. The three possible ways of specifying the increment,
as determined by nsig, reflects the possible asymptotic behaviour of the eigenfrequencies:
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– nsig = 1: For low-order p modes the frequencies are approximately uniformly spaced in σ2;
here dfsig provides the increment between modes in σ2.

– nsig = 2: For high-order p modes the spacing is asymptotically uniform in σ; here dfsig

provides the increment between modes in σ.
– nsig = 3: For high-order g modes the spacing is asymptotically uniform in 1/σ; here dfsig

provides the increment between modes in σ−1. Note that in this case the modes are obtained
in the order of decreasing frequency and order.

Using iscan > 1 permits searching a given region of the spectrum for eigenmodes, between
σ2 = sig1 and σ2 = sig2 (when istsig > 1 sig1 and sig2 define the limits in cyclic frequency,
in mHz). For nsig ≤ 3 the step is uniform in σ2, σ or σ−1 depending on nsig, as discussed above.
There are two additional options for nsig when scanning:

– nsig = 4: To consider both g and p modes in a given model, in this case the step is uniform
in 1/σ at low frequency and in σ at high frequency, with a suitable intermediate transition.

– nsig ≥ 10: Here the frequency separation between modes is estimated asymptotically, and
the scan is uniform in the expected asymptotic behaviour, with iscan steps between adjacent
modes. This option has proven useful in computations of the very dense spectrum of nonradial
modes in red giants.

When itrsig 6= 1 the programme only prints a table of the matching determinant ∆ (defined by
Eq. (3.5), (3.9), (3.13) or (3.15), depending on the integration parameters), as a function of σ2.
This gives an initial idea about the spectrum. For itrsig = 1 the programme in addition looks
for changes of sign in ∆, and at each change of sign (except those associated with singularities for
mdintg = 3; cf. Section 3.2) it attempts to iterate for the eigenvalue. Thus automatic determination
of all modes in a given region of the spectrum is possible. To ensure that all modes are found with
reasonable certainty the number iscan of steps should probably be at least about four times
the number of modes expected in the region considered, and nsig should of course be chosen
appropriately for the kind of modes expected. It might also be pointed out that two very close
eigenvalues (near an avoided crossing, say) may manifest themselves as a minimum in |∆(σ2)|,
without changes of sign; in this case the search may be repeated with smaller step near the minimum
(this procedure could clearly be automated, but that has so far not been done).

Instead of considering a single value of l given in el, the programme may be asked to step in
l. This is accomplished by setting nsel > 1; nsel is the number of l-values considered, els1 is the
initial value of l and dels is the step in l. This may be used in connection with all the options
mentioned above:

– To follow a single mode, or step through σ2 with istsig > 1, itrsig = 1, the initial trial σ2

must be provided in sig1. For each step in l, the trial σ2 is incremented as determined by
dfsig1 and nsig1, in the same way as described for dfsig, nsig above.

– To scan in σ2 with iscan > 1, the initial range in σ2 must be provided in sig1, sig2. For
each step in l, the end points of the range are incremented as determined by dfsig1, nsig1
and dfsig2, nsig2, as above.

Example: To compute the f mode for degrees l = 30, 40, . . . , 100 by scanning in σ2, the osc group
of input shown in Figure 1 may be used. This will scan in σ2 between σ2 = l and σ2 = l + 4 for
each value of l, and hence is likely to find the f mode, with σ2 slightly exceeding l.

b) Using previously computed frequencies as trials

The options of having itrsig ≥ 2 and istsig ≥ 1 allow easy computation of modes of a model,
given results on the same modes in a slightly different model. The results on the modes can be in
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osc:

el, nsel, els1, dels, dfsig1, dfsig2, nsig1, nsig2

,8, 30 ,10, 10., 10., 1, 1 @

itrsig, sig1, istsig, inomde, itrds,

1, 30. , , , , @

dfsig, nsig, iscan, sig2,

, 1 ,10, 34 @

eltrw1, eltrw2, sgtrw1, sgtrw2

, , , , @

Figure 1. Input block to scan for f mode.

the form of binary files containing a grand or a short summary (see Sections 8.2 and 8.3 below), or
an ASCII file containing degree, order and cyclic frequency (in µHz). (The possibility of specifying
itrsig ≤ −2 was introduced to allow use of older files of summaries in single precision; it is unlikely
to be of general usefulness.)

There are two different options:

– When itrsig is even, the modes are located according to their position on the file, by specifying
the range inomde, inomde + 1, . . . , inomde + istsig− 1 of mode numbers in the file; both σ2

and l are taken from the values on the file.
– When itrsig is odd the programme searches for modes of a specified degree and with orders
inomde, inomde+1, . . . , inomde+istsig−1. The degree is either provided in el or, by setting
nsel > 1, by stepping through a sequence of degrees.

In both cases the search can be restricted to given ranges eltrw1, eltrw2 in degree and/or
(sgtrw1, sgtrw2) in σ2 by having eltrw1 ≤ eltrw2 and/or sgtrw1 ≤ sgtrw2.

osc:

el, nsel, els1, dels, dfsig1, dfsig2, nsig1, nsig2

,21, 5 ,5, 0., 0., 1, 1 @

itrsig, sig1, istsig, inomde, itrds,

3, , 9 , 2 , , @

dfsig, nsig, iscan, sig2,

, , , , @

eltrw1, eltrw2, sgtrw1, sgtrw2

, , 100 , 1.e6 , @

Figure 2. Input block to computes modes of given order, based on trial frequencies
on file.

The possibility of combining itrsig odd with nsel > 1 allows the computation of modes of
a given order for several values of l. Figure 2 illustrates the osc input group for computing modes
of order 2, 4, . . . 10, for l = 0, 5, . . . , 100, and restricting σ2 to exceed 100.

The choice of itrsig = 6 or 7 allows convenient computation of frequencies on the basis of a
set of observed modes. A possible input format is illustrated in Figure 3. Note that the file may
contain a header, indicated by the character # in the first column. The data are read in using free
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# Data from Libbrecht, K.G., Woodard, M.F., and Kaufman, J.M.,

# ApJS, vol. 74, p. 1129 (1990).

#

#

# Mode Frequency Table (+/- gives 1-sigma random errors)

# l n nu(uHz) +/- source

# --- --- --------- ------- ------

0 12 1823.600 0.600 2

0 13 1957.300 0.400 2

0 14 2093.500 0.200 2

0 15 2228.600 0.100 2

0 16 2362.500 0.100 2

0 17 2496.600 0.300 2

0 18 2629.600 0.300 2

.

.

.

.

Figure 3. Possible structure of input file for the cases itrsig = 6 and 7.

format. Also, the file may contain additional columns beyond the degree, order and frequency, in
the case illustrated the standard error. These columns are ignored.

7.3.3 Remaining parameters

The meaning of most of the parameters controlling the equations and boundary conditions should
be reasonably clear on the basis of the discussion in Section 2. The case of a plane-parallel layer
(iplneq = 1) is discussed in Section A.2; iturpr is used to control the treatment of turbulent
pressure in a realistic model of the solar atmosphere, as discussed in Section A.3.

The parameters controlling the integration are essentially discussed in Section 3, with the
exception of the test on the discontinuity of the eigenfunction. This is based on the absolute value
of the determinant in Eq. (3.5) or (3.9), normalized by the product of the norms of the columns;
thus in the case of Eq. (3.5) we introduce

∆̃ ≡ |∆|
[(y

(i)
1 (xf)2 + y

(i)
2 (xf)2)(y

(o)
1 (xf)2 + y

(o)
2 (xf)2)]1/2

, (7.1)

and the condition for continuity of the eigenfunction is that ∆̃ ≤ epssol.
Similarly the meaning of the parameters determining the output should be clear or may be

inferred from Section 4 (see also Section 8 below describing the results of the computation). Finally,
the parameters controlling the diagnostics are unlikely to be of interest for general users.

7.4 The user-supplied routines modmod and spcout adi

If imdmod 6= 0 modmod is called after the equilibrium model has been read (and, if applicable, after
taking every in-th point), as
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call modmod(x, aa, data, nn, iaa, imdmod)

where iaa is the first dimension of aa, and is set by the programme calling modmod; the remaining
quantities are defined above. It has no further effect on the calculations, but may be used by the
user to carry out modifications to the model. Similarly, if ispcpr 6= 0 the routine spcout adi is
called at the end of the calculation for each mode, from s/r sigout, as

call spcout adi(x, y, aa, data, nn, iy, iaa, ispcpr)

to allow the user to produce output in addition to that otherwise produced by the programme; here
iy is the first dimension of y and is set by the programme calling spcout adi. When imdmod = 0
(or ispcpr = 0), as is the default, the routines are not called.

The standard set-up of the code supplies dummy subroutines, in the file containing the main
programme main. These must obviously be replaced by the user for these options to take effect.

8 Output from the programme

This section contains a description of the principal output produced by the programme. Section
8.1 describes what may somewhat archaically be referred to as printed output, for each mode. The
remaining sections gives the format of the output, likely to be of most use, produced on disk files.
The unit numbers of the the output files are currently hardcoded into variables in the programme.
The relevant unit numbers, with the (hardcoded) defaults and description of the output, are:

idsgsm (default 11): Grand summary file
(Section 8.2; conventional name agsm.<model descriptor>).

idsssm (default 15): Short summary file
(Section 8.3; conventional name assm.<model descriptor>).

idsefn (default 4): Eigenfunction file
(Section 8.4; conventional name amde.<model descriptor>[.z]).

idsgkr (default 13): Γ1 kernel file (Section 8.5)
idsrkr (default 12): Rotational splitting kernel file (Section 8.6)
idslog (default 20): Log file of error and warning messages from eigenfrequency iteration. If

idslog is not defined in input file, the default name adipls-status.log is used (see Section
8.7).

8.1 Printed output

This is output on unit istdpr, which may be modified in the input file (group out). If istdpr 6=
istdou, where istdou is the unit number for the standard output, a summary of the calculation,
including error and warning messages, is also output to istdou. Note that istdou is normally 6.
It is defined in block data subprogramme blstio.

After some diagnostics relating to the integration follows output related to the iteration for
(or scan in) σ2. For each iteration is given the iteration number, the current value of σ2, and
the corresponding values ddsig and ddsol of the matching determinant ∆ and the normalized
determinant ∆̃ (or, when iterating with mdintg = 3, the mean change in the solution since the
previous value of σ2). For mdintg = 2 an estimate of the mode order, defined by Eq. (4.1), is also
given. After the iteration has converged the final value of σ2 is printed, as well as σ̃2 (cf. Eq. 4.1)
and the period calculated from σ2. If the equations are solved in the Cowling approximation the
correction δσ2 and the corrected value σ2

c obtained from Cowling’s perturbation technique are also
printed.
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Then follows the maximum absolute value z1,max of the energy-related eigenfunction z1(x) (cf.
Eq. 4.4) and the location x̂max of the maximum. After this comes the printout of the eigenfunction,
in the form of

n, xn, y1(xn), y2(xn), y3(xn), y4(xn), ẑ1(xn), ẑ2(xn),

for non-radial oscillations, or

n, xn, y1(xn), y2(xn), ẑ1(xn),

for radial oscillations. Here ẑ1 and ẑ2 are as defined in Eqs (4.4) and (4.6).
The labelling of the mode is given next, in the form

This is a pn(l = l) mode

This is a f(l = l) mode

This is a g|n|(l = l) mode

for the order n > 0, n = 0 or n < 0 respectively. After this follows the maximum absolute value
y1,max of y1(x) and the location xmax of the maximum, and the dimensionless energy E of pulsation
(cf. Eq. 4.3).

If iper has been set to 1 there next follows output from the calculation of the variational
frequency and the corresponding frequency. Here sigv gives the value of σ2 obtained from the
variational expression; in addition the period ΠE found from the value of σ2 obtained as an eigen-
value is repeated, and the period ΠV and cyclic frequency νV found from the variational σ2 are
printed.

If the rotational kernel is calculated (cf. Eq. 4.8), the value of βnl is printed and, if nprtkr >
0, the kernel is printed, as

n, xn, Knl(x
n) .

8.2 The grand summary

A fairly complete summary of the calculation is written to unit idsgsm, without format; this only
takes place if the eigenvalue iteration has converged. The summary consists of 38 real variables
cs(1:38) and 12 integer variables ics(1:12). These are defined as follows (typewrite-type
names refer to the list of input parameters, cf. Section 7.2.3):

cs(1): xmod
cs(2:8): D1 - D7:

cs(2): M
cs(3): R
cs(4): pc

cs(5): ρc

cs(6): −(1/Γ1p)(d
2p/dx2) at centre

cs(7): −(1/ρ)(d2ρ/dx2) at centre
cs(8): µ
cs(9): D8 (flag for version of amdl file; see Section 5).

cs(10): A2(xs)
cs(11): A5(xs)
cs(12): xtr (truncation point in interior or atmosphere; see note below)
cs(13): σ2

Ω (cf. Eq. A.60)
cs(14): xf
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cs(15:16): fctsbc, fcttbc
cs(17): λ (fudge factor in Poisson’s equation)
cs(18): l (degree)
cs(19): n (order)
cs(20): σ2

cs(21): σ2
c

cs(22:23): y1,max, xmax

cs(24): E (dimensionless energy)
cs(25:27): ΠE , ΠV , νV (periods in minutes, νV in mHz).
cs(28:29): ddsig, ddsol
cs(30:33): y1(xs)− y4(xs)
cs(34:35): z1,max, x̂max

cs(36): βnl
cs(37): νRi, i.e., cyclic frequency from Richardson extrapolation, (in mHz).
cs(38): ζ = Ecore/E (cf. eq. 4.7; added 5/11/15)

ics(1): in
ics(2): nn
ics(3): mdintg + 10*iriche

ics(4): ivarf
ics(5): icase
ics(6): iorign
ics(7): iekinr
ics(8): unused.
ics(9): nordp (number of p nodes; added 10/5/14)
ics(10): nordg (number of g nodes; added 10/5/14)
ics(11): m (azimuthal order) for irotsl = 1 (added 5/11/15).

Notes:

– Depending on the parameters of the calculation, some variables may not be set. All unset
variables are initialized to 0. In particular ics(8) is currently unused.

– Between 3/11/02 and 5/11/15 the azimuthal order m was stored in cs(38) (although very
rarely used).

– ddsig and ddsol [i.e., cs(28) and cs(29)] are set to the values of ∆ and ∆̃ in the last
iteration, and thus provide a measure of the extent to which the iteration has converged.

– When Cowling approximation is used ΠE (in cs(25) is set to the period corresponding to the
uncorrected eigenfrequency.

– icase is a compressed case number for the calculation. It is defined as

icase = icow1 + 10 iper + 100 irotsl + 1000 ispec + 10 000 istsbc

+ 100 000 iplneq + 1 000 000 iturpr

Here icow1 is defined as follows:
- icow1 = is 0 when the full set of equations is used.
- icow1 = 1 when the Cowling approximation is used, and the Richardson extrapolated

frequency is based on the corrected eigenfrequency σc.
- icow1 = 2 when the Cowling approximation is used, and the Richardson extrapolated

frequency is based on the uncorrected eigenfrequency (i.e., computed with the input pa-
rameter icow = 3).
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Furthermore ispec = 1 if λ 6= 1 or fctsbc 6= 1, and the remaining parameters are as defined
in Section 7.2.3. Note that irotsl to flag for rotational effects was added 3/11/02.
iturpr can be used to flag for the inclusion of turbulent pressure. Note the special case iturpr
= 8, for models where second-order effects of rotation are included.

– iorign is always set to 3 in the pulsation programme (it may have other values for grand
summaries set on the basis of other, more restricted sources of information).

– The meaning of cs(12) was changed 5/11/19. Before this date it contained the innermost
meshpoint x1 (= 0 for a complete model). Thus it was used to indicate truncation of the model
in the stellar interior, or an envelope model. This was changed to allow keeping information
about truncation in the stellar atmosphere. If cs(12)≥ 0, it has the same meaning as before. If
cs(12)< 0, the model has been truncated at r/R = |xtr| in the atmosphere; this corresponds
to the replacement of ntrnsf by xtrnsf (see Section 7.2.3). With truncation both in the
interior and the atmosphere, cs(12) reflects the truncation in the interior.

ics is stored in the array cs(1:50), by the following equivalencing

equivalence(ics(1), cs(39))

Thus if reals and integers have the same length only the first 46 positions in cs are used, whereas
(as is typically the case) if 8-byte real variables and 4-byte integers are used, only the first 42
positions of cs are used*. In the programme cs is stored in common/csumma/.

The summary is output in a single record for each mode, by the statement

write(idsgsm) (cs(i), i=1,50)

Various programmes are available to scan or manipulate the contents of the grand summary (see
Notes on using the solar models and adiabatic pulsations package). In particular, the programme
scan-agsm.d scans the grand summary, whereas set-obs.d outputs a file giving degree, order,
cyclic frequency and possibly mode energy.

8.3 The short summary

To save disk space, a condensed summary has been introduced. This contains the most essential
information about the modes, without the details that are rarely used. Thus it is adequate for most
purposes. In addition data on the model are given as special records, rather than being repeated
in each record.

The data are stored in the real array ss(1:5) and the integer array iss(1:2).
The type of the record is flagged by ss(1):

Model record : This is flagged by ss(1) < 0. ss(2) is set to xmod. The remaining variables are
defined by

ss(3): M
ss(4): R
ss(5): pc

ss(6): ρc

Oscillation record: This is flagged by ss(1) ≥ 0. Here

ss(1): l (degree)

* This is a historical consequence of a previous possibility of storing a model name in the last
part of cs; in future, an extension or generalization of the storage might be contemplated.

39



ss(2): n (order)
ss(3): σ2

ss(4): E (dimensionless energy)
ss(5): νV (in mHz)

iss(1): icase
iss(2): iorign

Note that in the Cowling approximation σ2 is taken to be the corrected value σ2
c obtained

with the Cowling perturbation expression. Also ss(5) is the variational frequency if this has been
calculated; otherwise the frequency obtained as an eigenvalue is used. iss(1:2) are stored in
ss(1:7), by the following equivalence statement

equivalence (ss(6), iss(1))

The summary is written in a single record, with the statement

write(idsssm) (ss(i), i=1,7)

8.4 Output of eigenfunction to file

The output of eigenfunctions (or unconverged solutions) is controlled by
nfmode = 10*nfmod1 + nfmod0.

The use of nfmod1 is discussed at the end of this section.
If nfmod0 = 1, 2 or 3 and the eigenfunction iteration has converged the eigenfunctions are

written on unit 4, as a single record, in binary form. The format depends on the value of nfmod0:

a) nfmod0 = 1, full set of eigenfunctions.

Here the output is done with the statement
write(idsefn) (cs(i), i=1,50), nnw, (x(n), (y(i,n), i=1,6), n=nw1,nn)

Here nnw = nn - nw1 + 1, y(1:4,n) contains the eigenfunctions y1(xn) − y4(xn) (cf. Section
6), and

y(5, n) = ẑ1(xn), y(6, n) = ẑ2(xn)

[cf. Eqs (4.4) and (4.6)]. An eigenfunction file of this format conventionally has name amde.<model
descriptor>.

b) nfmod0 = 2, displacement eigenfunctions.

Here the first record contains the number of meshpoints and the mesh, written as
write(idsefn) nnw, (x(n), n=nw1,nn)

and the subsequent records contain the mode data, in the form
write(idsefn) (cs(i), i=1,50), ((y(i,n), i=1,2), n=nw1,nn)

c) nfmod0 = 3, density-weighted displacement eigenfunctions.

Here the first record contains the number of meshpoints and the mesh, written as
write(idsefn) nnw, (x(n), n=nw1,nn)

and the subsequent records contain the mode data, in the form
write(idsefn) (cs(i), i=1,50),((z(i,n), i=1,2), n=nw1,nn)
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where
z(1, n) = ẑ1(xn), z(2, n) = ẑ2(xn)

[cf. Eqs (4.4) and (4.6)]. An eigenfunction file of this format conventionally has name amde.<model
descriptor>.z.

Thus in all cases the eigenfunction record contains the grand summary (cf. Section 8.3).
Format a) is clearly the most space-consuming. Format c) produces eigenfunctions in a form
suitable for setting up kernels. In particular, to compute rotational kernels no further information
about the equilibrium model is required. This is therefore most likely the format of choice, unless
the full set is explicitly needed.

It is sometimes useful to be able to output the solution at a given frequency, or for a range
of frequencies, even if the frequency is not an eigenfrequency. (In this case the solution obviously
will in general be discontinuous at the fitting point.) This can be used, for example, to calculate
the inner or outer phase as a function of frequency (e.g. Roxburgh & Vorontsov 2003) or use the
properties of the phase for structure inversion (as summarized by Roxburgh 2010). The output of
such solutions can be done in two ways:

– To calculate solutions for a prescribed set of frequencies (input from unit itrds for
itrsig ≥ 2) set nfmod1 = 1 and itmax = 0. The type of solution is determined by nfmod0.

– To calculate solutions for a range of frequencies defined by sig1, sig2 and iscan,
set itrsig 6= 1 and nfmod0 > 0. The type of solution is determined by nfmod0.

8.5 Output of Γ1 kernel to file (cf. Eq. 4.9)

If igm1kr = 1 the Γ1 kernel is written on unit 13, as a single record, without format. This is done
with the statement

write(idsgkr) (cs(i), i=1,50), nnw, (x(n), akrgm1(n), n=nw1,nn)

Here
akrgm1(n) = K

(Γ1)
nl (xn),

Thus the record contains the grand summary (cf. Section 8.3).

8.6 Treatment of rotation

The code allows for the output of kernels for first-order rotational splitting (cf. Eq. 4.8), in the case
of an angular velocity Ω(r) that depends only on r (the so-called shellular rotation). In addition,
rotational splitting may be calculated and output in this case, as well as in the case of second-order
effects of rotation, but so far only for uniform rotation in the latter case.

If irotkr = 1 the rotational kernel is written on unit idsrkr (default 12), if idsrkr > 0, as a
single record, without format. This is done with the statement

write(idsrkr) (cs(i), i=1,50),nnw, (x(n), akr(n), n=nw1,nn)

Here
akr(n) = Knl(x

n),

Thus the record contains the grand summary (cf. Section 8.3). In addition, βnl is added to the
grand summary, even when idsrkr = 0.

For irotkr = 11 and 21, rotational splittings are calculated and outpout. This assumes that
the angular velocity (in units of s−1) has been set up in

common/comgrp/ isprtp, irotcp, omgrtp(1:nn)
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on the mesh of the computation, such that omgrtp(n)= Ω(xn). In the stand-alone version of the
code, as provided in the distribution, this is handled by s/r set rotation. At the end of the
regular input of parameters, this reads in the name of a file containing the angular velocity, on any
mesh, in free format, and organized as

# r/R Omega (s**-1)

0 Ω(0)
· · ·
x Ω(x)
· · ·

The angular velocity is transferred with interpolation to the computational mesh by s/r set rotation.
The file name for output of the splittings is read from s/r adipls immediately after the call of

s/r set rotation. The format of the output is explained in the header to the files. In both cases
the calculation may be accompanied by the output of the first-order rotational kernels, if idsrkr
> 0.

For irotkr = 11, the first-order splitting is calculated as in Eq. (4.8). For irotkr = 12,
and assuming uniform rotation, in addition the second-order contributions are calculated, using an
implementation by Kara Burke and Michael Thompson (Burke & Thompson 2006; Burke, Reese
& Thompson 2011) of the expressions derived by Gough & Thompson (1990). This assumes that
the evolution calculation, while one-dimensional, has taken into account the spherical component
of the centrifugal acceleration in the equation of hydrostatic support, as is also reflected in the set
of coefficients {Ak} (see Sections 5 and A.4).

8.7 Iteration status log

A log of problems with the eigenfrequency calculation is output to unit idslog; if no file name is
provided, the default is adipls-status.log. This may contain both error and warning messages:

— An error message is printed if
- The iteration failed to converge, even after possible attempts of adjusting xf (cf. Section

3.5).
- Significantly different eigenfunctions were found in Richardson-extrapolation calculation

(cf. Section 3.4).
Note that in cases of errors, no output is made to the files with grand summaries, eigenfunc-
tions, etc.

— A warning message is printed if
- The location of xf had to be changed to obtain convergence or the correct order.
- Different mode orders were found in Richardson-extrapolation calculation, but the eigen-

functions were deemed to be sufficiently similar.
In cases of warnings, normal output is made to the files with grand summaries, eigenfunctions,
etc. Indeed, in these cases one can generally assume that the calculation has been successful.

9 The main programme

The calculation is controlled by the call of the subroutine adipls. A small main programme is
needed to set up storage for the calculation. This has the form

program runadi
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c

c main programme for adiabatic pulsations

c

c quantities set in parameter statement:

c nnmax: maximum number of meshpoints in integration

c

c Note: as presently set up, nnmax is set also in s/r nrkint and

c eigin4

c

c Double precision version.

c +++++++++++++++++++++++++

c

c Dated: 10/3/90

c

implicit double precision (a-h, o-z)

parameter (nnmax = 10000)

parameter (nnmax1 = nnmax+1, nnmax2 = nnmax+10)

common/rhsdat/ dt1(20), aa(6,nnmax) /xarr/ x(nnmax)

* /xarr1/ x1(nnmax1) /xarr2/ x2(nnmax1)

* /worksp/ aa1(9,nnmax) /yyyyyy/ y(8,nnmax)

* /yyyyri/ yri(4,nnmax)

* /sysord/ sysyso(4)

* /work/ wwnrk(20,nnmax2)

common/wrkleq/ wwwlll(1500)

common/cderst/ derc(6,nnmax) /cintst/ aintc(6,nnmax)

c

c common defining standard input and output

c

common/cstdio/ istdin, istdou, istdpr

c

write(istdou,100) nnmax

c

call adipls

stop

100 format(//61(’*’)//

* ’ In this version, the maximum number of meshpoints is’, i5//

* 61(’*’))

end

Here nnmax is the maximum number of meshpoints used in the calculation, and ii is the or-
der of the system. Furthermore common /worksp/ should be large enough to contain the array
aain(6,nnmodl), where nnmodl is the total number of meshpoints in the equilibrium model read
in (if in is not equal to 1, nnmodl is larger than nn).

The work space set in common/work/ is only needed for integration with the relaxation tech-
nique, i.e., for mdintg = 3. If mdintg = 1 or 2 the line setting up this work area may be removed.
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Appendix A. Equations

In this appendix the equations of non-radial oscillations are given in the form they are solved in the
programme. Section A.1 presents the equations in the standard case of oscillations of a spherical
star with no turbulent pressure, Section A.2 discusses the implementation used for oscillations of
a plane-parallel layer, and Section A.3 discusses the ways turbulent pressure may be treated (or
neglected).

A.1 Equations in the standard case

For non-radial oscillations the equations satisfied by the yi are

x
dy1

dx
= (Vg − 2)y1 +

(
1− Vg

η

)
y2 − Vgy3 , (A.1)

x
dy2

dx
= [l(l + 1)− ηA]y1 + (A− 1)y2 + ηAy3 , (A.2)

x
dy3

dx
= y3 + y4 , (A.3)

and

x
dy4

dx
= −λAUy1 − λU

Vg
η
y2 (A.4)

+[l(l + 1) + U(A− 2) + (1− λ)UVg]y3 + 2(1− U)y4 .

Here η = l(l + 1)g/(ω2r), and the notation is otherwise as defined in Eq. (5.1). Note that the
modified form of Poisson’s equation, Eq. (2.3), has been used. In the Cowling approximation the
terms in y3 are neglected in Eqs (A.1) and (A.2), and Eqs (A.3) and (A.4) are not used.

For radial oscillations the equations are

x
dy1

dx
= (Vg − 2)y1 − Vg

σ2x2

q
y2 , (A.5)

and

x
dy2

dx
=
[
x− q

σ2x2
(A− λU)

]
y1 +Ay2 . (A.6)

A.2 Equilibrium variables and oscillation equations in plane-parallel case

The option has been built into the programme to study nonradial oscillations of a plane-parallel
envelope model with constant gravity. This option is invoked by setting the parameter iplneq

to 1. The oscillations are treated in the Cowling approximation. For simplicity the model and
the oscillations are still put on dimensionless form in terms of a total mass M and a radius R,
which, however, clearly has no specific physical meaning (except that the results may be taken as
approximations to envelope oscillations of a star with the given mass and radius). The gravity
is then given by g = GM/R2. The horizontal wave number kh is parameterized in terms of the
“degree” l, defined such that

kh =
l

R
. (A.7)
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The equilibrium model is still given by x and A1 − A5. Now, however, x is a measure of
position, in units of R, decreasing towards the interior of the model; the point x = 1 may still
conveniently be chosen at or close to the surface of the model. The variables A1 − A5 are defined
as

A1 ≡ 1 ,

A2 = Vg ≡
gρR

Γ1p
,

A3 ≡ Γ1 ,

A4 = A ≡ −Vg −
d ln ρ

dx
,

A5 = U ≡ 4πρR3

M
.

(A.8)

The oscillation equations are now

dy1

dx
= Vgy1 +

(
1− Vg

η

)
y2 , (A.9)

and
dy2

dx
= (l2 − ηA)y1 +Ay2 , (A.10)

where η = l2/σ2. Notice that A1 and A5 are not needed in the oscillation equations. However,
they should still be defined as in Eqs (A.8), as they are used elsewhere in the calculations in the
programme, e.g. in the evaluation of the energy in Eq. (4.3).

The calculation of radial oscillations in a plane-parallel envelope has not been implemented.

A.3 The treatment of turbulent pressure

There is no doubt that turbulence contributes significantly to the hydrostatic balance in the outer-
most layers of stars with convective envelopes. This effect is often described in terms of a turbulent
pressure pturb; in solar models estimates of pturb indicate that it may be as high as 10 – 15 per
cent of the total pressure near the top of the convection zone. Even so, turbulent pressure is often
neglected in the calculation of equilibrium models.

If turbulent pressure is included in the equilibrium model, the oscillation calculations require
an assumption about the response of pturb to the pulsations. This is sometimes stated by saying
that “the perturbation to turbulent pressure is neglected”. However, the effects on the frequencies
might depend sensitively on the way in which the pturb-perturbation is neglected, often determined
by the precise form of the oscillation equations used for the numerical solution.

This programme allows several options for the treatment of turbulent pressure:

i) Neglect of the Eulerian perturbation to the turbulent body force.

ii) Neglect of the Eulerian perturbation to the turbulent pressure.

iii) Neglect of the Lagrangian perturbation to the turbulent pressure.

In all three cases, the equilibrium model, defined by the {Ai}, must be set up appropriately.
In addition, the first two cases must also be flagged by the input parameter iturpr. The detailed
use of these options is discussed below.
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The first option, i), is the original option in the code; it was introduced largely because of
computational convenience, but follows the treatment used by Mihalas & Toomre (1981). It was
argued by Christensen-Dalsgaard & Frandsen (1983) that neglect of the Lagrangian perturbation
of the turbulent body force might be somewhat more reasonable, although in no ways satisfactory.
This has not been implemented; however, option iii) shares some of the same advantages. Option
ii) is retained in the code to allow tests of the sensitivity of the computed frequencies to different
assumptions.

The frequency effects of turbulent pressure were discussed in more detail by Rosenthal et
al. (1995) who found that the effect on the equilibrium structure of turbulent pressure, and the
perturbation to turbulent pressure, is of the same order of magnitude as other uncertain aspects
of the mode physics, including nonadiabaticity, and also of roughly the magnitude and shape of
the current dominant component of the difference between observed frequencies and frequencies of
adiabatic oscillation for normal solar models. Thus, although turbulent pressure affects a region of
the Sun suffering from other uncertainties in the treatment of the oscillations, the way it is included
or ignored is of considerable interest.

The implementation of the different options has not been tested with great care yet, and
hence some caution is required when using them. Also, it should be noticed that computation of
variational frequencies has not been consistently corrected for turbulent pressure. As discussed
below, this should have no effect for option iii) but is likely to influence options i) and ii).

A.3.1 Neglect of the Eulerian perturbation to the turbulent body force (iturpr = 1)

We write the equations of motion as

ρ
Du

Dt
= −∇p+ ρg + ρfturb , (A.11)

where g = −∇Φ is the gravitational acceleration, Φ being the gravitational potential, and fturb

is the turbulent body force; furthermore p is the combined gas and radiation pressure. Thus the
equation of hydrostatic support, when expressed in terms of p, is

dp

dr
= −g̃ρ . (A.12)

where g̃ = g − fturb, where −g and fturb are the radial components of the equilibrium gravity and
turbulent force. Thus here and in the following

g =
Gm

r2
. (A.13)

In the oscillation calculation the assumption is now that the Eulerian perturbation of fturb can be
neglected. Hence the Eulerian perturbation of Eq. (A.11) may be written

ρ
∂2δr

∂t2
= −∇p′ − ρ′g̃ar − ρ∇Φ′ . (A.14)

Evidently, the condition of adiabaticity is expressed as a relation between the Lagrangian pertur-
bations in p and ρ:

δp

p
= Γ1

δρ

ρ
, (A.15)

where Γ1 is the (usual) thermodynamic adiabatic exponent.
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To take the distinction between g and g̃ into account, we modify the definitions of the equilib-
rium variables A1, A2 and A4. Thus, instead of Eqs (5.1), we use

A1 ≡
R3

M

g̃

r
≡ q̃

x3
, which defines q̃ =

g̃

g
q ,

A2 = Ṽg ≡ −
1

Γ1

d ln p

d ln r
≡ rρg̃

Γ1p
,

A4 =
1

Γ1

d ln p

d ln r
− d ln ρ

d ln r
,

(A.16)

together with A3 and A5 which are unchanged. We also introduce

Vg =
rρg

Γ1p
, A = −Vg −

d ln ρ

d ln r
. (A.17)

Clearly in the absence of turbulent pressure these variables reduce to the variables defined in
Section 5.

Note that with these definitions the structure of the model file is unchanged. In the programme
it is assumed that g̃/g differs from unity only very near the surface. Since in this region q = m/M is
one with very high precision, q̃ = x3Ã1 can be taken as a very good approximation to g̃/g, allowing,
e.g., the evaluation of Vg and A.

The dimensionless perturbation variables y1 − y4 are defined as in Section 2.1; in particular
the actual gravitational acceleration g is used in the definition of y3 (cf. Eq. 2.5a).

With these definitions, the equations satisfied by the yi are, for non-radial oscillations

x
dy1

dx
= (Ṽg − 2)y1 +

(
1− Ṽg

η̃

)
y2 − Vgy3 , (A.18)

x
dy2

dx
= [l(l + 1)− η̃Ã]y1 + (Ã− 1)y2 + ηÃy3 , (A.19)

x
dy3

dx
= y3 + y4 , (A.20)

and

x
dy4

dx
=− λÃUy1 − λU

Ṽg
η̃
y2

+ [l(l + 1) + U(A− 2) + (1− λ)UVg]y3 + 2(1− U)y4 .

(A.21)

Here η̃ = l(l + 1)g̃/(ω2r).
For radial oscillations the equations are

x
dy1

dx
= (Ṽg − 2)y1 − Ṽg

σ2x2

q̃
y2 , (A.22)

and

x
dy2

dx
=

[
x− 1

σ2x2
(q̃Ã− λqU)

]
y1 + Ãy2 . (A.23)

To use this option, the equilibrium model must obviously be set up correctly, as defined in
Eqs (A.16). In addition, the parameter iturpr must be set to 1.
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A.3.2 Neglect of the Eulerian perturbation to the turbulent pressure (iturpr = 2)

Here we assume that the pressure can be written as

p = pg + pturb , (A.24)

where pg is the thermodynamic pressure and pturb is the turbulent pressure. Hence, the equations
of motion are written as

ρ
Du

Dt
= −∇p+ ρg , (A.25)

with no explicit turbulent body force. In the equilibrium model, p is assumed to be in hydrostatic
equilibrium, so that the equation of hydrostatic support is

dp

dr
= −gρ . (A.26)

In the oscillation calculation the assumption is now that the Eulerian perturbation of pturb can
be neglected. Hence the Eulerian perturbation of Eq. (A.25) may be written

ρ
∂2δr

∂t2
= −∇p′g − ρ′gar − ρ∇Φ′ . (A.27)

The condition of adiabaticity is assumed to relate the Lagrangian perturbation of the gas pressure
to the density perturbation,

δpg

pg
= Γ1

δρ

ρ
, (A.28)

where again Γ1 is the thermodynamic adiabatic exponent.
In the oscillation equations, derived under these assumptions, we need to distinguish between

the gradients in pg and p. Thus we introduce

V (0)
g = − 1

Γ1

d ln pg

d ln r
, V (1)

g = − 1

Γ1

d ln p

d ln r
=
ρgr

Γ1p
, (A.29)

and

A(0) = −V (0)
g − d ln ρ

d ln r
, A(1) = −V (1)

g − d ln ρ

d ln r
. (A.30)

This requires an extension of the model format defined in Section 5. Specifically, we replace the
definitions of A2 and A4, and add a new variable A6, in Eq. (5.1):

A2 = V (1)
g ,

A4 = A(1) ,

A6 = V (0)
g − V (1)

g = −(A(0) −A(1)) ,

(A.31)

the remaining definitions being unchanged. To flag for a model file of this format, the otherwise
unused variable data(8) should be set to 10.

The dimensionless perturbation variables y1 − y4 are defined as in Section 2.1.
With these definitions, the equations satisfied by the yi are, for non-radial oscillations (note

that for the time being I have not considered the option of λ 6= 1 in this case)

x
dy1

dx
= (V (0)

g − 2)y1 +

(
1− V

(1)
g

η

)
y2 − V (1)

g y3 , (A.32)
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x
dy2

dx
= [l(l + 1)− ηA(0)]y1 + (A(1) − 1)y2 + ηA(1)y3 , (A.33)

x
dy3

dx
= y3 + y4 , (A.34)

and

x
dy4

dx
=−A(0)Uy1 − U

V
(1)
g

η
y2

+ [l(l + 1) + U(A(1) − 2)]y3 + 2(1− U)y4 .

(A.35)

For radial oscillations the equations are

x
dy1

dx
= (V (0)

g − 2)y1 − V (1)
g

σ2x2

q
y2 , (A.36)

and

x
dy2

dx
=
[
x− q

σ2x2
(A(0) − U)

]
y1 +A(1)y2 . (A.37)

To use this option, the equilibrium model must obviously be set up correctly, as defined in
Eqs (A.31). In addition, the parameter iturpr must be set to 2.

A.3.3 Neglect of the Lagrangian perturbation to the turbulent pressure

We still assume the separation in pressure given in Eq. (A.24), the equations of motion (A.25) and
that the equilibrium total pressure satisfies the equation of hydrostatic support (A.26). However,
we now assume that the Lagrangian perturbation δpturb = 0 (see also Rosenthal et al. 1995). The
equations of motion are now

ρ
∂2δr

∂t2
= −∇p′ − ρ′gar − ρ∇Φ′ . (A.38)

Furthermore, assuming still Eq. (A.28) for the adiabatic change in the thermodynamic pressure, we
obtain for the relation between the Lagrangian perturbations in the total pressure and density:

δp

p
=
δpg

p
=
δpg

p
=
pg

p
Γ1
δρ

ρ
, (A.39)

or
δp

p
= Γr

1

δρ

ρ
, (A.40)

defining the reduced Γr
1 ≡ (pg/p)Γ1 (Rosenthal et al. 1995). Here, obviously, Γ1 is the thermody-

namic adiabatic exponent.
With this definition, the oscillation equations are precisely as in the case without turbulent

pressure, when expressed in terms of the Eulerian perturbation p′ in total pressure, provided Γ1 is
replaced throughout by Γr

1. It should be noticed also that this is the case for any relation of the
form (A.40), for a function Γr

1 defined in the equilibrium model. Indeed, it was argued by Rosenthal
et al. (1999) that a more appropriate form of Γr

1 could be obtained by averaging the equations for
turbulent convection.
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Implementation of this approximation therefore only requires modification of the equilibrium
model. Specifically, the definitions of A2 −A4 are changed to

A2 = − 1

Γr
1

d ln p

d ln r
=
Gmρ

Γr
1pr

,

A3 = Γr
1 ,

A4 =
1

Γr
1

d ln p

d ln r
− d ln ρ

d ln r
,

(A.41)

with the remaining definitions being unchanged.

The definition of the sound speed in this case deserves a little comment. It is evident from the
unchanged form of the oscillation equations that the relevant expression for the sound speed is

c2 =
Γr

1p

ρ
, (A.42)

expressed in terms of the modified Γ1 and the total pressure. It is interesting that with the simple
definition of Γr

1 implied by Eq. (A.39) this is identical to Γ1pg/ρ, i.e., the “thermodynamic” squared
sound speed. However, with a more general definition of Γr

1 this is not generally the case. On the
other hand, it is obvious that Eq. (5.7) still holds.

A.4 Inclusion of rotational effects

In this case it is assumed that the equilibrium model has been computed including the spherically
symmetric part of the centrifugal acceleration, and that the model as been defined with D8 = 20, to
flag for the inclusion of A6. This case allows calculation of the structure effects on the frequencies,
to second order in the angular velocity Ω, in preparation for calculation of further second-order
effects according to the formalism of Gough & Thompson (see Section 8.6); this is used if irotsl
6= 1. When irotsl = 1, the first-order perturbations to the eigenfrequencies and eigenfunctions
are including, according to the formalism of Soufi et al. (1998).

The equation of hydrostatic support in this case is

dp

dr
= −geρ , with ge = g − 2

3
rΩ2 . (A.43)

Here and in the following

g =
Gm

r2
. (A.44)

In accordance with the evolution code, we introduce q̃ by

q̃ =
ge

g
q , (A.45)

where, as usual, q = m/M . Thus Eq. (A.43) may also be written

dp

dr
= −GMq̃

r2
ρ . (A.46)
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This redefinition of the equilibrium structure is formally equivalent to the case considered in
Section A.3.1, of including a turbulent body force. Thus we similarly modify the definitions of the
equilibrium variables A1, A2 and A4; instead of Eqs (5.1), we use

A1 ≡
R3

GM

ge

r
≡ q̃

x3
,

A2 = Ṽg ≡ −
1

Γ1

d ln p

d ln r
≡ rρge

Γ1p
,

A4 = Ã ≡ 1

Γ1

d ln p

d ln r
− d ln ρ

d ln r
,

(A.47)

which are identical to Eqs (A.16), together with A3 and A5 which are unchanged. In addition, we
introduce the new variable A6 by

A6 =
q

q̃
=

g

ge
. (A.48)

(As noted in Section 5, the inclusion of A6 in the model data is flagged by setting D8 = 20.) Finally,
we introduce again

Vg =
rρg

Γ1p
, A = −Vg −

d ln ρ

d ln r
. (A.49)

Clearly in the absence of rotation A1−A5 reduce to the variables defined in Section 5, and A6 = 1.
The relations between the variables defined here and more “physical” variables in Eq. (5.3)

have to be modified in this case:

p =
GM2

4πR4

x2A2
1A5A6

A2A3
,

dp

dr
= −GM

2

4πR5
xA2

1A5A6 , ρ =
M

4πR3
A1A5A6 . (A.50)

The expressions for the buoyancy frequency, Lamb frequency and sound speed, Eqs (5.4), (5.5) and
(5.7), are unchanged in terms of A1 −A5.

The dimensionless perturbation variables y1 − y4 are defined as in Section 2.1; in particular
the actual gravitational acceleration g is used in the definition of y3 (cf. eq. 2.5a).

A.4.1 Equations with no explicit inclusion of rotation

In this case the equations are essentially identical to those presented in Section A.3.1; for complete-
ness, they are repeated here. For non-radial oscillations

x
dy1

dx
= (Ṽg − 2)y1 +

(
1− Ṽg

η̃

)
y2 − Vgy3 , (A.51)

x
dy2

dx
= [l(l + 1)− η̃Ã]y1 + (Ã− 1)y2 + ηÃy3 , (A.52)

x
dy3

dx
= y3 + y4 , (A.53)

and

x
dy4

dx
=− λÃUy1 − λU

Ṽg
η̃
y2

+

[
l(l + 1) + U(A− 2) +

(
q̃

q
− λ
)
UVg

]
y3 + 2(1− U)y4 .

(A.54)
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Here η̃ = l(l + 1)g̃/(ω2r). Note that Eq. (A.54) differs from the corresponding equation (A.21), in
replacing (1−λ) by (q̃/q−λ) in the last term multiplying y3. This deserves an extra check in both
equations.

For radial oscillations the equations are

x
dy1

dx
= (Ṽg − 2)y1 − Ṽg

σ2x2

q̃
y2 , (A.55)

and

x
dy2

dx
=

[
x− 1

σ2x2
(q̃Ã− λqU)

]
y1 + Ãy2 . (A.56)

To use this option, the equilibrium model must obviously be set up correctly, as defined in
Eqs (A.47).

A.4.2 Including first-order rotation, according to Soufi et al. (1998)

This is based on notes provided by K. Karami, translating between the notation used by Soufi et
al. (1998) and the notation used here. We introduce

Fr(r) =
2

3
rΩ2 , σr =

Fr(r)

g
, C =

x3

q
, Cr =

C

1− σr
. (A.57)

Then, obviously, 1− σr = ge/g = q̃/q, and

Cr =
x3

q̃
= A−1

1 . (A.58)

We also need σΩ, defined by

σ2
Ω =

R3

GM
Ω2 . (A.59)

This is for the moment obtained by noting that

A−1
6 =

ge

g
= 1− 2

3
rΩ2 r2

Gm
= 1− 2

3
σ2

Ω(A1A6)−1 ,

whence

σ2
Ω =

3

2
(A6 − 1)A1 . (A.60)

(Note that this way of calculating σΩ introduces significant loss of precision, since A6 is typically
relatively close to unity. In future, it may be replaced by an extension to the {Ai} to include
explicit information about Ω.)

Following Soufi et al. (1998), and Karami, we finally introduce

σ̂ = σ +mσΩ , α = 2m
σΩ

σ̂
, ζ =

Λ

Λ− α
Λ

Crσ̂2
, h1 =

Λα

Λ− α
, (A.61)

where Λ = l(l + 1). Here ζ may also be written

ζ =
Λ

Λ− α
l(l + 1)q̃

σ̂2x3
=

Λ

Λ− α

(σ
σ̂

)2

η̃ . (A.62)
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Then we finally obtain the relevant form of the non-radial equations:

x
dy1

dx
= (Ṽg − 2 + h1)y1 + (ζ − Ṽg)

y2

η̃
− Vgy3 , (A.63)

and

x
dy2

dx
=

[
l(l + 1)

(
σ̂

σ

)2

− η̃
(
Ã+

h2
1

ζ

)]
y1 + (Ã− 1− h1)y2 + ηÃy3 ; (A.64)

Eqs (A.53) and (A.54) are unchanged. Also, of course, the equations for radial oscillation are the
same as above.
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Appendix B. Properties of the eigenfunctions

B.1 Expressions for additional perturbation variables

The dependent variables y1 − y4 defined in Eq. (2.5a) for nonradial oscillations are convenient for
the formulation of the dimensionless equations. However, it is occasionally also useful to consider
more physical variables. Here I record the relevant expressions, in terms of the yi, the dimensionless
squared frequency σ2, the dimensionless model quantities A1 − A5 (see Section 5) and the mass
and radius of the star:

ξr = Ry1 ,

p′ =
1

4π

GM2

R4
xA1A5

(
σ2

L2
y2 +A1y3

)
,

Φ′ = −GM
R

xA1y3 ,

dΦ′

dr
=
GM

R2
A1[(1−A5)y3 − y4] ,

(B.1a)

with L2 = l(l + 1). For radial modes the corresponding expression for p′ is

p′ =
1

4π

GM2

R4
A1A5σ

2y2 . (B.1b)

It is also convenient to consider the Lagrangian pressure perturbation δp. For non-radial modes

δp =
1

4π

GM2

R4
xA1A5

(
−A1y1 +

σ2

L2
y2 +A1y3

)
, (B.2a)

and for radial modes

δp =
1

4π

GM2

R4
A1A5(−xA1y1 + σ2y2) . (B.2b)

Finally, the Takata mode order for dipolar modes (cf. Section 4.2) needs

δΦ =
GM

R
xA1(y1 − y3) (B.3a)

and

δ

(
dΦ

dr

)
=
GM

R2
A1 [(A5 − 2)y1 + (1−A5)y3 − y4] . (B.3b)

B.2 The Takata mode classification for dipolar modes

From Eqs (B.3a) and (B.3b) we obtain (cf. eq. 4.2)

Y1 =
1

g

[
δΦ

r
− δ

(
dΦ

dr

)]
=

1

x
[(3−A5)y1 − (2−A5)y3 + y4] (B.4a)
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and

Y2 =
δp

p
=

1

x

A2A3

A1

(
−A1y1 +

σ2

L2
y2 +A1y3

)
. (B.4b)

As discussed by Takata (2006a) there are in fact formally equivalent ways of implementing the
determination of mode order for dipolar modes, with the use of (Y1,Y2) perhaps being the simplest.
However, based on Takata (2006b), the version implemented in the code by Gülnur Doğan instead
uses, effectively, Ya

1 = Y1, but expressed as

Ya
1 = (3− U)

ξr
r

+
1

g

(
Φ′

r
− dΦ′

dr

)
, (B.5a)

and †

Ya
2 = (3− U)

p′

ρgr
+

1

g

(
Φ′

r
− dΦ′

dr

)
. (B.5b)

It is straightforward to show that

Ya
2 = Y1 + (3− U)

p

ρgr
Y2 , (B.6a)

or, in terms of dimensionless variables,

Ya
2 = Y1 +

3−A5

A2A3
Y2 . (B.6a)

Equation (B.6a) shows that in principle the use of (Y1,Y2) and (Ya
1 ,Ya

2 ) for determining the order
is equivalent, but this needs not be the case in practice, given numerical errors in the oscillation
calculation or inconsistencies in the equilibrium model.

For several years before 5 September 2019, (Y1,Y2) was used in the code. However, experience
and a closer analysis showed that this may not always be optimal. For red-giant models, cases
were found where Y2 had a zero close to zeros in Y1, making the direction in the phase diagram
indeterminate.* Also, it was found that Eq. (B.6a) may involve strong cancellation on the right-
hand side, such that Ya

2 has a much smaller magnitude than Y2, perhaps arguing that Ya
2 is the

more stable choice.
The implementation of 5 September 2019 checks that the number of nodes is the same for Y1

and Ya
1 . If this is not the case, the order is determined based on (Ya

1 ,Ya
2 ). If the number of nodes

is the same, for each node it is checked whether (Y1,Y2) and (Ya
1 ,Ya

2 ) yield the same classification
of the node. If that is the case, that classification is accepted. Otherwise, as a somewhat desparate
measure, the classification is based on the asymptotic behaviour of the eigenfunction. As shown by
Takata (2006a,b) this is characterized by the frequencies Ŝ1, N̂ , defined by

Ŝ2
1 = J2S2

1 , N̂2 = J−2N2 , (B.7)

where

J = 1− U

3
. (B.8)

† The functions implemented are three times the functions presented by Takata (2006b).
* Mathematically, given that (Y1,Y2) are the solution to a second-order system, they cannot

be zero at the same point for a nontrivial solution, but this may happen within a mesh interval,
leading to the indeterminacy.
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Accordingly, in the case of a potentially indeterminate contribution to the order we identify a node
in Y1 as p-like, with the contribution +1 in Eq. (4.1), if

ω > Ŝ1 and ω > N̂ , (B.9)

and g-like otherwise.
A problem has been found with the mode order of low-frequency g modes, close to the gravity-

wave cut-off frequency σgc (cf. Section 2.4.3). There there are cases, also found at higher degree
than 1, where an g-like node should be included in the isothermal extension of the model. This
typically occurs when l(l+ 1)/σ2 > Vg. In the Cowling approximation, as shown by Masao Takata
(unpublished), such cases can be securely identified by y1 and y2 having opposite sign at the point
where the boundary condition is applied; in such cases the order can be corrected by subtracting
1 (adding 1 to the g-like order). In the full case the situation initially (February 2021) seemed less
clear. Applying the above correction initially did not work for Model S (Christensen-Dalsgaard et
al. 1996). This motivated the update of the upper boundary condition from the original Eq. (2.20a)
(applied for istsbc = 1) to the complete Unno et al. (1989) condition in Eq. (2.25) (applied for
istsbc = 2). For Model S this did in fact lead to the correct mode orders. In addition, it was
found that rather than using the original eigenfunctions (y1, y2) for the test on the signs, in the case
of dipolar modes the test should applied to (Y1,Y2), defined above. With these updates proper
assignment of mode order was achieved for the models considered by Christensen-Dalsgaard (2021).
Further tests should of course still be carried out for more general stellar models.

B.3 The Takata identity

Takata (2005) showed that dipolar adiabatic oscillations satisfy the local identity

p′ +
g

4πG

(
dΦ′

dr
+

2

r
Φ′
)

= ω2r

[
ρξr +

1

4πG

(
dΦ′

dr
− Φ′

r

)]
. (B.10)

From the expressions above this can be written

1

L2
A5y2 −

1

σ2
A1(y3 + y4) = A5y1 + (2−A5)y3 − y4 . (B.11)

This identity provides a rather revealing indication of the consistency of the results of the cal-
culation. It should be noticed that departures from the identity can reflect both errors in the
oscillation calculations and failures in the equilibrium model of satisfying the relevant equations
of stellar structure. For example, I have found that inconsistencies in thermodynamic derivatives,
when used to set A4 from the difference between the temperature gradient and the adiabatic gra-
dient, were revealed in differences between the left and right-hand side of Eq. (B.11).

B.4 Tests of discontinuities

In many cases stars show discontinuities in composition and hence in density. At such points A
(cf. Eq. 5.1) is singular. From Eqs (A.2) and (A.4), or equation (A.5) in the radial case, it follows
that there is a discontinuity in y2 and y4 (y2 for radial modes). These discontinuities satisfy jump
conditions that can be obtained by integrating the relevant equations across the singularity.
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In ADIPLS the discontinuity is replaced by a very thin region where density is assumed to vary
linearly with x, with a corresponding boxcar peak in A and hence in N2. An important consistency
issue for the model is to ensure that the density jump across the discontinuity is consistent with
the integral across the peak in A (the same applies for a steep resolved gradient in ρ). Thus letting
superscripts ’−’ and ’+’ denote values just below and just above the discontinuity we require

∫ ln x+

ln x−

(
d ln ρ

d lnx

)
d lnx =

∫ ln x+

ln x−
(−A2 −A4)d lnx = ln(ρ+/ρ−) , (B.12)

using the definitions in Eqs (5.1).
To obtain the jump condition on y2 in the nonradial case we select the singular terms in

Eq. (A.1):

x
dy2

dx
= −d ln ρ

d lnx
y2 + η

d ln ρ

d lnx
(y1 − y3) ,

which can be rewritten as
1

ρ

d(ρy2)

d lnx
= η

d ln ρ

d lnx
(y1 − y3) . (B.13)

Integrating over the discontinuity we obtain

(ρy2)+ − (ρy2)− = η(ρ+ − ρ−)(y1 − y3) ,

which can be written in terms of the computational variables as

(A5y2)+ − (A5y2)− =
L2

σ2
A1(A+

5 −A
−
5 )(y1 − y3) . (B.14)

From Eq. (A.4) (with λ = 1) we obtain

x
dy4

dx
=

d ln ρ

d lnx
U(y1 − y3) .

Here U ≡ A5 ∝ ρ is discontinuous. To deal with this we indtroduce Ũ by U = ρŨ , where Ũ is
continuous, to obtain

x
dy4

dx
=

dρ

d lnx
Ũ(y1 − y3) . (B.15)

This immediately gives the jump condition

y+
4 − y

−
4 = (ρ+ − ρ−)Ũ(y1 − y3) ,

or, in terms of computational variables,

y+
4 − y

−
4 = (A+

5 −A
−
5 )(y1 − y3) . (B.16)

In the case of radial oscillations an analysis very similar to the one leading to Eq. (B.14) gives

(A5y2)+ − (A5y2)− =
x

σ2
A1(A+

5 −A
−
5 )y1 . (B.17)
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Appendix C. The mesh for the oscillation calculation

[This may later be extended with further details on the definition of the mesh].
In many cases the modes of interest are of high radial order, with a specific structure reflecting

the properties of the stellar model considered. This is in particular the case for red-giant models
where thousands of nodes can be found in the inner, g-mode-dominated region. Thus setting up
of the mesh is a critical part of the calculation. This is handled by a redistribution code that
interpolates the model, on amdl form, to the mesh designed for the oscillation calculations, taking
into account the asymptotic properties of the modes. It is controlled by input files, the name of
which (e.g. redistrb.prxt4.in) contains a part (prxt<n>) which also becomes a trailer in the
output file names, including the new amdl file. Here ’prxt’ in a somewhat convoluted way labels the
ongoing development of the scheme for the mesh redistribution, and <n> (in this case 4) indicates
the number N of meshpoints. Examples are

– prxt3: N = 4802
– prxt4: N = 9602
– prxt5: N = 19202

In general N is doubled when <n> is increased by one.
In the amdl file on the new mesh D8 has been updated in more recent versions of the code,

since 17/7/2015, by adding 10−3×i codecase+10−6×i meshcase to D8 as provided in the original
model. Here i codecase labels the version of the code used for the redistribution, and i meshcase

labels the version of the input parameters; i meshcase is provided in the last line of the input file.
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Appendix D. Issues with the relaxation technique

As mentioned in Section 3.2 there may be issues with the relaxation technique in the form where
iteration is carried out to eliminate an internal discontinuity, at a point xf , in one component of
the solution (see Eqs 3.14 and 3.15). This may give rise to a singularity if one of the components
forced to be continuous at this point has a zero. It is interesting to illustrate this behaviour with
a simple analytical example.

Consider the equations
dy1

dx
= y2 ,

dy2

dx
= −σ2y1 ,

(D.1)

with the boundary conditions

y1(0) = 0 , y2(1) = 0 , y1(1) = 1 . (D.2)

This obviously has the solution y1(x) = ± sin(σnx), y2(x) = ±σn cos(σnx), for the eigenvalues
σn = (n+ 1/2)π.

Now we introduce a fitting point xf , with 0 < xf < 1 and consider solutions y
(i)
j (x) (y

(o)
j (x))

for x ≤ xf (x ≥ xf), satisfying the boundary conditions and with y1 being continuous at xf . It is
easy to show that these solutions are

y
(o)
1 (x) = sinσ sin(σx) + cosσ cos(σx) = cos[σ(1− x)] ,

y
(o)
2 (x) = sin[σ(1− x)] ,

(D.3)

y
(i)
1 (x) =

cos[σ(1− xf)]

sin(σxf)
sin(σx)

y
(i)
2 (x) =

cos[σ(1− xf)]

sin(σxf)
σ cos(σx) .

(D.4)

The matching condition, y
(i)
2 (xf) = y

(2)
2 (xf), then becomes

sin(σxf)
−1 {cos[σ(1− xf)] cos(σxf)− sin[σ(1− xf)] sin(σxf)} =

cosσ

sin(σxf)
. (D.5)

This obviously leads to the same eigenvalues as found previously, but with a singularity when
sin(σxf) = 0. A corresponding behaviour is found in the implementation in ADIPLS.

No fully satisfactory solution has been found to this problem, in the present relatively simple
implementation of the relaxation method (but see also the implementation of GYRE; Townsend &
Teitler 2013). In practice, the procedure is to replace Eq. (3.15) by

∆ = [ŷ2(x−f )− ŷ2(x+
f )]∆−1

norm , (D.6)

where the ŷj are the scaled eigenfunctions (see Section 3.3) and, for now, ∆norm = ŷ1(x1) (note
that ŷ1(x) ∼ O(1) for x → 0). This normalizes the behaviour of ∆ as a function of s = σ2 but of
course does not eliminate the singularities. Thus during a scan for the frequencies a test is made
for changes of sign of ∆norm between two points sk and sk+1 in the scan; in that case a finer scan is
carried out between sk and sk+1, Also, various tests are applied to ∆norm(s) to test for anomalous
behaviours that might, e.g., indicate closely spaced modes, and fine scans can then also be adopted.
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Appendix E. Frequency determination through scans.

By far the most commen usage in determining frequencies of a given model is to scan in frequency
to determine changes in sign of a suitable function ∆(s) of the squared dimensionless frequency
s = σ2 (see Eqs (3.5), (3.9) and (3.15) or (D.6)), followed by an iteration to determine the corre-
sponding zero of ∆ and hence the eigenferquency. Thus it is useful to discuss some details of the
implementation.

The scan is typically carried out for successive degrees, between s1 and s2, obtained from the
input as sig1 and sig2. However, special considerations apply when the isothermal boundary
conditions, Eqs (2.18) – (2.20), are used (see Section 2.4.3). Here the scan must be limited to
frequencies such that γ (Eq. 2.18) is non-negative. This defines an upper limit, sac, on s, corre-
sponding to the acoustic cut-off frequency, and, for l > 0, a lower limit sgc, such that for s < sgc the
mode would correspond to running gravity waves in the atmosphere. Although the code can switch
to the δp = 0 condition in such cases, the result would be an inhomogeneous set of frequencies.

The code has various ways to deal with this issue. The choice of boundary condition is reflected
in the value of icase (cf. Section 8.2). By setting, in the input file, icaswn to a suitable non-
negative value one can ensure that only modes for which icase = icasewn are output to file,
selecting those with the appropriate boundary condition. This could, however, still involve wasted
computations of the modes that are not stored. Setting inomd1 ≥ 2 stops the scan when s exceeds
sac at a given degree,* avoiding this problem at the high-frequency end. The scan is then carried out
for the subsequent degree, as defined by the input file. A more systematic approach, implemented
5/4/19, is obtained by setting sig1 and/or sig2 to be negative. If sig1 < 0 the scan starts at sgc

(or, for l = 0, at s = 3, which should ensure that the fundamental radial mode is obtained). If
sig2 < 0 the scan stops at sac. To allow efficient calculation of high-degree modes, particularly for
solar models, the option sig1 = 0 starts the scan at s =

√
l(l + 1), the asymptotic f-mode value,

or s = 3, whichever is bigger.
The step between consecutive frequencies in the scan may depend on frequency, as determined

by the input parameter nsig. For nsig = 1, 2 or 3 the step is uniform in respectively s = σ2,
σ or σ−1, i.e., period. The latter two options are clearly established to deal appropriately with
asymptotic p and g modes. In these cases the step is determined based on the total number of
frequencies in the scan, input in iscan, such that the scan goes from s1 to s2. However, these options
are clearly not optimal for evolved stars where we are dealing with mixed modes, particularly the
very dense spectrum of g-dominated modes in red giants.

To handle this, with nsig ≥ 10 the frequency step is based on the asymptotic properties of the
frequency spectrum, in a form that may still need further improvements. From Eqs (2.7) and (2.8)
we obtain that in the propagating region, where k2 < 0, the eigenfunction behaves approximately
as

y1(x) ∼ cos

(∫ x

|k|dx
)
, (E.1)

and hence a rough approximation to the eigenfrequencies are obtained by requiring that

I(σ) =

∫
prop

|k|dx ≈ nπ , (E.2)

where the integral is over the propagating region. Thus the step in dimensionless frequency between
adjacent mode orders is approximately

∆σ ≈ π
(

dI
dσ

)−1

. (E.3)

* The use of inomd1 may be extended to test for other errors in the scan.
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Securing nst frequency steps in the scan between adjacent modes therefore requires a frequency
step in the scan of

∆σsc ≈ n−1
st π

(
dI
dσ

)−1

. (E.4)

In the practical evaluation of Eq. (E.4) in the code several approximations are made, to obtain
a numerically well-defined result. I neglect 1 in the first bracket in Eq. (2.8) and the generally small
term Ñ2/c̃2. Thus

I ≈
∫ 1

0

[
l(l + 1)

x2

Ñ2

σ2
+
σ2

c̃2

]1/2

dx . (E.5)

In calculating the derivative I change the sign of the first term in [. . .] to avoid possible cancellation,
such that the final result is

dI
dσ
≈ σ−1

∫ 1

0

[
l(l + 1)

x2

Ñ2

σ2
+
σ2

c̃2

]1/2

dx , (E.6)

which is then used in Eq. (E.4). Note that ∆σsc is reset after each determination of an eigenmode.
In this case the input parameter iscan defines nst. This is evidently a fairly rough evaluation,
and further testing and development would certainly be warranted; on the other hand, in practical
applications this procedure appears to provide a reasonably efficient scan, with typical values of
nst around 10.

Special care is needed for higher-degree modes in red giants. Here it was shown by Mosser et
al. (see Hekker & Christensen-Dalsgaard 2017 for details and references) that the spacing in period
1/νnl of mixed modes satisfies

1

νnl
− 1

νn+1 l
≈ ζ∆Πl , (E.7)

where ∆Πl is the asymptotic period spacing for a pure g mode and ζ, defined in Eq. (4.7), is the
ratio between the inertia in the g-mode trapping region and the total inertia. For modes of higher
degree (such as l = 3), the coupling between the p- and g-mode regions becomes very small, and
so, consequently, does ζ near the acoustic resonances. Thus we can expect very closely spaced
frequencies here. One could perhaps include this effect in setting ∆σsc, based on the numerical
behaviour of ζ, but for now care is simply needed in ensuring that nsc is set sufficiently high to
capture these modes.

In red-giant models care is taken that eigenfunctions with high-order g-mode behaviour is
properly resolved on the mesh in x. As mentioned in Appendix C this is to some extent ensured by
the resetting of the mesh in a way that reflects the asymptotic behaviour of the eigenfunction. Even
so, for excessively high order, corresponding in the g-mode case to excessively low frequency, the
number of meshpoints between nodes in the eigenfunction may become unreasonably low. When
nsig ≥ 20 this is handled by constraining the lower limit of the scan based on the asymptotic
properties of the eigenfunction. For g modes Eq. (E.1) becomes

y1(x) ∼ cos

(
L

σ

∫ x

Ñ
dx

x

)
, (E.8)

with L =
√
l(l + 1, leading to the eigenfrequency condition

L

σ

∫
g

Ñ
dx

x
≈ ngπ , (E.9)
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where ng is the g-mode order; here the integral is over the g-mode propagation region. Letting
N be the total number of meshpoints, the requirement that the average number of meshpoints
between nodes exceeds kmin therefore leads to the constraint that

σ ≥ σg,min = kminL

∫
g

Ñ
dx

x
(Nπ)−1 . (E.10)

Given that the mesh redistribution largely ensures a uniform distribution of the nodes over the
mesh in the g-mode region, this constraint in practice ensures a reasonable number of meshpoints
between nodes throughout this region. For nsig ≥ 20 the lower limit of the scan is constrained by
σg,min calculated from Eq. (E.10); for now kmin = 10 has been hard-coded.

An important challenge is to ensure that all modes in a given frequency interval are found
(with a proper definition of the mode order, this can be verified a posteriori), without an excessive
number of steps in the scan. In the code this is addressed by a fairly careful investigation of the
properties of the function ∆(s), to identify features that might indicate that a mode or modes
have been overlooked as sign changes in the primary scan. These features include local minima
or other local irregularities in ∆(s) on the grid defined by the primary scan. In such cases a finer
scan is carried out over the relevant interval in s. Special care is taken when using the relaxation
technique (see Appendix D), where singularities may mask the presence of a mode. The fine scan
in uniform in s; in an attempt to stabilize the search the location xf of the fitting point is changed.
After the fine scan the primary scan is resumed, with the original setting of xf . This procedure
unavoidable involves wasteful ‘wild goose chases’, where no modes are found during the fine scans,
but in general the code is successful in recovering all modes.

When a change of sign in ∆ is found during the scan between sa and sb, say, a secant iteration
(cf. Eq. 3.1) is started, based on ∆(sa) and ∆(sb). To ensure that the resulting mode is in fact in
the interval [sa, sb] it is checked whether si+1 remains within the interval during the iteration. If
this is not the case, an additional fine scan is carried out over [sa, sb] locating a new change of sign
of ∆ and hence a new starting point for the iteration.

Special considerations apply when using Richardson extrapolation (see Section 3.4). Here the
basic scan is carried out on the ‘thinned’ mesh, with N/2 points, to reduce the computation cost.
The iteration for the eigenfrequency σ(N/2) follows the usual procedure, including the possibility
of an additional fine scan over the interval [sa, sb]. However, since the solution on the full mesh
may be outside this interval, as a result of the error in the solution on the thinned mesh, the test for
the location during the iteration and the possibility of an additional fine scan is not implemented
for the solution on the full mesh.
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