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Abstract (English)

The purpose of this thesis is to investigate the dressing of a nucleon with two
virtual pions in the nuclear model with explicit mesons. In this model the
nucleons interact with mesons explicitly, on the same level as the nucleons,
rather than through phenomelogical potentials. We will be considering the
dressing of protons with just pions, and we will consider the case where the
nucleon is dressed by two pions.

We introduce the method of correlated Gaussians, where the wavefunction of
a quantum mechanical system can be written as a linear combination of corre-
lated Gaussians. Solving the Schrödinger equation for such a system ammounts
to solving a generalized eigenvalue problem, that must be optimized with re-
spect to linear and non-linear parameters, in order to find the ground state
energy of the given system. We then introduce the nuclear model with explicit
mesons in greater detail, and consider the special case of a nucleon dressed by
two explicit pions. In this model, different systems of nucleons dressed with
increasing number of mesons are coupled together with a creation operator,
which has only two parameters: A coupling strength and a range parameter.
We derive the shape of the wavefunctions needed to describe the system, along
with the matrix elements needed to solve the generalized eigenvalue problem.
For this purpose we develop a general expansion method for calculating the
matrix elements using correlated Gaussians, which involves Taylor expanding
the analytical shape of the matrix elements of shifted Gaussians to the given
order needed.

We then perform numerical simulations on the effect of the dressing of the
second pion. We begin by solving the dressing of a nucleon with a single
pion. This serves as a proof of conept for the method, and also shows how
many Gaussians are needed in our linear combination to accurately describe
the system. We then introduce the dressing of the second pion, and compare
its contribution to the total system with the contribution from the first pion
at different values of the coupling parameters. We show that the coupling
strength has a negligible effect on the contribution of the second pion, but
increasing the range parameter drastically increases the influence of the second
pion, to the point where a one-pion approximation is no longer sufficient for a
fully accurate description.
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Resumé (Dansk)

Formålet med dette speciale er at undersøge koblingen mellem en nukleon og
to pioner i en kernemodel med eksplicitte mesoner. I denne model interagerer
mesonerne ikke igennem fænomenologiske potentialer men optræder eksplicit
på samme niveau som nukleonerne selv. Vi vil i dette speciale udelukkende
fokuserer på koblingen mellem nukleoner og pioner, og vi begrænser os til en
kobling med to eksplicitte pioner.

Vi benytter os af en metode, hvor bølgefunktionen af et kvantemekanisk sy-
stem kan opskrives som en linear kombination af korrelerede Gauss funktioner.
Løsningen til Schrödinger ligningen kan i så fald omskrives til et generaliseret
egenværdi problem, som skal optimeres mht. lineære og ikke lineære parametre,
for at finde systemets grundtilstands energi. Dernæst introduceres kernemodel-
len med eksplicitte mesoner i større detalje, og vi betragter særtilfældet hvor
kernen er koblet til to pioner. I denne model kobles systemer med et stigende
antal mesoner sammen igennem en operator, som kun har to parametre: En
koblingsstyrke og en koblingsafstand. Vi udleder de nødvendige bølgefunk-
tioner for at beskrive systemet, samt matrix elementerne der skal bruges til at
løse det generaliserede egenværdi problem. Til det formål udvikles en generel
udvidelses metode, som involverer en rækkeudvikling af den analytiske form
af matrix elementerne af skiftede Gauss funktioner til den påkrævede orden.

Dernæst udføres en række numeriske simuleringer, hvor effekten af koblingen
med den anden pion er blevet undersøgt. Først løses systemet hvor nukleonen
er koblet til en enkelt pion. Denne løsning fungerer som en illustration af
modellen og undersøger samtidig antallet af Gauss funktioner der skal benyttes
i vores linearkombination af bølgefunktionen for at få en præcis beskrivelse.
Dernæst introduceres koblingen med den anden pion, og bidraget til det totale
system sammenlignes med bidraget fra den første pion ved forskellige værdier
af koblingsparametrene. Vi viser at koblingsstyrken har negligibel effekt på
koblingen af den anden pion, men at en stigning i koblingsafstanden øger
bidraget fra den anden pion drastisk, endda til et punkt hvor at den anden pion
skal medtages for at få en fuldt nøjagtig beskrivelse.
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Chapter 1
Introduction

With the discovery of the neutron in 1932, it became clear that atomic nuclei consisted
of protons and neutrons bound together. But with the neutron having neutral charge,
the binding to the positive proton could not be explained using Coulomb interaction.
Therefore, a new concept was created to accomodate this new discovery: The strong
nuclear interaction [1]. The next question was how this strong interaction could be
described.

An attempt was made in 1935 by Hideki Yukawa, who proposed that the nucleons
would exchange particles between eachother, similarly to how the mediator for
the electromagnetic force is the photon, which is a massless particle. In this case
however, the particles would have a mass the fraction of the Nucleons themselves.[2]
These mediating particles would eventually be called mesons, and are essential for
describing the strong nuclear interaction between nucleons and the binding of nuclei
[1]. There are many known mesons, but of special interest in this thesis are the
isoscalar pions (𝜋0, 𝜋−, 𝜋+), which have a mass of around 140𝑀𝑒𝑉 . These are the
lightest of the mesons, with the nucleons being roughly 7 times as heavy as the pions.
Given the pions’ long Compton wavelength of around 1.4𝑓 𝑚, the pion is responsible
for the long range interaction of the nuclear force [3].

Since Yukawa’s initial theory, many attempts at making a theory describing the
interaction between nucleons and mesons have been made: From early field theories,
to simple one-boson exchange theories, to the more modern and refined chiral
effective field theories [1, 4, 5]. Common for all of these is the introduction of
some phenomenological potential, which adequately describes the nucleon-nucleon
interaction. The mesons, while being a part of these theories, are treated implicitly
in favor of these potentials.

1.1 A Nuclear Model With Explicit Mesons

In this thesis, we consider a different approach, where the mesons are treated explic-
itly on the same footing as the nucleons themselves. Previous works have worked as
a proof of concept for this method. A nuclear model with an explicit scalar 𝜎-mesons
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2 Chapter 1 ⋅ Introduction

have been shown to yield reasonable binding energies for the bound state of the
deuteron [6]. Similarly, a more advanced model with a single explicit pion has given
good results in the description of neutral pion photoproduction off protons [7]. In
this thesis, we take a step further in the development of this model, discussing the
dressing of a nucleon with two explicit pions.

1.2 Outline of Thesis

The purpose of this thesis is to construct the nuclear model with explicit pions in
the two-pion approximation, and then document the effect of the second pion on
the dressing of the nucleon. In chapter 2, we describe the relevant theory needed to
construct the model and perform numerical calculations. We begin by introducing
the method of Shifted Correlated Gaussians, where the wavefunction of a quantum
mechanical system is expanded in a linear combination of shifted Gaussians. We
then show how we can use the matrix elements of shifted Gaussians to find the
corresponding matrix elements of unshifted Gaussians, which will be the main tool
used in this thesis. Then, we show how we can find the energy of a system by
solving a generalized eigenvalue problem. For this purpose, we need the matrix
elements between Gaussians, and we will see that these can be found analytically.
At the end of chapter 2, we briefly discuss different algorithms that can be used to
solve the aforementioned generalized eigenvalue problem to find the ground state
energy. In chapter 3, we introduce the nuclear model with explicit mesons, with
a special focus on explicit pions. We begin by introducing a general system of a
nucleon dressed by a number of pions, which serves as a primer for the introduction
of the one and two-pion approximation. In chapter 3 we also introduce the relative
Jacobi coordinate transform, which can be used to reduce the dimensionality of the
system, and decrease the computational load. Lastly, we go in depth with the one
and two pion systems, deriving the wavefunctions that satisfy the correct boundary
conditions. In chapter 4, we use the explicit form of the wavefunctions found in
chapter 3 to derive the matrix elements used to calculate the dressing of a nucleon.
We begin by deriving a general form of the matrix elements, which can, in practice,
be used for a multitude of few-body systems. Using this general method, we derive
the explicit shape of the matrix elements used for numerical calculations of both the
one-pion and the two-pion system. We also introduce another proposed method for
finding matrix elements, that wasn’t used in this thesis due to complications with
the kinetic matrix elements. In chapter 5, we compare the contribution to the total
wavefunction of the one-pion and the two-pion systems. We show the difference in
dressing energy between the two systems, and discuss the effect of the second pion.



Chapter 2
Theoretical background

In this chapter, we explain the relevant theory necessary for solving the system
of a nucleon coupled to two pions. This method is frequently used when solving
few body systems numerically [8]. First, we introduce the concept of Gaussian
basis functions and shifted Correlated Gaussians. We show how, by expanding the
wavefunction into a linear combination of Gaussians, the Schrödinger equation can
be written as a generalized eigenvalue problemwith analytical matrix elements. Then
we discuss different methods that can be used to solve this generalized eigenvalue
problem numerically. We will primarily consider the stochastic variational method
and compare it to a more direct optimization, where local minimizers are used for
solving the system.

2.1 Shifted Correlated Gaussians

In this section, we will describe the use of explicitly correlated Gaussians in calculat-
ing matrix elements for various systems. The method of correlated Gaussians sees
use in treatments of small nucleons, but also simple atoms can be treated using this
expansion [9].

Considering an arbitrary wavefunction, |𝜓⟩, we can write this as a linear combination
of Gaussians [10],

|𝜓⟩ =
𝑛𝑔

∑
𝑖=1

𝑐𝑖|𝑔𝑖⟩, (2.1)

where 𝑛𝑔 is the number of Gaussians used in the expansion, and where the Gaussians
can be written in coordinate space as

⟨𝐫|𝑔⟩ =𝑒𝑥𝑝
(
−

𝑛𝑔

∑
𝑖,𝑗
𝐴𝑖𝑗 𝑟𝑖 ⋅ 𝑟𝑗 +

𝑛𝑔

∑
𝑖=1

𝑠𝑖 ⋅ 𝑟𝑖)
= 𝑒−𝐫

𝑇𝐴𝐫+𝐬𝑇 𝐫 (2.2)

In eq. (2.2), 𝐫 is a size 𝑛𝑔 column vector of spacial coordinate vectors
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4 Chapter 2 ⋅ Theoretical background

𝐫 =

⎛
⎜
⎜
⎜
⎜
⎝

𝑟1
𝑟2
⋮
𝑟𝑁

⎞
⎟
⎟
⎟
⎟
⎠

, (2.3)

𝐴 is an 𝑛𝑔 × 𝑛𝑔 matrix of parameters, and 𝐬 is a size 𝑛𝑔 column vector of shift vectors.
These simply shift the location of the Gaussians, which are normally centered around
the origin, a given distance away from the origin. For the purposes of this thesis, the
matrix 𝐴 will be parameterized according to the following equation:

𝐴 =
𝑛𝑔

∑
𝑖<𝑗

𝑤𝑖𝑗𝑤𝑇
𝑖𝑗

𝑏2𝑖𝑗
(2.4)

where 𝑤𝑖𝑗 is a vector of size 𝑛𝑔 where the 𝑖′𝑡ℎ element is 1 and the 𝑗 ′𝑡ℎ element is
−1, and 𝑏𝑖𝑗 is some parameter that is characteristic to the range of interaction that
we consider. In this thesis, 𝑏𝑖𝑗 is drawn from an exponential distribution,

𝑏𝑖𝑗 = −𝑙𝑛(𝑢)𝑏 (2.5)

where 𝑢 is a quasi random number drawn from a Halton sequence, such that 𝑢 ∈]0, 1[
while 𝑏 is a characteristic range for the system [11].

Notice that by inserting eq. (2.4) into eq. (2.2), we get the sum,

−𝐫𝑇𝐴𝐫 = − 𝐫𝑇
𝑛𝑔

∑
𝑖<𝑗

𝑤𝑖𝑗𝑤𝑇
𝑖𝑗

𝑏2𝑖𝑗
𝐫 = −𝐫𝑇

𝑛𝑔

∑
𝑖<𝑗

𝑤𝑖𝑗𝑤𝑇
𝑖𝑗

𝑏2𝑖𝑗
𝐫 = −

𝑛𝑔

∑
𝑖<𝑗

(𝐫𝑇𝑤𝑖𝑗 )(𝑤𝑇
𝑖𝑗𝐫)

𝑏2𝑖𝑗

= −
𝑛𝑔

∑
𝑖<𝑗

(𝑟𝑖 − 𝑟𝑗)
2

𝑏2𝑖𝑗

(2.6)

so an interpretation of𝑤𝑖𝑗 is the vector that picks out the relative coordinates between
two particles. Similarly to 𝑤𝑖𝑗 , we will also be using the vector 𝑤𝑖, which has a 1 in
entry i and zeros everywhere else, such that 𝑟𝑖 = 𝑤𝑇

𝑖 𝐫.

The terms in equation 2.2 are known as Shifted Gaussians, and this choice of basis is
especially useful in cases where the coordinates of the nuclei are considered to be
fixed. One should note however that if the coordinates of the nuclei are not fixed,
then the shifted gaussians are not eigenfunctions of the square of the total angular
momentum, unless the shift is zero. [8]

The method of shifted correlated Gaussians has the benefit of yielding analytic matrix
elements when working with multi-body systems, which makes it much easier to
calculate energies and states for such systems [10]. Applying the wavefunction in
equation 2.1 to the Schrödinger equation,



Dressing of Proton with Virtual Pions in a Nuclear Model with Explicit Mesons 5

𝐻̂ |𝜓⟩ = 𝐸|𝜓⟩ (2.7)

and then multiplying by ⟨𝜓| from the right, we can find the energy of the system by
using the variational method [12].

𝐸 =
∑𝑁
𝑘,𝑘′ 𝑐𝑘𝑐𝑘′⟨𝐴𝑘 |𝐻̂ |𝐴𝑘′⟩
∑𝑁
𝑘,𝑘′ 𝑐𝑘𝑐𝑘′⟨𝐴𝑘 |𝐴𝑘′⟩

=
𝑐𝑇𝑐
𝑐𝑇 𝑐

(2.8)

where 𝑐 is a size-N vector of eigenvectors,  is an 𝑁 × 𝑁 symmetric matrix with
matrix elements ⟨𝐴𝑘 |𝐻̂ |𝐴𝑘′⟩, and is an 𝑁 × 𝑁 symmetric positive definite matrix
with matrix elements ⟨𝐴𝑘 |𝐴𝑘′⟩. We want to find the values of 𝑐 that minimizes the
energy. Taking the derivative of eq. (2.8) with respect to one of the eigenvectors, 𝑐𝑘 ,
we can write, noting that the overlap between Gaussians is nonzero.

𝜕𝐸
𝜕𝑐𝑘

= 2
(𝐻𝑐)𝑘 (𝑐𝑇 𝑐) − (𝑐𝑇𝑐) (𝑁𝑐)𝑘

(𝑐𝑇 𝑐)
2 (2.9)

where (𝐻𝑐)𝑘 and (𝐻𝑐)𝑘 indicates a sum over all the terms in 𝑐𝑇𝑐 and 𝑐𝑇 𝑐 that
contains 𝑐𝑘 . Then, we can use eq. (2.8) to write (𝑐𝑇𝑐) = 𝐸 (𝑐𝑇 𝑐). Inserting this
in eq. (2.9) and setting the derivative equal to zero.

𝜕𝐸
𝜕𝑐𝑘

= 2
(𝐻𝑐)𝑘 − 𝐸 (𝑁𝑐)𝑘

(𝑐𝑇 𝑐)
= 0 → (𝐻𝑐)𝑘 − 𝐸 (𝑁𝑐)𝑘 = 0 (2.10)

Doing this for all of the eigenvectors, we get the following generalized eigenvalue
problem.

𝑐 = 𝐸 𝑐 (2.11)

Equations eq. (2.11) is the key equation when finding the optimal parameters for
our system. There are two parameters that need to be optimized in order to find
the minimal energies: The eigenvectors, 𝑐, and the optimal values for the non-linear
parameters, 𝐴 and 𝐴′ in eq. (2.8). The methods used to find these quantities will be
described in the next section.

The matrix elements needed to solve eq. (2.11) is the overlap between two Gaussians,
the overlap of the Gaussians with the Hamiltonian and the overlap with a Coulomb
form factor, 1

𝑤𝑇𝑖𝑗 𝐫
. The general form of the matrix elements when using shifted

Gaussians have been found and derived in [10]. A more in-depth derivation of the
matrix elements can be found in appendix A. The general form of these matrix
elements are as follows:
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Overlap:

⟨𝑒−𝐫𝐴𝐫+𝑠
′𝑇 𝐫|𝑒−𝐫𝐵𝐫+𝑠

𝑇 𝐫⟩ = 𝑒
1
4 (𝑠+𝑠

′)𝑇𝑅(𝑠+𝑠′)
(

𝜋𝑛𝑔

𝑑𝑒𝑡(𝐶))

3/2

≡ 𝑀 (2.12)

where 𝑛𝑔 indicates the number of Gaussians and 𝐶 = 𝐴 + 𝐵.

Kinetic Energy:

⟨𝑒−𝐫𝐴𝐫+𝑠
′𝑇 𝐫|𝐾̂ |𝑒−𝐫𝐵𝐫+𝑠

𝑇 𝐫⟩

= (6𝑇 𝑟𝑎𝑐𝑒(𝐴𝐾𝐵𝑅) + (𝑠′ − 𝐴𝑅(𝑠 + 𝑠′))
𝑇 𝐾 (𝑠 − 𝐵𝑅(𝑠 + 𝑠′)))𝑀

(2.13)

where 𝐾̂ = − 𝜕
𝜕𝐫𝐾

𝜕
𝜕𝐫𝑇 , and 𝐾 is symmetric positive definite matrix.

Coulomb Potential:

⟨𝐺′|
1

|𝑤𝑇 𝐫|
|𝐺⟩ = 𝑀

𝑒𝑟𝑓 (
√
𝛽𝑞)

𝑞
(2.14)

where 𝛽 = (𝑤𝑇𝑅𝑤)−1, 𝑞 = 1
2𝑤

𝑇𝑅(𝑠 + 𝑠′) and 𝑒𝑟𝑓 is the error function. In principle,
one can use these shifted Gaussians to calculate numerical systems. However, they
are in general not eigenfunctions of the total angular momentum [8]. To circumvent
this, we will be using standard non-shifted Gaussians.

|𝑔⟩ = 𝑒−𝐫
𝑇𝐴𝐫 (2.15)

These unshifted Gaussians can be shown to be eigenfunctions of the total angular
momentum. More specifically, eq. (2.15) can be shown to be an eigenfunction of
the total angular momentum with eigenvalue 0. For this reason, we dub them the
S-wave expansion, similar to atomic orbitals with orbital quantum number 𝑙 = 0.
From these unshifted Gaussians, equations with higher order angular momentum,
such as P- and D-waves with 𝑙 = 1 and 𝑙 = 2 respectively. We refer to chapter 4 for
a derivation of these higher order matrix elements, and we refer to appendix B for
an explicit example, where the Hydrogen wavefunctions have been written using
Gaussians with higher order angular momentum.

The unshifted Gaussians in eq. (2.15) are simply the shifted Gaussians from eq. (2.2),
but with the shiftvectors set to zero. This means that the matrix elements of unshifted
Gaussians are similar to that of shifted Gaussians, only with the shiftvectors set to
zero. The matrix elements for unshifted Gaussians are therefore [6, 10]:

Overlap:

⟨𝑒−𝐫𝐴𝐫|𝑒−𝐫𝐵𝐫⟩ = (
𝜋𝑁

𝑑𝑒𝑡(𝐶))

3/2

≡ 𝑀0 (2.16)

Kinetic Energy:

⟨𝑒−𝐫
𝑇𝐴𝐫|𝐾̂ |𝑒−𝐫

𝑇𝐵𝐫⟩ = 6𝑇 𝑟𝑎𝑐𝑒(𝐴𝐾𝐵𝑅)𝑀0 (2.17)
Coulomb term

𝑒𝑟𝑓 (
√
𝛽𝑞)

𝑞
𝑀

𝑞 → 0
−−−−→

2
√
𝜋
√
𝛽𝑀0 (2.18)
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2.2 Methods for solving the generalized eigenvalue
problem

We need to solve the generalized eigenvalue problem, eq. (2.11), for the linear pa-
rameters, 𝑐 and the non-linear parameters 𝐴, as described in section 2.1. Solving for
the linear parameters is straightforward, and involves just a method for solving a
standard generalized eigenvalue problem. Since the matrix is positive definite,
we can find an invertible matrix, 𝑄 such that 𝑄𝑇𝑄 and 𝑄𝑇𝑄 are both diagonal
and real. Additionally, since  and  in eq. (2.11) and since  is positive definite
by construction, the energy eigenvalues in eq. (2.11) are real [13]. So a general
method to diagonalize matrices can be applied to solve the system and the solution
is guarenteed to yield real eigenvalues and eigenvectors. For this thesis, we shall
simply use the eigh module from scipy, which uses LAPACK drivers to solve the
symmetric eigenvalue problem [14, 15]

Finding the non-linear parameters,𝐴 and𝐴′ requires more advanced algorithms. One
approach is to use the Stochastic Variational Method. In this method, we generate
random guesses for the parameters, and check whether the elements give a lower
energy. Assume we have a basis of 𝑘 − 1 elements, that gives an energy 𝐸𝑘−1. The
step for finding a lower energy then goes as follows:

1. Generate a number, 𝑁 , of basis elements, 𝐴𝑘1, 𝐴𝑘2,…𝐴𝑘𝑁 via random sampling.

2. Solve the eigenvalue problem, eq. (2.11), by adding each of the𝑁 basis elements
to the size 𝑘−1 basis individually. This generates 𝑁 new energies, 𝐸𝐾1 , 𝐸𝑘2 … 𝐸𝑘𝑁 .

3. Let’s assume the parameter 𝐴𝑘𝑖 produced the energy 𝐸𝑘𝑖 , which is the lowest.
The parameter 𝐴𝑘𝑖 is then added to the basis, making it a size 𝑘 basis. Repeat
until convergent.

This is a rather fast algorithm, since it doesn’t require the Hamiltonian to be recalcu-
lated at every iteration, nor does it require a full rediagonalization every time a new
basis element is selected [16].

The method used in this thesis uses a more direct approach. In this method we
generate a size-𝑛𝑔 basis of random or quasi random numbers (for example via a
Halton sequence.) We then use the Nelder-Mead Downhill Simplex method to find
the minimal energy [17]. This is a bit more intensive since we are varying all 𝑁
basis elements at the same time. As such, this method runs extremely slow if 𝑁 is
very large. Additionally, one should note that the Nelder-Mead algorithm is a local
minimizer. That means that there is a risk that the algorithm might terminate at a
local minima instead of the desired global minima. This can be offset by running
the algorithm several times with different starting parameters, for example using
random sampling, and cross referencing the results.

Unless otherwise specified, it can be assumed that the Downhill Simplex method is
used throughout the remainder of this thesis. The amount of basis elements used
rarely exceeds 10, which means the Downhill Simplex method still runs sufficiently
fast. Additionally, it is easy to implement using Python libraries such as SciPy [15].





Chapter 3
A Nuclear Model With Explicit Pions

In this chapter, we explain the nuclear model with explicit pions. The nucleus of
an atom is held together by the strong nuclear force, which is mediated by mesons.
One of the primary mediators of the strong force is the pion, which is responsible
for the long-range interactions of the strong force due to its Compton wavelength of
around 1.4𝑓 𝑚 [3]. While the nuclear interaction between nucleons and mesons is
typically considered through the construction of phenomenological potentials or
quantum field theories, in this thesis we treat pions on the same foot as the nucleons,
as explicit particles [1, 18].

3.1 The Nuclear Model with Explicit Pions

It is well established that a so-called bare nucleon is dressed by a cloud of pions to
create what we know as the physical nucleon or, more appropriately for this thesis,
the dressed nucleon [19]. Pions can only be emitted by the nucleon and become a
physical pion, if they exceed a potential barrier of about 140𝑀𝑒𝑉 , which is roughly
the mass of the pion. If less than this amount of energy is applied, the pion remains
under the potential barrier and is considered a virtual pion. An illustration of this
can be seen in fig. 3.1. A dressed nucleon can then be seen as a superposition of
a "bare" nucleon, which isn’t dressed by pions, and several different states dressed
with a different number of pions. This is described by the wavefunction in eq. (3.1).

Ψ =

⎛
⎜
⎜
⎜
⎜
⎝

𝜓𝑁̃
𝜓𝑁̃ 𝜋
𝜓𝑁̃ 𝜋𝜋
⋮

⎞
⎟
⎟
⎟
⎟
⎠

, (3.1)

where 𝜓𝑁̃ is the wavefunction of the bare nucleon, and the other terms represent
the nucleon being dressed by an increasing number of pions as indicated by the
subscript. The Hamiltonian that acts on this multi componenent wavefunction is as
follows:

9
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𝐻 =

⎛
⎜
⎜
⎜
⎜
⎝

𝐾𝑁̃ + 𝑚̌𝑁̃ 𝑊 † 0 …
𝑊 𝐾𝑁̃ + 𝑚̌𝑁̃ + 𝐾𝜋1 + 𝑚̌𝜋1 + 𝑉𝐶 𝑊 † …
0 𝑊 𝐾𝑁̃ + 𝑚̌𝑁̃ + 𝐾𝜋1 + 𝐾𝜋2 + 𝑚̌𝜋1 + 𝑚̌𝜋2 + 𝑉𝐶 …
⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

(3.2)

Where 𝐾𝑁̃ is the kinetic term for the bare nucleon,

𝐾𝑁̃ =
−ℏ2

2𝑚𝑁̃

𝜕2

𝜕𝑟2
𝑁̃
, (3.3)

with 𝑟𝑁̃ being the coordinate to the nucleon, 𝐾𝜋 are the kinetic terms for the pions,

𝐾𝜋𝑖 =
−ℏ2

2𝑚𝜋𝑖

𝜕2

𝜕𝑟2𝑖
, (3.4)

with 𝑟𝑖 being the coordinates for the pions, 𝑚̌𝑁̃ = 𝑚𝑁̃ 𝑐
2 and 𝑚̌𝜋𝑖 = 𝑚𝜋𝑖𝑐2 with 𝑚𝑁̃

and 𝑚𝜋𝑖 being the mass of the bare nucleon and the mass of the i’th pion respectively.
The terms, 𝑉𝐶 are included to account for potential Coulomb interactions.[7]

V(r)

r0

π

≈ 140 MeV

Figure 3.1: An illustration of a single virtual pion. The pion dresses the nucleon and is

under a potential of about 140𝑀𝑒𝑉 , roughly equal to the physical mass of the pion[20].

The different subsystems are coupled together by an operator, 𝑊 , which couples the
systems of different pions together. Since nuclear interactions must conserve total
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angular momentum, isospin and parity, the operator coupling the different systems
must do the same. The pion is an isospin triplet, that has spin zero and negative
intrinsic parity. In order to account for this, we introduce the coupling constants:

𝑊 = (𝜏̄𝜋̄)(𝜎̄𝑟)𝑓 (𝑟) (3.5)

𝑊 † = ∫ 𝑑3𝑟(𝜏̄𝜋̄)(𝜎̄𝑟)𝑓 (𝑟) (3.6)

where

𝜏̄𝜋̄ = 𝜏0𝜋0 +
√
2𝜏−𝜋+0 +

√
2𝜏+𝜋− (3.7)

with 𝜏̄ being the isospin matrices of the nucleons.

𝜏0 = (
1 0
0 −1) , 𝜏− = (

0 0
1 0) , 𝜏+ = (

0 1
0 0) (3.8)

𝜋̄ is the three states of the pion, 𝜎̄ are the three pauli spin matrices, and 𝑟 are the
spatial coordinates [18, 21]. Note the added integral in equation 3.6, which removes
the coordinate of the annihilated pion. The function, 𝑓 (𝑟) is a short-ranged form
factor, which controls the range of the interaction between the created pion and the
nucleon. In principle we are free to choose the form factor as we please, but in order
to properly emulate the finite ranges of the nuclear forces, they must be decreasing
functions of the distance between the particles, 𝑟 . Throughout this thesis we will
use a Gaussian form factor:

𝑓 (𝑟) =
𝑆𝑊
𝑏𝑊

𝑒
− 𝑟2
𝑏2𝑊 (3.9)

where 𝑏𝑊 is a range parameter controlling the range of the interaction, and 𝑆𝑊 is
the coupling strength between the nucleon and the pion. The negative exponent in
eq. (3.9) ensures the coupling goes to zero with increasing r, and since the product of
two Gaussians is a Gaussian, it is well suited when using the method of correlated
Gaussians.

It is worth quickly noting that some literature cites a pion creation operator, 𝑊 in
eq. (3.5), with a gradient over the spatial coordinates, as is the case in [18].

𝑊𝑎𝑙𝑡 = (𝜏 ⋅ 𝜋⃗)(𝜎⃗ ⋅ ∇𝑟)𝑓 (𝑟) (3.10)

However, carrying out the derivative in eq. (3.10) on our Gaussian form factor in
eq. (3.9) reveals that the expressions in eq. (3.10) and eq. (3.5) are equivalent up to a
common factor.
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3.2 Notation and the Jacobi Coordinate Transform

Before we begin discussing the specific cases of the one pion and two pion dressing,
we first discuss the use of the Jacobi coordinate transform. Up until now, we have
considered the spherical coordinates of individual particles. Instead, we can use the
transformation to relative Jacobi coordinates, which is described by the following
equations:

𝑥𝑗 =
∑𝑗
𝑘=1𝑚𝑘𝑟𝑘
∑𝑗
𝑘=1𝑚𝑘

− 𝑟𝑗−1, 𝑗 = {1,…𝑁 − 1} (3.11)

𝑅 =
∑𝑀
𝑘=1𝑚𝑘𝑟𝑘
∑𝑀
𝑘=1𝑚𝑘

(3.12)

where 𝑥𝑗 are the relative coordinates between two particles, while 𝑅 is the center of
mass coordinate. A visual demonstration of the change of coordinates can be see in
fig. 3.2.

r1

r2

r3

J x1x2

R

Figure 3.2: The same system of three particles in two different sets of coordinates. On the

left are regular spherical coordinate, while on the right, the system is expressed in relative

Jacobi coordinates.

For a general N-particle system, the Jacobi coordinate transformation can also be
written as a matrix.

𝐽 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 0 … 0
𝑚1
𝑀2

𝑚2
𝑀2 −1 0 … 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑚1
𝑀𝑁−1

𝑚2
𝑀𝑁−1

… … … −1
𝑚1
𝑀𝑁

𝑚2
𝑀𝑁

… … … 𝑚𝑁̃
𝑚𝑁̃

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(3.13)

where

𝑀𝑖 =
𝑖

∑
𝑘=1

𝑚𝑘 (3.14)

such that the full transformation can be written in a convenient shorthand form
𝐱 = 𝐽 𝐫 (3.15)
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where

𝐱 =

⎛
⎜
⎜
⎜
⎜
⎝

𝑥1
𝑥2
⋮
𝑅

⎞
⎟
⎟
⎟
⎟
⎠

(3.16)

which is similar to howwe defined the vector 𝐫 in section 2.1. It can be shown that the
Jacobian matrix in eq. (3.13) has determinant 1, which means that the mathematical
shape of the matrix elements are preserved under a coordinate transform. This is
true as long as we also remember to transform the kinetic matrix 𝐾 from eq. (2.17)
and the vectors 𝑤𝑖𝑗 . These transform according to

𝐾 → 𝐽𝐾𝐽 𝑇 (3.17)
𝑤𝑖𝑗 → 𝑈 𝑇𝑤𝑖𝑗 , (3.18)

where 𝑈 = 𝐽−1 [6].

The advantage of the relative Jacobi coordinates is that we can discard the center of
mass coordinate, 𝑅, as long as there are no external forces acting on the system. This
is equivalent to removing the last row of the matrix J and the last column of U. This
means that the transformed 𝐾 and 𝑤𝑖𝑗 from eq. (3.17) and eq. (3.18) have dimensions
𝑛𝑔 − 1 × 𝑛𝑔 − 1 and 𝑛𝑔 − 1 respectively. The dimensionality of the system as a whole
is reduced by 1, which lowers the computational load of the system significantly [6,
16].

3.3 Dressing of the Nucleon in the One Pion System

We are now ready to discuss how the nucleons are dressed by pions, and the shape of
the wavefunctions that describe each system. Since the two-pion description of the
nucleon requires a coupling between the one-pion system and the two-pion system,
we begin by treating just the one-pion system. The wavefunction that describes this
system is

Ψ1 = (
𝜓𝑁̃
𝜓𝑁̃ 𝜋)

(3.19)

with 𝜓𝑁̃ being the wavefunction of the bare nucleon, while 𝜓𝑁̃ 𝜋 is the wavefuntion
for the bare nucleon dressed by one pion. The wavefunction is normalized under
the condition that the total wavefunction Ψ1 is normalized to unity.

∫
𝑉
|Ψ1|2𝑑𝑉 = ∫

𝑉
(|𝜓𝑁̃ |

2 + |𝜓𝑁̃ 𝜋 |
2) 𝑑𝑉 = 1 (3.20)

where 𝑑𝑉 indicates and integral over all the spatial coordinates in the system. The
untransformedHamiltonian of the one-pion system is a simpler version of the general
matrix Hamiltoninan from eq. (3.2) and can be seen in eq. (3.21).
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𝐻 = (
𝐾̂𝑁̃ + 𝑚̌𝑁̃ 𝑊 †

𝑊 𝐾̂𝑁̃ + 𝑚̌𝑁̃ + 𝐾̂𝑁̃ 𝜋 + 𝑚̌𝜋)
(3.21)

The kinetic operator for the nucleon is

𝐾̂𝑁̃ = −
ℏ2

2𝑚𝑁̃

𝜕2

𝜕𝑟𝑁
(3.22)

and for the pion-Nucleon system we have

𝐾̂𝑁̃ 𝜋 = 𝐾𝑁̃ + 𝐾𝜋1 = −
𝜕

𝜕𝐫𝐍̃𝜋
𝐾𝑁̃ 𝜋

𝜕
𝜕𝐫𝐍̃𝜋𝑇

(3.23)

where the derivatives are column vectors of the form
𝜕

𝜕𝐫𝐍̃𝜋
=
(

𝜕
𝜕𝑟𝑁̃
𝜕
𝜕𝑟𝜋 )

(3.24)

and 𝐾𝑁̃ 𝜋 is a 2 × 2 diagonal matrix

𝐾𝑁̃ 𝜋 =
(

ℏ2
2𝑚𝑁̃

0
0 ℏ2

2𝑚𝜋
)

(3.25)

We now perform the transform to the relative Jacobi coordinates. This is especially
simple for the bare nucleon system, since it just involves moving to the rest frame
of the bare proton. This also means that the kinetic operator for the bare nucleon,
eq. (3.22) vanishes, which suggests that the wavefunction for the bare nucleon system
is a constant. We choose the following form:

𝜓𝑁̃ =
𝑝 ↑√
𝑉

(3.26)

where 𝑝 is the isospin state of the nucleon corresponding to a proton

𝑝 = (
1
0) (3.27)

and ↑ corresponds to the system being in a spin up state

↑= (
1
0) (3.28)

The system is normalized so as to contain one proton in the volume, 𝑉 . Had the
system been chosen as a neutron with another spin orientation, the subsequent
treatment would have been similar.

Notice that we have removed the Coulomb terms in eq. (3.21). We can apply the
operator (𝜏 ⋅ 𝜋⃗) from eq. (3.7) to the state of the proton to see that it is in a coherent
superposition

(𝜏 ⋅ 𝜋⃗) 𝑝 = 𝑝𝜋0 +
√
2𝑛𝜋+ (3.29)
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where 𝑛 is the state of the neutron. Given that 𝜋0 and 𝑛 are electrically neutral,
there are no Coulomb interactions when considering this system. This changes later
when we consider the two pion system. In this case however, the Coulomb terms
can be seen as a small correction compared to the nuclear forces, and can therefore
be neglected. We refer to appendix appendix D for a demonstration of why omitting
the Coulomb interactions is a small correction.

Performing the Jacobi transform of the one-pion part of the system, the kinetic
operator 𝐾𝑁̃ 𝜋 becomes

𝐾̂𝑁̃ 𝜋 →
−ℏ2

2𝑚𝑁̃ 𝜋

𝜕2

𝜕𝑟
(3.30)

where 𝑟 is the relative coordinate between the pion and the nucleon, and 𝑚𝑁𝜋 is the
reduced mass of the system

𝑚𝑁̃ 𝜋 =
𝑚𝑁̃𝑚𝜋

𝑚𝑁̃ + 𝑚𝜋
(3.31)

The full transformed Hamiltonian matrix can then be written as

𝐻 = (
𝑚̌𝑁̃ 𝑊 †

𝑊 𝐾̂𝑁̃ 𝜋 + 𝑚̌𝑁̃ + 𝑚̌𝜋)
(3.32)

Using the matrix in eq. (3.32), we can write out the Schrödinger equation of the
system. In matrix form, rewriting 𝐸̃ = 𝐸 − 𝑚̌𝑁̃ , this becomes

𝐻Ψ = 𝐸̃Ψ → (
0 𝑊 †

𝑊 𝐾̂𝑁̃ 𝜋 + 𝑚̌𝜋)(
𝜓𝑁̃
𝜓𝑁̃ 𝜋)

= 𝐸̃(
𝜓𝑁̃
𝜓𝑁̃ 𝜋)

(3.33)

Writing out the matrix eq. (3.33) and using the explicit shape of the operators 𝑊 and
𝑊 †

∫
𝑉
𝑑3𝑟 (𝜏 ⋅ 𝜋⃗)

†
(𝜎⃗ ⋅ 𝑟)

† 𝜓𝑁̃ 𝜋 = 𝐸̃𝜓𝑁̃ (3.34)

(𝜏 ⋅ 𝜋⃗) (𝜎⃗ ⋅ 𝑟)𝜓𝑁̃ + (𝐾̂𝑁̃ 𝜋 + 𝑚̌𝜋)𝜓𝑁̃ 𝜋 = 𝐸̃𝜓𝑁̃ 𝜋 (3.35)

We note that, because of eq. (3.35), the wavefunction 𝜓𝑁̃ 𝜋 must have the same spin-
isospin structure as the creation operator in eq. (3.5). This suggests the following
form of the wavefunction, 𝜓𝑁̃ 𝜋 .

𝜓𝑁̃ 𝜋(𝑟) = (𝜏 ⋅ 𝜋⃗) (𝜎⃗ ⋅ 𝑟)
𝑝 ↑√
𝑉
𝜙(𝑟) (3.36)

where 𝜙(𝑟) is a scalar function. The function must have dimensions [𝑙𝑒𝑛𝑔𝑡ℎ]−5/2 in
order to make the integral
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∫
𝑉
𝑑3𝑅 ∫

𝑉
𝑑3𝑟 |𝜓𝑁̃ 𝜋 |

2 (3.37)

dimensionless. Additionally, if we assume the form-factor, 𝑓 (𝑟) is finite and short
ranged, then 𝜙(𝑟) must also satisfy the boundary conditions

𝜙(0) = 𝑐𝑜𝑛𝑠𝑡
𝜙(∞) = 0

(3.38)

A candidate solution that satisfies the boundary conditions in eq. (3.38) and the
dimensionality constraint in eq. (3.37) are the one-dimensional Gaussians of the
form.

𝜙(𝑟) =
𝑛𝑔

∑
𝑖=1

𝑐𝑖𝑒−𝛼𝑖𝑟
2

(3.39)

where 𝑐𝑖 are the eigenvectors found by solving eq. (2.11) and 𝛼𝑖 is a one-dimensional
parameter that is parameterized similarly to eq. (2.4) [7].

3.4 Dressing of the Nucleon in the Two Pion System

We are now ready to discuss the dressing of the bare nucleon with a second pion.
The wavefunction for the full system then becomes

Ψ2 =
⎛
⎜
⎜
⎝

𝜓𝑁̃
𝜓𝑁̃ 𝜋
𝜓𝑁̃ 𝜋𝜋

⎞
⎟
⎟
⎠

(3.40)

where 𝜓𝑁̃ and 𝜓𝑁̃ 𝜋 are the bare and one pion contributions to the wave function, and
where 𝜓𝑁̃ 𝜋𝜋 is the wavefunction for the bare nucleon being dressed by two pions.
As with eq. (3.19), Ψ2 is normalized to unity.

∫
𝑉
|Ψ2|2𝑑𝑉 = ∫

𝑉
|𝜓𝑁̃ |

2 + |𝜓𝑁̃ 𝜋 |
2 + |𝜓𝑁̃ 𝜋𝜋 |

2𝑑𝑉 = 1 (3.41)

where 𝑑𝑉 again indicates an integration over all the spatial coordinates of the system.
The full two-pion Hamiltonian in the untransformed coordinates can be written as
(where we have gotten rid of the Coulomb terms preemptively)

𝐻 =
⎛
⎜
⎜
⎝

𝐾𝑁̃ + 𝑚̌𝑁̃ 𝑊 † 0
𝑊 𝐾𝑁̃ + 𝑚̌𝑁̃ + 𝐾𝜋1 + 𝑚̌𝜋1 𝑊 †

0 𝑊 𝐾𝑁̃ + 𝑚̌𝑁̃ + 𝐾𝜋1 + 𝐾𝜋2 + 𝑚̌𝜋1 + 𝑚̌𝜋2

⎞
⎟
⎟
⎠
(3.42)
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where𝑊1 creates the first pion for the system, while𝑊2 creates the second pion. The
treatment of the bare nucleon and the one-pion system has been done in section 3.3
and for Ψ2, the treatment of these systems is similar. As such, we just need to treat
the two-pion component of eq. (3.42). The kinetic operator in the two-pion system
reads as

𝐾̂𝑁𝜋𝜋 = 𝐾𝑁̃ + 𝐾𝜋1 + 𝐾𝜋2 = −
𝜕

𝜕𝐫𝐍𝜋𝜋
𝐾𝑁𝜋𝜋

𝜕
𝜕𝐫𝐍𝜋𝜋𝑇

(3.43)

with

𝜕
𝜕𝐫𝐍𝜋𝜋

=
⎛
⎜
⎜
⎜
⎝

𝜕
𝜕𝑟𝜋1
𝜕

𝜕𝑟𝜋2
𝜕
𝜕𝑟𝑁

⎞
⎟
⎟
⎟
⎠

, 𝐾𝑁𝜋𝜋 =
⎛
⎜
⎜
⎜
⎝

ℏ2
2𝑚𝜋1

0 0
0 ℏ2

2𝑚𝜋2
0

0 0 ℏ2
2𝑚𝑁̃

⎞
⎟
⎟
⎟
⎠

(3.44)

Performing the Jacobi coordinate transform on the two-pion system, we can choose
the relative coordinates in three different ways, see figs. 3.3 to 3.5 [9].

P

π1

π2

x1x2

CoM

Figure 3.3: Relative Jacobi coordinates

where the first relative coordinate is be-

tween the two pions.

P

π1

π2

x2

x1CoM

Figure 3.4: Relative Jacobi coordinates

where the first relative coordinate is be-

tween the nucleon and the first pion.

P

π1

π2

x2

x1CoM

Figure 3.5: Relative Jacobi coordinates

where the first relative coordinate is be-

tween the nucleon and the second pion.

All three coordinate transforms in figs. 3.3 to 3.5 give the same result, so choosing a
coordinate set is a matter of convenience and personal choice. We will generally be
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using the form in fig. 3.3, since we can assume the pion masses to be identical, and
so many of the terms simplify. Naming the relative coordinate between the pions
𝑥1 and the relative coordinates between nucleon and the two pions 𝑥2, the Jacobi
transformed kinetic matrix in eq. (3.44) becomes.

𝐾𝑁𝜋𝜋 =
(

ℏ2
2𝑚𝜋𝜋

0
0 ℏ2

2𝑚𝑁𝜋𝜋
)

(3.45)

with the reduced masses

𝑚𝜋𝜋 =
𝑚2
𝜋

2𝑚𝜋
=

1
2
𝑚𝜋 , 𝑚𝑁𝜋𝜋 =

2𝑚𝜋𝑚𝑁̃
2𝑚𝜋 + 𝑚𝑁̃

(3.46)

Then, similarly to how it was done in eq. (3.21), we can generate the matrix Hamilto-
nian.

𝐻Ψ = 𝐸̃Ψ →
⎛
⎜
⎜
⎜
⎝

0 𝑊 †
1 0

𝑊1 𝐾̂𝑁̃ 𝜋 + 𝑚̌𝜋1 𝑊 †
2

0 𝑊2 𝐾̂𝑁̃ 𝜋𝜋 + 2𝑚̌𝜋

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝜓𝑁̃
𝜓𝑁̃ 𝜋(𝑟)

𝜓𝑁̃ 𝜋𝜋(𝑥1, 𝑥2)

⎞
⎟
⎟
⎠
= 𝐸̃

⎛
⎜
⎜
⎝

𝜓𝑁̃
𝜓𝑁̃ 𝜋(𝑟)

𝜓𝑁̃ 𝜋𝜋(𝑥1, 𝑥2)

⎞
⎟
⎟
⎠

(3.47)

Writing out eq. (3.47) in a set of coupled equations, we get

∫
𝑉
𝑑3𝑟 (𝜏 ⋅ 𝜋⃗)

†
(𝜎⃗ ⋅ 𝑟)

† 𝜓𝑁̃ 𝜋 = 𝐸̃𝜓𝑁̃ (3.48)

(𝜏 ⋅ 𝜋⃗2) (𝜎⃗ ⋅ 𝑟)𝜓𝑁̃ + (𝐾̂𝑁𝜋 + 𝑚̌𝜋)𝜓𝑁𝜋 + ∫ 𝑑3𝑥2 (𝜏 ⋅ 𝜋⃗)
†
(𝜎⃗ ⋅ 𝑥2)

† 𝑓 (𝑥2)𝜓𝑁̃ 𝜋𝜋 = 𝐸̃𝜓𝑁̃ 𝜋
(3.49)

(𝜏 ⋅ 𝜋⃗2) (𝜎⃗ ⋅ 𝑥2) 𝑓 (𝑥2)𝜓𝑁̃ 𝜋 + (𝐾̂𝑁𝜋𝜋 + 2𝑚̌𝜋)𝜓𝑁̃ 𝜋𝜋 = 𝐸̃𝜓𝑁̃ 𝜋𝜋 (3.50)

Same as for the one-pion case, we can write 𝜓𝑁̃ 𝜋 as a function of a scalar function,
𝜙(𝑟), that satisfies the boundary conditions in eq. (3.38). This can solved by using
the same Gaussian expansion as in eq. (3.39). However, the parameters 𝛼 and 𝑐𝑖 are
not generally expected to have the same value as in the one-pion system, due to the
additional coupling with the two-pion system. Given that the spin-isospin structure
must be preserved between systems, eq. (3.50) suggests the following shape of the
𝜓𝑁̃ 𝜋𝜋 wavefunction:

𝜓𝑁̃ 𝜋𝜋(𝑥1, 𝑥2) = (𝜏 ⋅ 𝜋⃗2) (𝜎⃗ ⋅ 𝑥2) (𝜏 ⋅ 𝜋⃗1) (𝜎⃗ ⋅ 𝑥1)
𝑝 ↑√
𝑉
𝜌(𝑥1, 𝑥2) (3.51)

which now adds another boundary condition on top of the ones we found in sec-
tion 3.3

𝜌(0, 0) = 𝑐𝑜𝑛𝑠𝑡.
𝜌(∞, 𝑥2) = 0
𝜌(𝑥1,∞) = 0

(3.52)
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The equation solving 𝜌 can again be chosen as a Gaussian expansion, this time of
the form

𝜌(𝑥1, 𝑥2) =
𝑛𝑔

∑
𝑖=1

𝑐𝑖𝑒−𝐱
𝑇𝐴𝐱 (3.53)

where 𝐱 is a size two vector containing the coordinates 𝑥1 and 𝑥2, and where 𝐴 is a
2 × 2 matrix parameterized according to eq. (2.4).

3.5 Setting up the Generalized Eigenvalue Matrices

With the shape of the wavefunctions in place, we can now set up the matrices 
and  to solve the generalized eigenvalue problem in eq. (2.11). The matrix  is
simply the overlap of the relevant wavefunctions with each of the elements in the
Hamiltonian matrix eq. (3.47).

 =

⎛
⎜
⎜
⎜
⎝

0 ⟨𝜓𝑁̃ |𝑊
†
1 |𝜓𝑁̃ 𝜋⟩ 0

⟨𝜓𝑁̃ 𝜋 |𝑊1|𝜓𝑁̃ ⟩ ⟨𝜓𝑁̃ 𝜋 |𝐾̂𝑁̃ 𝜋 |𝜓𝑁̃ 𝜋⟩ + 𝑚̌𝜋1⟨𝜓𝑁̃ 𝜋 |𝜓𝑁̃ 𝜋⟩ ⟨𝜓𝑁̃ 𝜋 |𝑊
†
2 |𝜓𝑁̃ 𝜋𝜋⟩

0 ⟨𝜓𝑁̃ 𝜋 |𝑊2|𝜓𝑁̃ 𝜋𝜋⟩ ⟨𝜓𝑁̃ 𝜋𝜋 |𝐾̂𝑁̃ 𝜋𝜋 |𝜓𝑁̃ 𝜋𝜋⟩ + 2𝑚̌𝜋⟨𝜓𝑁̃ 𝜋𝜋 |𝜓𝑁̃ 𝜋𝜋⟩

⎞
⎟
⎟
⎟
⎠

(3.54)

Each of the diagonal elements in eq. (3.54) are block matrices. The blocks are square
matrices of size 𝑛𝑔1 and 𝑛𝑔2 , with 𝑛𝑔1 and 𝑛𝑔2 being the amount of Gaussians used to
expand the one pion system and the two pion system respectively. Since the first
term in the diagonal doesn’t use any Gaussians, it is simply one dimensional. The
overlaps with the raising and lowering operator terms are similarly on a block form,
such as to fit in with the square block matrices along the diagonal. Similarly, we can
use that the overlap between different pion systems is zero to construct the matrix
 .

 =
⎛
⎜
⎜
⎝

1 0 0
0 ⟨𝜓𝑁̃ 𝜋 |𝜓𝑁̃ 𝜋⟩ 0
0 0 ⟨𝜓𝑁̃ 𝜋𝜋𝑝𝑖|𝜓𝑁̃ 𝜋𝜋⟩

⎞
⎟
⎟
⎠

(3.55)

As such, all we need to solve the generalized eigenvalue problem is to find the matrix
elements in eq. (3.54) and eq. (3.55) under the constraints imposed by 𝜙 and 𝜌, and
the mass of the bare proton chosen such that when we add the energy to the mass
of the bare nucleon, we get the physical mass of the physical nucleon.

𝑚𝑁 = 𝑚𝑁̃ + 𝐸̃ (3.56)

So in practice, for each Gaussian added we must first solve the system with the
condition 𝑚̌𝑁̃ = 𝑚̌𝑁 in order to find an an intermediate energy, 𝐸̃0, and then solve
the system again with 𝑚𝑁̃ = 𝑚𝑁 − 𝐸̃0, repeating the process until the change in 𝑚̌𝑁̃
is satisfactory [7].

The matrix elements of eq. (3.54) and eq. (3.55) are found in chapter 4





Chapter 4
Matrix Elements of Pion Subsystems

In this chapter, we derive the matrix elements that are used in eq. (3.54) and eq. (3.55)
above. We begin by deriving a general method to calculate matrix elements, that
will be applied to both the one pion and the two pion system. Then, we will apply
this general method to the two systems, by writing out the the spin-space part of the
wavefunction. Lastly, we discuss some alternative methods to calculate the matrix
elements that were considered, but ultimately didn’t see use.

4.1 A General Expansion of the Matrix Elements

The matrix elements we presented in section 2.1 are insufficient for calculating
the matrix elements in section 3.5, since we see that the overlap of wavefunctions
eq. (3.19) and eq. (3.40) will include the relative coordinates of the pions. As such,
we must derive further matrix elements to account for these coordinates. In order to
demonstrate the method, we will be using the overlap, but this method is applicable
to the overlap with operators in general. This method closely follows a similar
method presented in [10] for the treatment of tensor potentials.

So far we have only expanded the matrix elements we found in section 2.1 to the
lowest possible order, our so called S-wave expansion. We will look to write the
wavefunctions of our pions systems in a higher order expansion, whichwe adequately
will call the P- and D-wave expansion, since these states will have orbital angular
momentum quantum numbers 𝑙 = 1 and 𝑙 = 2 respectively. For some coordinate set,
𝐫, they are

𝑔(𝑃) = (𝐚𝑇 𝐫) 𝑒−𝐫
𝑇𝐴𝐫 (4.1)

𝑔(𝐷) = (𝐚𝑇 𝐫) (𝐛𝑇 𝐫) 𝑒−𝐫
𝑇𝐴𝐫 (4.2)

where 𝐚 and 𝐛 are parameter vectors of size-𝑛𝑔 . Their specific form is system depen-
dent, and will be discussed in section 4.2 and section 4.3. Taking the overlap with
our new expansions, the overlaps become

21
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⟨𝑔′(𝑃)|𝑔(𝑃)⟩ = ⟨𝑒−𝐫
𝑇𝐴𝐫 (𝐚𝑇 𝐫) | (𝐛𝑇 𝐫) 𝑒−𝐫

𝑇𝐵𝐫⟩ (4.3)

⟨𝑔′(𝐷)|𝑔(𝐷)⟩ = ⟨𝑒−𝐫
𝑇𝐴𝐫 (𝐚𝑇 𝐫) (𝐛𝑇 𝐫) | (𝐜𝑇 𝐫) (𝐝𝑇 𝐫) |𝑒−𝐫

𝑇𝐵𝐫⟩ (4.4)

The overlaps in eq. (4.3) and eq. (4.4) are the matrix elements of which we want to
find an analytical form. To do this we, we rewrite the two equations to use shifted
Gaussians instead of unshifted Gaussians.

⟨𝐺′(𝑃)|𝐺(𝑃)⟩ = ⟨𝑒−𝐫
𝑇𝐴𝐫+𝑠′𝑇 𝐫 (𝐚𝑇 𝐫) | (𝐛𝑇 𝐫) 𝑒−𝐫

𝑇𝐵𝐫+𝑠𝑇 𝐫⟩ (4.5)

⟨𝐺′(𝐷)|𝐺(𝐷)⟩ = ⟨𝑒−𝐫
𝑇𝐴𝐫+𝑠′𝑇 𝐫 (𝐚𝑇 𝐫) (𝐛𝑇 𝐫) | (𝐜𝑇 𝐫) (𝐝𝑇 𝐫) |𝑒−𝐫

𝑇𝐵𝐫+𝑠𝑇 𝐫⟩ (4.6)

While we don’t know the value of the overlap with these parameters, notice now
that we can take the derivatives with respect to 𝑠, 𝑠′ of eq. (4.5) and eq. (4.6) in order
to rewrite the equations into a form where we can express them in terms of the
overlap of shifted Gaussians. This allows us to rewrite the overlaps.

⟨𝐺′(𝑃)|𝐺(𝑃)⟩ = (𝐚𝑇
𝜕
𝜕𝑠′𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠𝑇 )

⟨𝑒−𝐫
𝑇𝐴𝐫+𝑠′𝑇 𝐫|𝑒−𝐫

𝑇𝐵𝐫+𝑠𝑇 𝐫⟩ (4.7)

⟨𝐺′(𝐷)|𝐺(𝐷)⟩ = (𝐚𝑇
𝜕
𝜕𝑠′𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠′𝑇 )(𝐜

𝑇 𝜕
𝜕𝑠𝑇 )(𝐝

𝑇 𝜕
𝜕𝑠𝑇 )

⟨𝑒−𝐫
𝑇𝐴𝐫+𝑠′𝑇 𝐫|𝑒−𝐫

𝑇𝐵𝐫+𝑠𝑇 𝐫⟩

(4.8)

which is the expression that we want. We already know the analytic form of the
overlap of shifted Gaussians, so inserting this in eq. (4.7) and eq. (4.8) we get

⟨𝐺′(𝑃)|𝐺(𝑃)⟩ = (𝐚𝑇
𝜕
𝜕𝑠′𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠𝑇 )

𝑒
1
4 (𝑠+𝑠

′)𝑇𝑅(𝑠+𝑠′)
(

𝜋𝑁

𝑑𝑒𝑡(𝐴 + 𝐵))

3/2

(4.9)

⟨𝐺′(𝐷)|𝐺(𝐷)⟩ =

(𝐚𝑇
𝜕
𝜕𝑠′𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠′𝑇 )(𝐜

𝑇 𝜕
𝜕𝑠𝑇 )(𝐝

𝑇 𝜕
𝜕𝑠𝑇 )

𝑒
1
4 (𝑠+𝑠

′)𝑇𝑅(𝑠+𝑠′)
(

𝜋𝑁

𝑑𝑒𝑡(𝐴 + 𝐵))

3/2 (4.10)

In order to then get the overlap for the unshifted Gaussians, we can simple carry
out the derivatives in eq. (4.9) and eq. (4.10) and then let 𝑠, 𝑠′ → 0.

(𝐚𝑇
𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠′𝑇 )

⟨𝑒−𝐫
𝑇𝐴𝐫+𝑠𝑇 𝐫|𝑒−𝐫

𝑇𝐵𝐫+𝑠′𝑇 𝐫⟩ 𝑠, 𝑠′ → 0−−−−−−→ ⟨𝑔′(𝑃)|𝑔(𝑃)⟩ (4.11)

(𝐚𝑇
𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠𝑇 )(𝐜

𝑇 𝜕
𝜕𝑠′𝑇 )(𝐝

𝑇 𝜕
𝜕𝑠′𝑇 )

⟨𝑒−𝐫
𝑇𝐴𝐫+𝑠𝑇 𝐫|𝑒−𝐫

𝑇𝐵𝐫+𝑠′𝑇 𝐫⟩ 𝑠, 𝑠′ → 0−−−−−−→ ⟨𝑔′(𝐷)|𝑔(𝐷)⟩

(4.12)

Doing this for the overlaps, we get.
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⟨𝑔′(𝑃)|𝑔(𝑃)⟩ =
1
2 (

𝐚𝑇𝑅𝐛)𝑀0 ≡ 𝑀1 (4.13)

⟨𝑔′(𝐷)|𝑔(𝐷)⟩ =
1
4 ((

𝐚𝑇𝑅𝐛) (𝐜𝑇𝑅𝐝) + (𝐚𝑇𝑅𝐛) (𝐜𝑇𝑅𝐚) (𝐜𝑇𝑅𝐛) (𝐝𝑇𝑅𝐚))𝑀0 ≡ 𝑀2

(4.14)
where we remember that

𝑀0 = (
𝜋𝑁

𝑑𝑒𝑡(𝐴 + 𝐵))

3/2

(4.15)

where 𝑁 now refers to the amount of spatial coordinates we use to describe our sys-
tem. Notice that because the derivative with respect to the shift vectors is completely
independent of the spatial coordinates, this method can also easily be generalized to
overlaps with an operator in exactly the same way. As such, this method is a general
method, applicable to all relevant components of the system.

We have written out the overlap of P- and D-wave Gaussians, but we still need to
consider their overlap with the raising and lowering operator, along with the kinetic
operator, 𝐾̂ . Considering the overlap with the raising and lowering operator, we can
use the fact that 𝑊 contains a Gaussian form factor, 𝑓 (𝑟). Since the product of two
Gaussians is another Gaussian, the general shape of the matrix elements will match
the expressions in eq. (4.13) and eq. (4.14). One must just remember to multiply by
the front factor 𝑆𝑊/𝑏𝑊 in eq. (3.9), and take into account that 𝑊 adds the coordinate
of the pion being created. The overlap with the kinetic energy operator is rather
lengthy, and we refer to appendix C for the full shape of the matrix elements.

4.2 The One Pion subsystem

We consider thematrix element between two different Gaussian expansions, ⟨𝜓𝐴𝑁𝜋 |𝜓𝐵𝑁𝜋⟩.
Using the form of the wavefunctions derived in section 3.4, the one-pion overlap
can be written as

⟨𝜓𝛼
′

𝑁𝜋 |𝜓
𝛼
𝑁𝜋⟩ =

⟨𝑒−𝛼
′𝑥2 𝑝 ↑√

𝑉
(𝜏̄𝜋̄)†(𝜎̄𝑥̄)†|(𝜏̄𝜋̄)(𝜎̄𝑥̄)

𝑝 ↑√
𝑉
𝑒−𝛼𝑟

2
⟩

(4.16)

We can use the identity (𝜏 ⋅ 𝜋⃗)
†
(𝜏 ⋅ 𝜋⃗) = 3, which is easily proven by explicit

multiplication, to carry out the isospin part of the overlap. In order to deal with the
spatial part of the overlap, we consider the spin part of the overlap.

↑ (𝜎⃗ ⋅ 𝑥) (𝜎⃗ ⋅ 𝑥) ↑=↑ | (𝜎⃗ ⋅ 𝑥) (↑↑ + ↓↓) (𝜎⃗ ⋅ 𝑥) ↑ (4.17)

where in the second expression, we have simply inserted the spin-space identity.
Using the following two identities for applying spin to a Pauli vector,
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(𝜎⃗ ⋅ 𝑥) ↑=↓ 𝑥 + 𝑖 ↓ 𝑦+ ↑ 𝑧

(𝜎⃗ ⋅ 𝑥) ↓=↑ 𝑥 − 𝑖 ↑ 𝑦− ↓ 𝑧
(4.18)

then, we can rewrite the left side of eq. (4.17).

↑ (𝜎⃗ ⋅ 𝑥) (↑↑ + ↓↓) (𝜎⃗ ⋅ 𝑥) ↑=↑ (𝜎⃗ ⋅ 𝑥) ↑↑ (𝜎⃗ ⋅ 𝑥) ↑ + ↑ (𝜎⃗ ⋅ 𝑥) ↓↓ (𝜎⃗ ⋅ 𝑥) ↑

= 𝑧2 + (𝑥 − 𝑖𝑦)(𝑥 + 𝑖𝑦)
(4.19)

where 𝑥, 𝑦, 𝑧 are the three components of the relative coordinate vector, 𝑟

𝑟 =
⎛
⎜
⎜
⎝

𝑥
𝑦
𝑧

⎞
⎟
⎟
⎠

(4.20)

Notice also, that 𝑧2 + (𝑥 − 𝑖𝑦)(𝑥 + 𝑖𝑦) = 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2, as one can also show by
carrying out the product (𝜎⃗ ⋅ 𝑟) (𝜎⃗ ⋅ 𝑟). We want to rewrite this into a form similar
to what we derived in section 4.1. In the one-pion system, after a Jacobi transform,
the vector 𝐫 containing all the coordinates of our system only contains the relative
coordinate between nucleon and pion.

𝐫 = 𝑟 (4.21)

Now, we define the three following vectors:

𝐚 =
⎛
⎜
⎜
⎝

0
0
1

⎞
⎟
⎟
⎠
, 𝐛+ =

⎛
⎜
⎜
⎝

1
𝑖
0

⎞
⎟
⎟
⎠
, 𝐛− =

⎛
⎜
⎜
⎝

1
−𝑖
0

⎞
⎟
⎟
⎠

(4.22)

then we see that we can write

(𝐚𝑇 𝑟) (𝐚𝑇 𝑟) = 𝑧2 (4.23)

(𝐛+𝑇 𝑟) (𝐛−𝑇 𝑟) = 𝑥2 + 𝑦2 (4.24)

which is just the sort of parametrization that we need, This means that we can write
the matrix elements as follows.

⟨𝜓𝛼𝑁𝜋 |𝜓
𝛽
𝑁𝜋⟩ = 3(⟨𝑒

−𝛼𝑟2 | (𝐚𝑇 𝐫) (𝐚𝑇 𝐫) |𝑒−𝛽𝑟
2
⟩ + ⟨𝑒−𝛼𝑟

2
| (𝐛+𝑇 𝐫) (𝐛−𝑇 𝐫) |𝑒−𝛽𝑟

2
⟩) (4.25)

which also generalizes to the kinetic energy terms. These terms can no be applied
directly to the matrix elements that were derived in section 4.1.
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4.3 The Two-Pion Subsystem

The approach to solving the two-pion system follows much the same procedure,
but the added complexity of the second pion means that some hurdles have to be
managed. The overlap between the two-pion wavefunctions, ⟨𝜓𝐴𝑁𝜋𝜋 |𝜓𝐵𝑁𝜋𝜋⟩ written
in relative Jacobi coordinates 𝐱 is as follows.

⟨𝜓𝐴𝑁𝜋𝜋 |𝜓
𝐵
𝑁𝜋𝜋⟩ =

⟨𝑒−𝐱
𝑇𝐴𝐱 𝑝 ↑√

𝑉 (𝜏 ⋅ 𝜋⃗1)
†
(𝜎⃗ ⋅ 𝑥1)

†
(𝜏 ⋅ 𝜋⃗2)

†
(𝜎⃗ ⋅ 𝑥2)

† | (𝜏 ⋅ 𝜋⃗2) (𝜎⃗ ⋅ 𝑥2) (𝜏 ⋅ 𝜋⃗1) (𝜎⃗ ⋅ 𝑥1)
𝑝 ↑√
𝑉
𝑒−𝐱

𝑇𝐵𝐱⟩

(4.26)

Carrying out the product of (𝜏 ⋅ 𝜋⃗𝑖)
†
(𝜏 ⋅ 𝜋⃗𝑖) for both the first and second pion, we

can rewrite eq. (4.26).

⟨𝜓𝐴𝑁𝜋𝜋 |𝜓
𝐵
𝑁𝜋𝜋⟩ =

9⟨𝑒−𝐱
𝑇𝐴𝐱 ↑√

𝑉 (𝜎⃗ ⋅ 𝑥1)
†
(𝜎⃗ ⋅ 𝑥2)

† | (𝜎⃗ ⋅ 𝑥2) (𝜎⃗ ⋅ 𝑥1)
↑√
𝑉
𝑒−𝐱

𝑇𝐵𝐱⟩
(4.27)

As with the one-pion case, we consider just the spin part of the wavefucntion.
Inserting the spin-space identity in eq. (4.27)

↑ (𝜎⃗ ⋅ 𝑥1)
†
(𝜎⃗ ⋅ 𝑥2)

†
(𝜎⃗ ⋅ 𝑥2) (𝜎⃗ ⋅ 𝑥1) ↑=

↑ (𝜎⃗ ⋅ 𝑥1)
† (↑↑ + ↓↓) (𝜎⃗ ⋅ 𝑥2)

† (↑↑ + ↓↓) (𝜎⃗ ⋅ 𝑥2) (↑↑ + ↓↓) (𝜎⃗ ⋅ 𝑥1) ↑
(4.28)

We now carry out the sum of terms in eq. (4.28) using the identities in eq. (4.18).
They take much the same form as the elements we derived in section 4.2, but the
addition of the second pion increases the complexity of the task considerably. We
get 8 terms, and they take the form.

↑ (𝜎⃗ ⋅ 𝑥1)
𝑇
(𝜎⃗ ⋅ 𝑥2)

𝑇
(𝜎⃗ ⋅ 𝑥2) (𝜎⃗ ⋅ 𝑥1) ↑

= (𝑒𝑧 ⋅ 𝑥1)(𝑒𝑧 ⋅ 𝑥2)(𝑒𝑧 ⋅ 𝑥2)(𝑒𝑧 ⋅ 𝑥1)
+ (𝑒𝑧 ⋅ 𝑥1)(𝑒𝑧 ⋅ 𝑥2)(𝑒+ ⋅ 𝑥2)(𝑒− ⋅ 𝑥1)
+ (𝑒𝑧 ⋅ 𝑥1)(𝑒+ ⋅ 𝑥2)(𝑒− ⋅ 𝑥2)(𝑒𝑧 ⋅ 𝑥1)
− (𝑒𝑧 ⋅ 𝑥1)(𝑒+ ⋅ 𝑥2)(𝑒𝑧 ⋅ 𝑥2)(𝑒− ⋅ 𝑥1)
+ (𝑒+ ⋅ 𝑥1)(𝑒− ⋅ 𝑥2)(𝑒𝑧 ⋅ 𝑥2)(𝑒𝑧 ⋅ 𝑥1)
+ (𝑒+ ⋅ 𝑥1)(𝑒− ⋅ 𝑥2)(𝑒+ ⋅ 𝑥2)(𝑒− ⋅ 𝑥1)
− (𝑒+ ⋅ 𝑥1)(𝑒𝑧 ⋅ 𝑥2)(𝑒− ⋅ 𝑥2)(𝑒𝑧 ⋅ 𝑥1)
+ (𝑒+ ⋅ 𝑥1)(𝑒𝑧 ⋅ 𝑥2)(𝑒𝑧 ⋅ 𝑥2)(𝑒− ⋅ 𝑥1)

(4.29)

where

𝑒𝑧 =
⎛
⎜
⎜
⎝

0
0
1

⎞
⎟
⎟
⎠
, 𝑒+ =

⎛
⎜
⎜
⎝

1
𝑖
0

⎞
⎟
⎟
⎠
, 𝑒− =

⎛
⎜
⎜
⎝

1
−𝑖
0

⎞
⎟
⎟
⎠
, (4.30)
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This leaves us with just the spatial terms and the overlap of the Gaussians to consider.
Let us consider the overlap of Gaussians with a single general term in eq. (4.29). We
consider general unit vectors labeled 𝑒𝛿,𝛾,𝜈,𝜇, which are similar to the unit vectors in
eq. (4.30). Additionally, using the notation 𝑥𝑖 = 𝑤𝑇

𝑖 𝐱, we can write

⟨𝑒−𝐱
𝑇𝐵𝐱 [𝑒𝛿(𝑤𝑇

1𝐱)] [𝑒𝛾(𝑤
𝑇
2𝐱)] [𝑒𝜇(𝑤

𝑇
2𝐱)] [𝑒𝜈(𝑤

𝑇
1𝐱)] 𝑒

−𝐱𝑇𝐴𝐱⟩ (4.31)

We can split open the parenthesis in the hard brackets in eq. (4.31) and consider the
product of the unit vectors with the vectors 𝑤. This gives us vectors, with a unit
vector entry, which we label.

𝐚 = (𝑒𝛿𝑤1) =
⎛
⎜
⎜
⎝

𝑒𝛿
0
0

⎞
⎟
⎟
⎠
, 𝐛 = (𝑒𝛾𝑤2) =

⎛
⎜
⎜
⎝

0
𝑒𝛾
0

⎞
⎟
⎟
⎠
, 𝐜 = (𝑒𝜇𝑤1) =

⎛
⎜
⎜
⎝

𝑒𝜇
0
0

⎞
⎟
⎟
⎠
, 𝐝 = (𝑒𝜈𝑤2) =

⎛
⎜
⎜
⎝

0
𝑒𝜈
0

⎞
⎟
⎟
⎠
,

(4.32)

such that the final form of the overlap terms in eq. (4.31) becomes

⟨𝑒−𝐱
𝑇𝐵𝐱 [𝑒𝛿(𝑤𝑇

1𝐱)] [𝑒𝛾(𝑤
𝑇
2𝐱)] [𝑒𝜇(𝑤

𝑇
2𝐱)] [𝑒𝜈(𝑤

𝑇
1𝐱)] 𝑒

−𝐱𝑇𝐴𝐱⟩ =

⟨𝑒−𝐱
𝑇𝐵𝐱 (𝐚𝑇𝐱) (𝐛𝑇𝐱) (𝐜𝑇𝐱) (𝐝𝑇𝐱) 𝑒−𝐱

𝑇𝐴𝐱⟩
(4.33)

So each term in eq. (4.29) can be written in our general form eq. (4.31), and a matrix
element is calculated for each. Notice aswell that the shape of any of the vectors in
eq. (4.32) are unaffected by the Jacobi transform. As an example, consider 𝐚𝑇𝐱. Using
that 𝐱 = 𝐽 𝐫 and 𝑤 → 𝑈 𝑇𝑤, where 𝑈 = 𝐽−1

𝐚𝑇𝐱 = (𝑒𝛿 (𝑈
𝑇𝑤1)

𝑇 𝐽 𝐫) = ((𝑒𝛿𝑤1)
𝑇 𝑈𝐽 𝐫) = ((𝑒𝛿𝑤1) 𝐫) = (𝐚𝑇 𝐫) (4.34)

So this general expansion method works no matter the coordinate system that is
considered.

4.4 Alternative Methods for Calculating Matrix
Elements

The expansion method we considered in section 4.1 becomes rather lengthy, even
for the expansion of the D-wave matrix elements. Let us therefore discuss other
methods that can be used to calculate the matrix elements. Some of these methods
were considered for usage in this thesis, but certain complications halted their usage.

If we begin by considering the one-pion system, we remember from eq. (3.39) that
the wavefunction can be written as

𝜓𝑁̃ 𝜋𝜋 = (𝜏 ⋅ 𝜋⃗) (𝜎⃗ ⋅ 𝑟)
𝑛𝑔

∑
𝑖=1

𝑐𝑖𝑒−𝛼𝑖𝑟
2
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Noticeably, there is only one coordinate in this expansion, and so the matrix elements
between one-pion wavefunction are easily carried out by explicit integration. We
will not go into detail here, but refer to [7] for the matrix elements calculated using
this method.

For the two pion system, explicit integration is not an option. The addition of
the extra coordinate, along with their coupling through off-diagonal terms in the
parameter matrix, makes it unfeasible to calculate the integral. However, the overlap
can be calculated in quite an ingenious way. This method follows many of the same
ideas that were discussed in section 4.1, and involves taking the derivative of the
diagonal elements of the parameter matrices, 𝐴 in the two-pion wavefunction similar
to eq. (3.53). Let us first consider the two pion wavefunction

𝜓𝑁̃ 𝜋𝜋 = (𝜏 ⋅ 𝜋⃗1) (𝜎⃗ ⋅ 𝑥1) (𝜏 ⋅ 𝜋⃗2) (𝜎⃗ ⋅ 𝑥2)
𝑛𝑔

∑
𝑖=1

𝑐𝑖𝑒−𝐱
𝑇𝐴𝑖𝐱

Taking the overlap of the two pion wavefunction with itself and considering a single
term in the sum, we can use the identity (𝜎⃗ ⋅ 𝑥) (𝜎⃗ ⋅ 𝑥) = 𝑥2 to write

⟨𝑒−𝐱
𝑇𝐴𝐱| (𝜏 ⋅ 𝜋⃗1)

†
(𝜎⃗ ⋅ 𝑥1)

†
(𝜏 ⋅ 𝜋⃗2)

†
(𝜎⃗ ⋅ 𝑥2)

†
(𝜏 ⋅ 𝜋⃗2) (𝜎⃗ ⋅ 𝑥2) (𝜏 ⋅ 𝜋⃗1) (𝜎⃗ ⋅ 𝑥1) |𝑒−𝐱

𝑇𝐵𝐱⟩

= 9⟨𝑒−𝐱
𝑇𝐴𝐱|𝑥21𝑥

2
2 |𝑒

−𝐱𝑇𝐵𝐱⟩
(4.35)

where we have also used (𝜏 ⋅ 𝜋⃗) (𝜏 ⋅ 𝜋⃗) = 3. We now want to consider the Gaussians
themselves. The rightmost Gaussian in eq. (4.35) containts the terms 𝐵, which is
a 2 × 2 parameter matrix, and 𝐱, a vector of size 2 with 3-dimensional coordinate
vectors in each entry. Writing out the terms we get an ordinary one-dimensional
number

−𝐱𝑇𝐵𝐱 = −𝐵11𝑥21 − 𝐵22𝑥22 − 2𝐵12𝑥1 ⋅ 𝑥2 (4.36)

where 𝐵𝑖𝑗 is the 𝑖, 𝑗 ′𝑡ℎ entry in the matrix 𝐵. Notice that we have written 2𝐵12, since
the matrix 𝐵 is symmetric, so 𝐵21 = 𝐵12. Taking the derivatives of the Gaussian
𝑒−𝐱𝑇𝐵𝐱 with respect to the diagonal elements

𝜕
𝜕𝐵11

𝜕
𝜕𝐵22

𝑒−𝐱
𝑇𝐵𝐱 = 𝑥21𝑥

2
2 𝑒

−𝐱𝑇𝐵𝐱 (4.37)

which then suggests that we can write the matrix element in eq. (4.35) as

⟨𝑒−𝐱
𝑇𝐴𝐱|𝑥21𝑥

2
2 |𝑒

−𝐱𝑇𝐵𝐱⟩ =
𝜕

𝜕𝐵11
𝜕

𝜕𝐵22
⟨𝑒−𝐱

𝑇𝐴𝐱|𝑒−𝐱
𝑇𝐵𝐱⟩

=
𝜕

𝜕𝐵11
𝜕

𝜕𝐵22 (
𝜋2

𝑑𝑒𝑡(𝐴 + 𝐵))

3/2 (4.38)
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Carrying out this derivative is pretty straight forward once the determinant is written
out explicitly. The final matrix element then takes the form

⟨𝑒−𝐱
𝑇𝐴𝐱|𝑥21𝑥

2
2 |𝑒

−𝐱𝑇𝐵𝐱⟩ =
𝜕

𝜕𝐵11
𝜕

𝜕𝐵22 (
𝜋2

𝑑𝑒𝑡(𝐴 + 𝐵))

3/2

=
3𝜋3

4
3𝐶11𝐶22 + 2𝐶2

12
𝑑𝑒𝑡(𝐶)7/2

(4.39)

where
𝐶 = 𝐴 + 𝐵 (4.40)

and 𝐶𝑖𝑗 are the matrix entries in the matrix 𝐶. This method of calculating matrix
elements has a lot of benefits compared to the general expansion method used in
section 4.1. It is much easier to calculate analytically than the general method, and
we don’t have to concern ourselves with the spin structure explicitly. It can also
be easily generalized to higher order systems. If we consider some system with
N-particles having the position vector 𝐫 of length 𝑁 and 𝐴, 𝐵 being 𝑁 × 𝑁 matrices

⟨𝑒−𝐫
𝑇𝐴𝐫|𝑟21 𝑟

2
2 … 𝑟𝑁 |𝑒−𝐫

𝑇𝐵𝐫⟩ =
(
(−1)𝑁

𝑁
∏
𝑖=1

𝜕
𝜕𝐵𝑖𝑖)

⟨𝑒−𝐫
𝑇𝐴𝐫|𝑒−𝐫

𝑇𝐵𝐫⟩ (4.41)

that is, take the derivatives of all the diagonal elements of the known matrix element
⟨𝑒−𝐫𝑇𝐴𝐫|𝑒−𝐫𝑇𝐵𝐫⟩, and multiply by a factor (−1)𝑁 , which must be included to account
for the sign in −𝐫𝐵𝐫.

This method seemingly allows easy generalization to higher order pion approxima-
tions. The problem standing in the way of this method is the kinetic term. Writing
out the two-pion matrix element for the kinetic operator in its spatial coordinates

⟨𝑒−𝐱
𝑇𝐴𝐱| (𝜎⃗ ⋅ 𝑥1)

†
(𝜎⃗ ⋅ 𝑥2)

† 𝐾̂ (𝜎⃗ ⋅ 𝑥2) (𝜎⃗ ⋅ 𝑥1) |𝑒−𝐱
𝑇𝐵𝐱⟩ (4.42)

But the coordinate terms do not commute with the kinetic operator, and so we cannot
write the kinetic matrix element in a similar fashion as eq. (4.38). An initial idea
would be to use the identity

(𝜎⃗ ⋅ 𝑥2) (𝜎⃗ ⋅ 𝑥1) = (𝑥2 ⋅ 𝑥1) 𝐼 + 𝑖 (𝑥2 × 𝑥1) ⋅ 𝜎⃗ (4.43)
with 𝐼 being the identity, such that eq. (4.42) can be written on the form
⟨𝑒−𝐱

𝑇𝐴𝐱| [(𝑥1 ⋅ 𝑥2) 𝐼 + 𝑖 (𝑥1 × 𝑥2) ⋅ 𝜎⃗] 𝐾̂ [(𝑥2 ⋅ 𝑥1) 𝐼 + 𝑖 (𝑥2 × 𝑥1) ⋅ 𝜎⃗] |𝑒−𝐱
𝑇𝐵𝐱⟩ (4.44)

From eq. (4.44), we note that the term involving just the dot product between 𝑥1 ⋅ 𝑥2
can be solved using a similar method to what we did for the overlap. Instead of
taking the derivative with respect to the diagonal terms, we now do it with respect
to the off-diagonal terms.
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⟨𝑒−𝐱
𝑇𝐴𝐱| (𝑥1 ⋅ 𝑥2) 𝐾̂ (𝑥2 ⋅ 𝑥1) |𝑒−𝐱

𝑇𝐵𝐱⟩ =
1
2

𝜕
𝜕𝐴12

1
2

𝜕
𝜕𝐵12

⟨𝑒−𝐱
𝑇𝐴𝐱|𝐾̂ |𝑒−𝐱

𝑇𝐵𝐱⟩ (4.45)

However, the remaining terms involves the cross product of the two vectors in
some way, and the only apparent way forward is explicit integration, which quickly
becomes a complicated process. Alternatively, one can supplement the general
expansion method for the kinetic term with the method in eq. (4.38) for the overlaps,
but applying the general method to kinetic matrix elements is already a lengthy
process, as appendix C is a clear example of. As such, the general expansion method
has been the method of choice when doing numerical calculations on the pion
dressing.





Chapter 5
Results

In this section, we use the matrix elements we found in chapter 4 to investigate the
effect of the second pion in the dressing of the nucleon. We begin by considering the
single pion dressing, which serves as a proof of concept for the general theory. We
will compare the Gaussian solution, eq. (3.39), of the one pion dressing with a direct
solution of a coupled differential equation, which yields the same answer. Next, we
investigate the dressing of two pions. We document the effect of the second pion
at different coupling parameters, 𝑆𝑊 and 𝑏𝑊 , and discuss the boundaries for where
the one pion approximation is sufficient, and when the two pion system needs to be
included.

5.1 One-pion dressing

In the one pion dressing, we solve the Schrödinger equation in eq. (3.33) using the
matrix elements derived in section 4.2. We have chosen the coupling parameters
𝑆𝑊 = 41.5𝑀𝑒𝑉 and 𝑏𝑊 = 3.9𝑓 𝑚, which was found to be the ideal set of parameters
to describe neutral pion photoproduction off protons [7]. For each Gaussian, we
remember to subtract the energy, 𝐸̃ from the mass of the physical proton, 𝑚̌𝑁 in order
to get the correct mass of the bare nucleon, 𝑚̌𝑁̃ . In practice, we do as follows for
each Gaussian added to the system: First, we solve the system under the condition
𝑚̌𝑁̃ = 𝑚̌𝑁 , giving us the energy 𝐸̃0. We then run a second iteration with the same
Gaussian, now using 𝑚̌′

𝑁̃ = 𝑚̌𝑁 − 𝐸̃0, giving us the energy 𝐸̃1, repeating the process
with this new energy. We will run these iterations 2-3 times in order to ensure a
good convergence towards the correct result.

The Gaussian solution will be compared to a different method, where eq. (3.33) can
be solved as an initial value problem. The details are omitted in this thesis, but we
refer to [20] for a complete walk through of this method. The convergence for the
Gaussian method towards the solution of the coupled system can be seen in figure
5.1.

We see in fig. 5.1 that the Gaussian method converges toward the final value of
the system after only one to two Gaussians. This is a bit surprising, since other
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simple systems typically take 4-5 Gaussians to fully converge, see appendix B. A
possible explanation is the Gaussian shape of the coupling potential, eq. (3.9). The
Gaussian form factor can be seen as the inhomogenous term in the set of coupled
differential equations we considered in eq. (3.34) and eq. (3.35). The kinetic terms are
the homogenous terms, but since the pion is under barrier, a possible explanations is
that the wavefunction follows the larger coupling term, which is also a Gaussian,
and shapes itself after that.

The final state energies achieved are consistent with [7], and the Gaussian solution
matches the direct solution to the initial value problem. Even with just a single
Gaussian, the convergence towards the final solution is very good, and the only
discrepancies that are noticeable arise when we zoom in to a part of the graph. Even
so, the difference is minimal, and a good result for the one pion dressing can easily
be obtained using just a single Gaussian.
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Figure 5.1: The absolute value of the radial wave function for the dressing of the proton

with a single pion. The system is solved both using Gaussians and by the solving an

initial value problem numerically. The parameters used for the coupling are 𝑆𝑊 = 41.5𝑀𝑒𝑉
and 𝑏𝑊 = 3.9𝑓 𝑚. The lower graph shows a zoomed in section of the graph. We see the

convergence towards the differential solution is excellent after only a single Gaussian, while

two Gaussians is a near perfect solution.

5.2 Comparing the One and the Two Pion
Approximation.

The addition of the second pion means that the potential barrier of which the pions
are under is doubled. It can therefore be expected that the first pion has the biggest
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contribution to the dressing of the proton, given that it is under a smaller barrier. As
such, we expect to see a decrease in the ground state energy of the entire system,
but the decrease shouldn’t be as drastic as with the addition of the first pion. The
convergence towards the energy of the two-pion dressing can be seen in fig. 5.2. We
have used the same parameters as in section 5.1 so as to more easily compare the
differences and similarities. For each system, we have used 3 Gaussian so as to see
how they converge toward their final state energies.
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S=41.5 MeV, b=3.9 fm
1 Pion energy: -585.8 MeV
2 Pion energy: -590.0 MeV
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Figure 5.2: The convergence toward the final state energy of the one and the two pion

system as a function of the number of Gaussians used. The coupling parameters used are

𝑆𝑊 = 41.5𝑀𝑒𝑉 and 𝑏𝑊 = 3.9𝑓 𝑚. The blue line is the energy from the nucleon dressed by a

single pion, while the orange line is the energy convergence for the nucleon dressed by two

pions. 3 Gaussians have been used in each case. The difference in energy is roughly 4𝑀𝑒𝑉 .
We see that the convergence towards the final state energy happens almost immediatly,

with no notable change when the second Gaussian is added.

As fig. 5.2 shows, we see much the same picture as we did in fig. 5.1, with the addition
of multiple Gaussians not making a significant difference in the dressing energy of
the systems. This is good news for the model, since using fewer Gaussians drastically
cuts down on the computation time of the system, which is especially the case for
the two pion system, which requires the optimization of three parameters for each
Gaussian used. As such, we will assume unless otherwise specified, that future
simulations have been performed using a single D-wave Gaussian for the two pion
system.

As expected, the first pion has a much higher contribution to the dressing of the
proton. The final state energy in the dressing of the second Pion is about −590𝑀𝑒𝑉 ,
which is a difference of about 4𝑀𝑒𝑉 from the energy of the one-pion system. Such
an energy difference may or may not prove significant depending on the level of
precision we might need, but to simulate tendencies, the one pion system should be
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sufficient at these parameters. This graph is of course not conclusive, as we have only
shown the difference in the energies for a single value of the coupling parameters.
For a more complete picture of the effect of the second pion, we must therefore
investigate its effect at different coupling parameters.

5.2.1 Variation in coupling strength.

In order to investigate the coupling fully, we compare the differences of the two
systems at different couplings strengths, 𝑆𝑊 , from equation 3.9. This is shown in
fig. 5.3, where we plot the contribution to the norm of the wavefunction as a function
of the coupling strength, 𝑆𝑊 . For this purpose, we have set 𝑏𝑊 = 3𝑓 𝑚 for all possible
variations in the coupling strength. As we increase the coupling strength, we expect
the contribution from the bare nucleon to fall, while the contribution from the first
and the second pion increases, due to the increased coupling strength.
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Figure 5.3: The contribution to the norm of the different systems as a function of coupling

strength. The range parameter has been fixed at 𝑏𝑊 = 3𝑓 𝑚. At low coupling strengths, the

system is dominated by the bare proton, but as 𝑆𝑊 increases, the one pion contribution

starts to increase, reaching a similar level to the bare proton system. The two pion system

stays flat at all values of 𝑆𝑊 , which indicates that only the one pion system benefits from

increases in coupling strength.

We discussed the normalization of the wavefunction of the two-pion system in
section 3.4, where we required that the total wavefunction be normalized to unity, as
was demonstrated in eq. (3.41). We can also write eq. (3.41) in terms of our Gaussian
expansion. In eq. (2.8), we noted how we could write the norm of the wavefunction
as a matrix equation using the eigenvectors, 𝑐 and the overlap matrix .

|Ψ2|2 = 𝑐𝑇 𝑐 = 1 (5.1)

where  is parameterized according to eq. (3.55). In order to then get the contribu-
tion from each part of the system, we can simply calculate the product of each block
along the diagonal with their respective eigenvectors.
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𝑐𝑇 𝑐 = 𝑐𝑇𝑁̃𝑁̃ 𝑐𝑁̃ + 𝑐𝑇𝑁̃𝜋𝑁̃ 𝜋𝑐𝑁̃ 𝜋 + 𝑐𝑇𝑁̃𝜋𝜋𝑁̃ 𝜋𝜋𝑐𝑁̃ 𝜋𝜋 (5.2)

with the subscripts indicating which system we consider in each term.

When the coupling strength is 0, the systems are completely uncoupled, and we
consider just a bare nucleon. Naturally, this means the contribution to the norm of
the wavefunction resides entirely with the bare nucleon system. As the coupling
strength increases, so does the contribution from the one-pion system. We see that as
the coupling strength increases, the contribution of the first pion increases while the
contribution from the bare proton starts decreasing. This is completely as expected.
One might even expect that if the coupling strength is increased further, that the
one-pion contribution would surpass the bare proton contribution and become the
dominating contribution.

Looking at the two-pion system however, we see that its contribution stays flat
compared to the trajecetory of the other two systems. The apparent contribution of
the second pion is so small, that the changes aren’t visible in fig. 5.3. In order to get a
better understanding of the contribution of the second pion, we plot its contribution
to the norm of the wavefunction separately. This can be seen in fig. 5.4.
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Figure 5.4: Contribution from the second pion to the total norm of the wavefunction as a

function of coupling strength. The range parameter has been fixed at 𝑏𝑊 = 3𝑓 𝑚. We see

an initial increase in the system’s contribution to the norm, but when 𝑆𝑊 = 20𝑀𝑒𝑣, the
contribution starts dropping off again.

The two pion system’s total contribution peaks at about 0.35% at around 10−20𝑀𝑒𝑉 .
What is maybe a bit surprising is that the contribution to the norm of the wavefunc-
tion starts falling again when the coupling strength is increased beyond 20𝑀𝑒𝑉 . A
possible explanation is the stronger coupling of the first pion compared to that of the
second pion. Since the first pion is more strongly bound to the proton, an increase
in coupling strength might only benefit the first and more tightly bound pion. This
is further backed up by what we saw in fig. 5.3, as the one pion contribution to the
norm increases even at larger values of 𝑆𝑊 . This appears to be at the detriment of
the two pion contribution.
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We can also consider the relative difference in final state energies as a function of
coupling strength. We plot the value

Δ𝐸𝑟𝑒𝑙 =
|𝐸2 − 𝐸1|

|𝐸2|
(5.3)

where 𝐸2 is the energy of the two pion system and 𝐸1 is the energy of the one pion
system, as a function of the coupling strength. This gives us an idea of how the two
systems grow compared to eachother. This can be seen in fig. 5.5.
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Figure 5.5: The relative energy difference between the one pion and the two pion systems

as a function of coupling strength. The range parameter has been fixed at 𝑏𝑊 = 3𝑓 𝑚. The
relative energy difference between the two systems starts at around 4% but drops all the

way toward 0% when the coupling strength is large.

We see that when the coupling strength is low, the relative difference is about 4%,
but it falls exponentially with increasing coupling strength. This tells us that as 𝑆𝑊
increases, the one pion contribution will remain the dominating contribution of the
two different pion systems, and that the two pion contribution will continue to be
irrelevant, even as 𝑆𝑊 is increased.

5.2.2 Variation in coupling range

Next, we compare how varying the range of the interaction, the parameter 𝑏𝑊 , affects
the contribution of the second pion. For this purpose, we keep 𝑆𝑊 fixed at 20𝑀𝑒𝑉 ,
which proved to be the coupling strength with the largest contribution for the
two-pion overlap. We investigate how the contribution varies with different values
of 𝑏𝑊 . Since the pion interactions are responsible for the long range interaction
of the nuclear force, we should expect the contribution from the pion systems to
increase with increasing 𝑏𝑊 [3]. This can also be gathered from the 𝑒−𝑟2/𝑏𝑊 term in
the coupling factor, eq. (3.9), where and increase in 𝑏𝑊 will lead to a larger coupling
parameter. However, since the coupling strength grows as 𝑒−1/𝑏𝑊 , we would also
expect the growth in contribution to taper of a bit when 𝑏𝑊 is increased considerably.

We begin by considering the contribution of the different systems to the norm as a
function of 𝑏𝑊 . This can be seen in fig. 5.6.



Dressing of Proton with Virtual Pions in a Nuclear Model with Explicit Mesons 37

0 1 2 3 4 5
bW [fm]

0.0

0.2

0.4

0.6

0.8

1.0

Co
nt

rib
ut

io
n 

to
 n

or
m

Bare proton
One pion contribution
Two pion contribution

Figure 5.6: The contribution to the norm of the wavefunction for the different parts of the

system as a function of the range parameter, 𝑏𝑊 . The coupling strength has been fixed at a

value of 𝑆𝑊 = 20𝑀𝑒𝑉 . We see both of the pion systems having low contributions when 𝑏𝑊
is low, where the bare proton system dominates. As 𝑏𝑊 increases, we see a noticeable rise in

the one-pion contribution. We also see a slight increase in the contribution for the two pion

system when 𝑏𝑊 is large.

The first notable difference between the variation of the coupling strength and the
variation of the coupling range is that the contribution from either of the two pions
systems is practically zero until 𝑏𝑊 reaches a value of around 1.5𝑓 𝑚. From this point,
the contribution from the first pion begins to increase, while the contribution from

the bare proton starts dropping. When 𝑏𝑊 is low, the exponential term, 𝑒
− 1
𝑏2𝑊

𝑟2
, sup-

presses the strength of the coupling. However, as 𝑏𝑊 increases, the exponential term
becomes more dominating, and the contribution to the one pion system increases. A
primary difference from when the coupling strength was varied is that the two pion
contribution is now notable, as can be seen in fig. 5.7.
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Figure 5.7: Contribution from the second pion to the total norm of the wavefunction as a

function of the range parameter. The coupling strength has been fixed at a value of 20𝑀𝑒𝑉 .
When the range parameter is low, we see no contribution from the two pion system, but

around when 𝑏𝑊 = 2𝑓 𝑚, the contribution begins to increase drastically, reaching above

2.5% for the values we have plotted.
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Whereas before the contribution from the second pion was more or less totally
insignificant, this is not so the case anymore. Since the strength of the interaction is
now driven by the exponential term instead of the linear front factor, 𝑆𝑊𝑏𝑊 in eq. (3.9),
we see an increase in the contribution from the second pion as 𝑏𝑊 increases. For the
range parameters considered in fig. 5.7, this amounts to a little over 2.5% of the total
contribution. While this is still a small contribution compared to the bare nucleon
system and the one pion system, it might prove significant depending on the level of
accuracy one requires. On top of this, let us compare the relative energy differences
between the one and the two pion system, in fig. 5.8.
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Figure 5.8: Relative energy difference between the one pion and the two pion system as

a function of the coupling range, 𝑏𝑊 . The coupling strength has been fixed at a value of

𝑆𝑊 = 20𝑀𝑒𝑉 . Similarly to fig. 5.7, the influence of the two pion system can be seen to

increase exponentially.

Now, the relative difference increases with increasing 𝑏𝑊 , which shows an increase
in influence from the two pion. The peak relative energy difference between the two
systems is at about 5% for the values of 𝑏𝑊 considered in fig. 5.8, which corresponds
to a total energy difference of around 20𝑀𝑒𝑉 .1 This is a significant difference, but
the one pion approximation still gives reasonably good results even at this coupling
range. Seeing as the relative contribution from the two pion system increases with
𝑏𝑤, the next natural step is to consider what happens if we turn up 𝑏𝑊 even more.
This can be seen in fig. 5.9, where we consider coupling ranges up to 9𝑓 𝑚.

The first thing we can notice in fig. 5.9 is that the one pion contribution becomes
the dominating contribution to the total norm, with it crossing the contribution to
the norm of the bare proton. Notice also however that this increase is not due to
a drastic increase in the contribution from the first pion. In fact, the contribution
from the first pion never reaches beyond 50%. Rather, it is a drop in the contribution
from the bare proton, which then leads to a subsequent increase in the contribution
from the second pion. We see a drastic increase in the two pion contribution, which
reaches contributions of the total norm up to 10% and still increasing. The two pion
contribution can no longer be disregarded, and must be included to give a proper
description of the system.

1: The energy of the two pion system at this relative energy difference is around −414𝑀𝑒𝑉 .
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Figure 5.9: Contributions to the total norm for different parts of the total wavefunction for

high values of 𝑏𝑊 . The coupling strength has been set to a value of 𝑆𝑊 = 20𝑀𝑒𝑉 . We see a

continuation of the tendencies we originally saw in fig. 5.6, with the one pion contribution

crossing the contribution from the bare nucleon. We also see a notable increase in the two

pion contribution.

We also see that while the the one pion contribution is still increasing, it does so at
a lower rate than compared to smaller values of 𝑏𝑊 . This is in no doubt due to the
shape of the form factor as we have mentioned above. But while the one pion system
is tapering off, it seems the two pion system has only just begun increasing. Going to
even higher values of 𝑏𝑊 should then bring the contribution from the two different
pion systems closer together, meaning the system would be primarily dominated by
the contribution from the pions.

5.2.3 Range parameters at different coupling strengths

While the coupling strength has a minimal effect on the contribution of the second
pion, the range parameter has quite a significant effect. So far, all the variations of
the range parameter has been at a constant of 𝑆𝑊 = 20𝑀𝑒𝑉 . Let us investigate the
effect of changing the coupling strength to other values and varying 𝑏𝑊 . We have
chosen two different values for the coupling strength, 𝑆𝑊 = 5𝑀𝑒𝑉 and 𝑆𝑊 = 80𝑀𝑒𝑉 .
We vary the coupling range at each of these coupling strengths in order to gauge
the contribution of the second pion more accurately.

When the coupling is low, we saw in fig. 5.3 that the contributions from the first and
the second pion were closer together. As such, we should expect the contributions
from the one pion system and the two pion system to remain a lot closer at all values
of 𝑏𝑊 . Additionally, the increase in influence of wither of the two systems should
happen at later values of 𝑏𝑊 , due to their lower coupling. So while the one pion
contribution will still be the more dominating of the two different pion contributions,
we expect the two pion contribution to play a larger role compared to when we
set 𝑆𝑊 = 20𝑀𝑒𝑉 . Alternatively, when 𝑆𝑊 = 80𝑀𝑒𝑉 , the pion contributions should
reside entirely with the one pion system, and increases in 𝑏𝑊 should have less of an
effect on the contribution from the second pion.
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We begin by considering the case of 𝑆𝑊 = 5𝑀𝑒𝑉 in fig. 5.11.
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Figure 5.10: The contribution to the norm of the wavefunction for the different systems as

a function of 𝑏𝑊 . The coupling strength has been set to a value of 𝑆𝑊 = 5𝑀𝑒𝑉 . Since the
coupling strength is lower, the general contribution from the pion systems is a lot lower.

More notably, it appears the two pion system and one pion system are a lot closer to each

other.

As fig. 5.10 shows, the one pion and two pion contribution are now a lot closer at
most values, only starting to deviate considerably when 𝑏𝑊 = 2.5. Moreover, we see
a significantly larger contribution from the two pion system, which can be seen in
fig. 5.11.
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Figure 5.11: The contribution to the norm of the wavefunction from the second pion as

a function of 𝑏𝑊 . The coupling strength has been set to a value of 𝑆𝑊 = 5𝑀𝑒𝑉 . Since the
one pion system now has a lower contribution, the two pion system can be seen to have a

higher contribution to the norm.

While the increase in contribution happens a bit later compared towhen 𝑆𝑊 = 20𝑀𝑒𝑉
in fig. 5.7, it grows a lot faster, reaching contributions over 10% of the total norm
for the values of 𝑏𝑊 considered. This makes good sense since the one pion system
is now much weaker coupled, meaning that the two pion system can get a much
bigger contribution compared to the one pion system.
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Finally, let us consider the case where the coupling strength is large. We set 𝑆𝑊 =
80𝑀𝑒𝑉 and vary the coupling range, see fig. 5.12.
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Figure 5.12: Contribution to the norm of the wavefunction of the different systems as a

function of 𝑏𝑊 . The coupling strength has been set to a value of 𝑆𝑊 = 80𝑀𝑒𝑉 . The large
coupling strength now completely drowns out the two pion system, and the one pion system

dominates completely along with the bare nucleon system.

The system is now entirely dominated by the one-pion contribution and the bare
proton contribution. This is as we predicted, based on what we found in fig. 5.4. The
contribution from the second pion now remains flat at all values of 𝑏𝑊 , and it play
no significant part in the contribution to the total overlap.

5.3 Discussion

In fig. 5.1 we have shown that the Gaussian method can solve the system with a
single pion with only two Gaussians needed for full convergence toward the final
wavefunction. This extends further to the two pion system, as it is clear from
fig. 5.2 that the two-pion system converges just as fast. As fig. 5.2 also shows, it
is sufficient to use just a single Gaussian in the two-pion system, if the dressed
nucleon mass has been found in the one-pion system. One should bear in mind that
if other optimization routines, such as the stochastic variational method described
in section 2.2, are used then the amount of Gaussians required to reach convergence
might increase. This is as of yet unclear.

In fig. 5.3 we showed the contributions of the different systems to the total overlap
as a function of coupling strength. Initial observations showed that the contribution
from the two pion overlap were significantly smaller than the contribution from the
one pion system and the bare nucleon. The contribution from the one pion system
grew considerably with increasing coupling strength, eventually becoming similar in
size to the contribution of the bare proton, which had the largest contribution of all
the systems. A closer investigation in fig. 5.4 and fig. 5.5 showed that the contribution
of the second pion peaks when 𝑆𝑊 = 20𝑀𝑒𝑉 , where its contribution was about 0.3%.
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Afterwards, the contribution would drop off again. This was a bit surprising, since
the parameters of the coupling operator between the bare proton and the one pion
system is identical to the parameters between the one pion system and the two pion
system. One would therefore expect the contribution of the two pion system to also
grow when the coupling strength is increased. A possible explanation for why this
is not so, is the fact that the first pion is more strongly bound to the nucleon than
the second pion. Then if we increase the coupling strength, the one pion system
completely ends up dominating, and the two pion system starts to become much
more insignificant. In general though, the two pion contribution is quite weak at all
values of 𝑆𝑊 , indicating the coupling strength has little influence on the contribution
of the second pion.

Whereas we so far haven’t seen any significant use of the second pion, this changes
with the variation of the range parameter, 𝑏𝑊 . This can already be seen in fig. 5.6.
The major contributions still come from the one-pion system and the bare nucleon,
but we can now see a slight increase in the two pion contribution when 𝑏𝑊 reaches
4-5 fm. Looking more closely at fig. 5.7 and fig. 5.8, we see that the contribution from
the second pion, along with the energy difference between the two pion system and
the one pion system, shows increased contribution to the norm with increasing 𝑏𝑊 .
It is also apparent from fig. 5.7 that the second pion would contribute more if 𝑏𝑊
was increased further. This was explained by the 𝑒−𝑟2/𝑏𝑊 term in eq. (3.9), but since
pions are responsible for the long range part of the interaction, one can also use this
as an argument for the increase in contribution from the second pion. To investigate
this further, we considered more extreme values of 𝑏𝑊 , in the range of 5 − 10𝑓 𝑚.
We saw a notable increase in the contribution from the second pion, along with the
contribution from the bare nucleon falling below the contribution of the first pion.
Crucially, we could also notice how the effects of the first pion began to taper off,
meaning the second pion contribution increased relative to the contribution of the
first pion.

As an extra measure, we changed the coupling strength to two values, one lower
than 𝑆𝑊 = 20𝑀𝑒𝑉 and one higher, and redid the variation of the coupling range. The
results for the lower coupling strength showed an increase in the contribution from
the two pion system, since the one pion system was now more weakly coupled. This
makes good sense, since we saw in fig. 5.3 that the one and two pion systems were
closest when the coupling strength was low. On the other hand, when the coupling
strength was high, variations in 𝑏𝑊 made no significant impact on the two pion
contribution, even when 𝑏𝑊 was set to around 5𝑓 𝑚. This also makes sense, since we
saw the influence of the second pion drop off at large values of 𝑆𝑊 , whereas the one
pion system increased in influence. It is then clear, that the one pion approximation
is best in cases where the coupling strength is high, but can also work at lower
coupling strengths if 𝑏𝑊 is sufficiently low.



Chapter 6
Conclusion

In this thesis we have investigated the dressing of the nucleon by a second pion in a
nuclear model with explicit pions. We introduced the model in chapter 3, where we
derived the general shape of the wavefunctions. We wrote the wavefunctions as a
linear combination of correlated Gaussians, which we introduced as a concept in
chapter 2. Using this Gaussian expansion, we could find the ground state energy of
our system by optimizing a generalized eigenvalue problem, employing both linear
and non-linear optimization methods. The necessary matrix elements needed to
solve the system of a nucleon dressed with two pions was derived in chapter 4. We
developed a general expansion method of the matrix elements, that was usable for
any of the matrix elements that were required to solve the system. This general
expansion method involved writing out the full pion matrix elements in terms of the
spin space identity, and then considering the different components. This method
holds for any number of pions and for any matrix element we have considered,
however the process becomes quite lengthy already with the addition of a second
pion.

Initial solutions to the one-pion system showed the system converging to the ex-
pected ground state energy after just 1-2 Gaussians, making it a very capable and
efficient method for solving the system. We then considered the addition of the
second pion, and investigated its influence as a function of the coupling parameters.
We showed that an increase in the coupling strength between the systems has a
minimal impact on the contribution of the second pion, with the contribution initially
increasing with increased coupling strength but then eventually falling off again.
The one pion contribution could be seen to increase when the coupling strength was
increased. However, when the coupling range was varied, the contribution from the
second pion increased, which suggests that the effects of the second pion cannot be
neglected when the range parameter is increased. Varying the coupling range at
different coupling strengths, we found that the contribution of the second pion is
greatest when the coupling strength is low, and the range parameter is high.
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Appendix A
Derivation of Analytical Matrix

Elements of Shifted Gaussians

The matrix elements needed to solve eq. (2.11) can be solved analytically and then
used to calculate numerical results. In this section, we present the analytical form
of the overlap, kinetic energy and coulomb matrix elements. The approach for
calculating the form of the matrix elements follows the approach found in [10].

A.1 Overlap

The overlap between to Gaussians with parameter matrices𝐴 and 𝐵 can be calculated
by performing the integral of the product of the two shifted Gaussians with respect
to all the spatial coordinates that are being considered,

⟨𝐺′|𝐺⟩ = ∫ 𝑑3𝑟1… 𝑑3𝑟𝑁 𝑒−𝐫
𝑇𝐶𝐫+(𝑠+𝑠′)𝑇 𝐫 (A.1)

where 𝐶 = 𝐴 + 𝐵. The exponential of the Gaussians can be rewritten in terms of
sums.

∫ 𝑑3𝑟1… 𝑑3𝑟𝑁 𝑒−𝐫
𝑇𝐶𝐫+(𝑠+𝑠′)𝑇 𝐫 = ∫ 𝑑3𝑟1… 𝑑3𝑟𝑁 𝑒𝑥𝑝(

−
𝑁
∑
𝑖,𝑗
𝐶𝑖,𝑗 𝑟𝑖 ⋅ 𝑟𝑗 +

𝑁
∑
𝑖
(𝑠𝑖 + 𝑠′𝑖) ⋅ 𝑟𝑖)

(A.2)

Now, we can exploit that 𝐴 and 𝐵 are symmetric matrices, which means that 𝐶
is also a symmetric matrix. This means we can perform a unitary transform of
the coordinates and paramter matrices. Let 𝐫 = 𝑄𝐱, where 𝐱 is a new set of spatial
coordinates and𝑄 is a unitary matrix. Since 𝐶 is symmetric, there exists a𝑄 such that
𝐶 = 𝑄𝑇𝐷𝑄, where 𝐷 is a diagonal matrix. This means we can rewrite eq. (A.2) into
a form where we only integrate over the dot product of similar spatial coordinates.
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⟨𝐺′|𝐺⟩ = ∫ 𝑑3𝑥1… 𝑑3𝑥𝑁 𝑒𝑥𝑝(
−

𝑁
∑
𝑖
𝐷𝑖,𝑖𝑥2𝑖 +

𝑁
∑
𝑖
(𝑠𝑖 + 𝑠′𝑖) ⋅ 𝑥𝑖)

(A.3)

Now, using the properties of the exponential function, we can write out the integral
in eq. (A.3) as a product of integrals.

∫ 𝑑3𝑥1… 𝑑3𝑥𝑁 𝑒𝑥𝑝(
−

𝑁
∑
𝑖
𝐷𝑖,𝑖𝑥2𝑖 +

𝑁
∑
𝑖
(𝑠𝑖 + 𝑠′𝑖) ⋅ 𝑥𝑖)

=

𝑁
∏
𝑖=1

∫ 𝑑3𝑥𝑖𝑒𝑥𝑝 (−𝐷𝑖,𝑖𝑥2𝑖 + (𝑠𝑖 + 𝑠′𝑖) ⋅ 𝑥𝑖)

(A.4)

Solving this integral and then transforming back, we end up with the final result

⟨𝐺′|𝐺⟩ =
𝑁
∏
𝑖=1

𝑒𝑥𝑝
(

1

4𝐷𝑖,𝑖(𝑠𝑖 + 𝑠′𝑖)2)(
𝜋𝑁

𝐷𝑖,𝑖)

3/2

= 𝑒
1
4 (𝑠+𝑠

′)𝑇𝑅(𝑠+𝑠′)
(

𝜋𝑁

𝑑𝑒𝑡(𝐶))

3/2

= 𝑀

(A.5)

where 𝑅 = 𝐶−1.

A.2 Kinetic Energy

The general kinetic energy operator is written in matrix notation as.

𝐾̂ = −
𝜕
𝜕𝐫𝑇

𝐾
𝜕
𝜕𝐫

(A.6)

where 𝐾 is a symmetric and positive definite matrix. Thus, we want to calculate the
following quantity:

⟨𝐺′| −
𝜕
𝜕𝐫𝑇

𝐾
𝜕
𝜕𝐫

|𝐺⟩ (A.7)

In order to calculate the overlap of 𝐾̂ , we first prove two sub-results. First, we can
consider the overlap with 𝐫 by taking the derivative of the shift vectors, 𝑣 = 𝑠 + 𝑠′ in
eq. (A.5).

⟨𝐺′|𝐫|𝐺⟩ =
𝜕
𝜕𝑣 (

𝑒
1
4 𝑣

𝑇𝑅𝑣
(

𝜋𝑁

𝑑𝑒𝑡(𝐶))

3/2

)
= −

1
2
𝑅𝑣𝑀 (A.8)

The second sub-result we will need is the following:
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⟨𝐺′|𝐫𝑇 𝐹𝐫|𝐺⟩ = (
𝜕
𝜕𝑣𝑇

𝐹
𝜕
𝜕𝑣)

𝑒
1
4 𝑣

𝑇𝑅𝑣
(

𝜋𝑁

𝑑𝑒𝑡(𝐶))

3/2

= (
3
2
𝑇 𝑟𝑎𝑐𝑒(𝐹𝑅) −

1
4
𝑣𝑇𝑅𝐹𝑅𝑣)𝑀

(A.9)

We can now calculate the derivative in eq. (A.7), and then use eq. (A.8) and eq. (A.9)
to get the general result for the kinetic matrix element.

⟨𝐺′| −
𝜕
𝜕𝐫𝑇

𝐾
𝜕
𝜕𝐫

|𝐺⟩ = ⟨𝐺′| (𝑠′ − 2𝐴𝐫)
𝑇 𝐾 (𝑠 − 2𝐵𝐫) |𝐺⟩

= (6𝑇 𝑟𝑎𝑐𝑒(𝐴𝐾𝐵𝑅) (𝑠
′ − 𝐴𝑅(𝑠 + 𝑠′))

𝑇 𝐾 (𝑠 − 𝐵𝑅(𝑠 + 𝑠′)))
(A.10)

with

𝐺′ = 𝑒−𝐫
𝑇𝐴𝐫+𝑠′𝑇 𝐫, 𝐺 = 𝑒−𝐫

𝑇𝐵𝐫+𝑠𝑇 𝐫 (A.11)

A.3 Potential Energy Functions

Lastly, we want to consider the overlap of Gaussians with some potential energy
function, 𝑉 (𝑤𝑇 𝐫), where 𝑤 is a size-N vector with 𝑤𝑖 = 1 and 𝑤𝑗 = −1. That is, the
quantity 𝑤𝑇 𝐫 gives us the difference between the coordinates of the i’th and the j’th
particle. We can determine an expression for the overlap of some general potential,
𝑉 (𝑤𝑇 𝐫) by considering the Fourier transform, (𝑘⃗), of such a potential.

⟨𝐺′|𝑉 (𝑤𝑇 𝐫)|𝐺⟩ = ∫
𝑑3𝑘⃗
(2𝜋)3

(𝑘⃗)⟨𝐺′|𝑒𝑖𝑘⃗⋅(𝑤
𝑇 𝐫)|𝐺⟩ (A.12)

The overlap with the exponential function can easily be solved using the methods
from eq. (A.3). The end result is an integral of the form

⟨𝐺′|𝑉 (𝑤𝑇 𝐫)|𝐺⟩ = 𝑀 ∫
𝑑3𝑘⃗
(2𝜋)3

(𝑘⃗)𝑒−
1
4𝑤

𝑇𝑅𝑤𝑘2+𝑖𝑘⃗⋅𝑞 , (A.13)

where 𝑀 is the expression found in eq. (A.5). Replacing the Fourier transformed
function in eq. (A.13) with its untransformed counterpart gives an integral equation
over the 𝑟 component.

⟨𝐺′|𝑉 (𝑤𝑇 𝐫)|𝐺⟩ = 𝑀 (
𝛽
𝜋)

3/2

∫ 𝑑3𝑟𝑉 (𝑟)𝑒−𝛽(𝑟−𝑞)
2

(A.14)

where 𝛽 = (𝑤𝑇𝑅𝑤)
−1 and 𝑞 = 1

2𝑤
𝑇𝑅(𝑠+𝑠′). Of particular interest is the 1/𝑟 potential

associated with the Coulomb force between charged particles. This force is only
dependent on the inverse radial distance between the two particles. To calculate
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this, we first rewrite eq. (A.14) for the case where 𝑉 (𝑟) only depends on the radial
distance between two particles. As such, we can carry out the angular derivatives in
eq. (A.14), leaving just the integral over the radial components.

⟨𝐺′|𝑉 (|𝑤𝑇 𝐫|)|𝐺⟩ = 𝑀 (
𝛽
𝜋)

3/2

2𝜋
𝑒−𝛽𝑞2

𝛽𝑞 ∫
∞

0
𝑑𝑟𝑟𝑉 (𝑟)𝑒−𝛽𝑟

2
𝑠𝑖𝑛ℎ (2𝛽𝑞𝑟) (A.15)

Plugging in the 1/𝑟 potential in equation eq. (A.15) then yields

⟨𝐺′|
1

|𝑤𝑇 𝐫|
|𝐺⟩ = 𝑀

𝑒𝑟𝑓 (
√
𝛽𝑞)

𝑞
(A.16)

where 𝑒𝑟𝑓 () is the error function.



Appendix B
Preliminary Calculations using

Correlated Gaussians

In order to investigate the functionality of thematrix elements we found in section 4.1,
we use them to describe and simulate simple quantum mechanical systems. Even
though these matrix elements have been derived with the purpose of calculating
the pion matrix elements, they are completely general, and can be modified to suit
many few-body systems after need. These simulations serve as a proof of concept
for the method, and were used to find errors and bugs in the matrix elements before
moving to more complicated systems.

In this chapter, we consider the simulation of the ground state, and the first two
excited states of the hydrogen atom using correlated Gaussians.

B.1 The Hydrogen Atom

The hydrogen atom consists of a heavy proton and a single electron orbiting around
the proton, bound by the coulomb attraction between the two. Due to the proton
being much heavier than the electron, the proton can be considered stationary. This
is an extremely simple system, making it adequate for testing the matrix elements
we have derived in section 4.1.

We look to solve the following Schrödinger equation, written in units of Hartree and
Bohr radius [22]:

−
1
2
(𝑢′′ +(

2
𝑟
−
𝑙(𝑙 + 1)
𝑟2 ) 𝑢) = 𝐸𝑢 (B.1)

where 𝑢 is the wavefunction we wish to solve, and 𝑟 is the radial distance. This
differential equation can be solved analytically using a Power Series, which yields
the radial equations.
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𝑅𝑛𝑙 =
1
𝑟 (

𝑟
𝑛)

𝑙+1
𝑒−

𝑟
𝑛 𝜈(

𝑟
𝑛)

(B.2)

where 𝜈 ( 𝑟𝑛) is polynomial of degree 𝑛 − 𝑙 − 1.

𝜈(
𝑟
𝑛)

=
𝑛−𝑙−1
∑
𝑗=0

𝑐𝑗 (
𝑟
𝑛)

𝑗
(B.3)

where 𝑛 is the principal quantum number and 𝑙 is the quantum number that is asso-
ciated with the quantized angular momentum. When comparing the wavefunctions,
we vary both the principle quantum number, 𝑛 along with the angular momentum
quantum number, 𝑙. In short, we shall consider the three radial wavefunctions

𝑅10 = 2𝑒−𝑟 (B.4)

𝑅21 =
1

2
√
6
𝑟𝑒−𝑟/2 (B.5)

𝑅32 =
4

81
√
30
𝑟2𝑒−𝑟/3 (B.6)

The energy levels have a well-known form. When written in units of Hartree, the
energy levels become

𝐸 =
−0.5
𝑛2

(B.7)

such that the ground state energy is exactly −0.5.

Now, we can express our wavefunctions in a Gaussian basis. This must be done
such that the wavefunctions are eigenfunctions of the 𝐋̂2 operator. Writing out the
operator in its full form using spherical coordinates, we get [23].

𝐋̂2 = −(
1

𝑠𝑖𝑛(𝜃)
𝜕
𝜕𝜃

(𝑠𝑖𝑛(𝜃)
𝜕
𝜕𝜃

) +
1

𝑠𝑖𝑛2(𝜃)
𝜕2

𝜕2𝜙)
(B.8)

and for an eigenfunction of the angular momentum squared, we must have
𝐋̂2𝜓𝑛𝑙𝑚 = 𝑙(𝑙 + 1)𝜓𝑛𝑙𝑚 (B.9)

Using eq. (B.8), we can determine how to represent eqs. (B.4) to (B.6) using Gaussians.
This leads us to the following expressions.

𝐺10 = 𝑒−𝛼𝑟
2

(B.10)

𝐺21 = 𝑥𝑒−𝛼𝑟
2

(B.11)

𝐺32 = 𝑥𝑦𝑒−𝛼𝑟
2

(B.12)

where 𝑥 and 𝑦 are cartesian coordinates, such that 𝑟 =
√
𝑥2 + 𝑦2 + 𝑧2. It can be shown

by applying eq. (B.8) to eqs. (B.10) to (B.12) that these are indeed eigenfunctions
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of the total angular momentum squared. As such, these are valid candidates for
Gaussian representations of our three radial wavefunctions. Solving the generalized
eigenvalue problem, using the general expansion in section 4.1, we get the energy
convergence graphs in figs. B.1 to B.3. We see from figs. B.1 to B.3 that we converge
towards the final energy after roughly 4-5 Gaussians.
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Figure B.1: Convergence towards the Hydrogen ground

state energy as a function of Gaussians.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of Gaussians

0.125

0.123

0.121

0.119

0.117

0.115

0.113

En
er

gy
 [H

ar
tre

e]

P-wave convergence of Hydrogen
Numerical result
Theoretical value

Figure B.2: Convergence towards the first excited state of

hydrogen as a function of Gaussians.
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Figure B.3: Convergence towards the second excited state of hydro-

gen as a function of Gaussians.

At 5 Gaussians, the deviation from the accepted values is roughly 0.02%, which is way
within reason for most intents and purposes. One should note that the convergence
rate varies from problem to problem. Therefore, it is not guarenteed that we can ob-
tain the same level of precisionwith just five Gaussians, if applied to another problem.
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As well as plotting the energy, we can plot the relevant wavefunctions for each of
the three states. This can be seen in figs. B.4 to B.6.
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Figure B.4: Radial wavefunction of the 𝑅10 state of hy-

drogen atom plotted with Gaussians and compared to the

actual result.
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Figure B.5: Radial wavefunction of the 𝑅21 state of hy-

drogen atom plotted with Gaussians and compared to the

actual result.
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Figure B.6: Radial wavefunction of the 𝑅10 state of hydrogen atom

plotted with Gaussians and compared to the actual result.

As with the energy graphs, figs. B.1 to B.3, we see that 1 Gaussian is insufficient to
accurately describe the hydrogen atom. For S and P waves, 3 Gaussians do a decent
job of accurately following the exact solution, but for D-waves, 3 Gaussians is not
enugh to describe the system accurately. 5 Gaussians gives an almost exact solution
to the states of the Hydrogen atom. This proves that the general expansion of the
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matrix elements have been performed correctly, and that they can be applied to
other systems.





Appendix C
Expansion of the kinetic matrix

elements

This appendix demonstrates the P- and D-wave expansions of the kinetic matrix
element, which we presented in section 4.1. The overlap of the kinetic operator with
shifted Gaussians is

⟨𝐺𝐴|𝐾̂ |𝐺′𝐵⟩ = (6𝑇 𝑟𝑎𝑐𝑒(𝐴𝐾𝐵𝑅) + (𝑠 − 𝑅𝐴(𝑠 + 𝑠′))
𝑇 𝐾 (𝑠′ − 𝐵𝑅(𝑠 + 𝑠′)))𝑀

For both the P- and the D-wave expansions, it is beneficial to consider the derivative
elements termwise. For the P-wave expansion, carrying out the derivatives term by
term we get.

Term 1:

(𝐚
𝑇 𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠′𝑇 )

6𝑇 𝑟𝑎𝑐𝑒(𝐴𝐾𝐵𝑅)𝑀 𝑠, 𝑠′ → 0−−−−−−→ 6𝑇 𝑟𝑎𝑐𝑒(𝐴𝐾𝐵𝑅)𝑀1 (C.1)

Term 2:

(𝐚
𝑇 𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠′𝑇 )

𝑠𝑇𝐾𝑠′𝑀 𝑠, 𝑠′ → 0−−−−−−→ 𝐚𝑇𝐾𝐛𝑀0 (C.2)

Term 3:

(𝐚
𝑇 𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠′𝑇 )

− 𝑠𝑇𝐾𝐵𝑅(𝑠 + 𝑠′)𝑀 𝑠, 𝑠′ → 0−−−−−−→ −𝐚𝑇𝐾𝐵𝑅𝐛𝑀0 (C.3)

Term 4:

(𝐚𝑇
𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠′𝑇 )

− (𝑠 + 𝑠′)𝑇𝐴𝑅𝐾𝑠′𝑀 𝑠, 𝑠′ → 0−−−−−−→ −𝐚𝑇𝐴𝑅𝐾𝐛𝑀0 (C.4)

Term 5:

(𝐚
𝑇 𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠′𝑇 )

(𝑠 + 𝑠′)𝑇𝑅𝐴𝐾𝐵𝑅(𝑠 + 𝑠′)𝑀

𝑠, 𝑠′ → 0−−−−−−→ 𝐚𝑇𝐴𝑅𝐾𝐵𝑅𝐛 + 𝐛𝑇𝐴𝑅𝐾𝐵𝑅𝐚𝑀0

(C.5)
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Similarly, the D-wave expansion of the matrix elements can be split term wise as
follows.

Term 1:

(𝐚𝑇
𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠𝑇 )(𝐜

𝑇 𝜕
𝜕𝑠′𝑇 )(𝐝

𝑇 𝜕
𝜕𝑠′𝑇 )

6𝑇 𝑟𝑎𝑐𝑒(𝐴𝐾𝐵𝑅)𝑀

𝑠, 𝑠′ → 0−−−−−−→ 6𝑇 𝑟𝑎𝑐𝑒(𝐴𝐾𝐵𝑅)𝑀2

(C.6)

Term 2:

(𝐚𝑇
𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠𝑇 )(𝐜

𝑇 𝜕
𝜕𝑠′𝑇 )(𝐝

𝑇 𝜕
𝜕𝑠′𝑇 )

𝑠𝑇𝐾𝑠′𝑀 𝑠, 𝑠′ → 0−−−−−−→

1
2 [(

𝐚𝑇𝐾𝐜) (𝐛𝑇𝑅𝐝) + (𝐚𝑇𝐾𝐝) (𝐛𝑇𝑅𝐜)]𝑀0

+
1
2 [(

𝐛𝑇𝐾𝐜) (𝐚𝑇𝑅𝐝) + (𝐛𝑇𝐾𝐝) (𝐚𝑇𝑅𝐜)]𝑀0

(C.7)

Term 3:

(𝐚𝑇
𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠𝑇 )(𝐜

𝑇 𝜕
𝜕𝑠′𝑇 )(𝐝

𝑇 𝜕
𝜕𝑠′𝑇 )

− 𝑠𝑇𝐾𝐵𝑅(𝑠 + 𝑠′)𝑀 𝑠, 𝑠′ → 0−−−−−−→

−
1
2 [(

𝐜𝑇𝐾𝐵𝑅𝐚) (𝐛𝑇𝑅𝐝) + (𝐜𝑇𝐾𝐵𝑅𝐛) (𝐚𝑇𝑅𝐝) + (𝐜𝑇𝐾𝐵𝑅𝐝) (𝐚𝑇𝑅𝐛)]𝑀0

−
1
2 [(

𝐝𝑇𝐾𝐵𝑅𝐚) (𝐛𝑇𝑅𝐜) + (𝐝𝑇𝐾𝐵𝑅𝐛) (𝐚𝑇𝑅𝐜) + (𝐝𝑇𝐾𝐵𝑅𝐜) (𝐚𝑇𝑅𝐛)]𝑀0

(C.8)

Term 4:

(𝐚𝑇
𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠𝑇 )(𝐜

𝑇 𝜕
𝜕𝑠′𝑇 )(𝐝

𝑇 𝜕
𝜕𝑠′𝑇 )

− (𝑠 + 𝑠′)𝑇𝑅𝐴𝐾𝑠′𝑀 𝑠, 𝑠′ → 0−−−−−−→

−
1
2 [(

𝐚𝑇𝑅𝐴𝐾𝐛) (𝐜𝑇𝑅𝐝) + (𝐛𝑇𝑅𝐴𝐾𝐚) (𝐜𝑇𝑅𝐝)]𝑀0

−
1
2 [(

𝐜𝑇𝑅𝐴𝐾𝐚) (𝐛𝑇𝑅𝐝) + (𝐜𝑇𝑅𝐴𝐾𝐛) (𝐛𝑇𝑅𝐝)]𝑀0

−
1
2 [(

𝐝𝑇𝑅𝐴𝐾𝐚) (𝐛𝑇𝑅𝐜) + (𝐝𝑇𝑅𝐴𝐾𝐛) (𝐚𝑇𝑅𝐜)]𝑀0

(C.9)

Term 5:

(𝐚𝑇
𝜕
𝜕𝑠𝑇 )(𝐛

𝑇 𝜕
𝜕𝑠𝑇 )(𝐜

𝑇 𝜕
𝜕𝑠′𝑇 )(𝐝

𝑇 𝜕
𝜕𝑠′𝑇 )

(𝑠 + 𝑠′)𝑇𝑅𝐴𝐾𝐵𝑅(𝑠 + 𝑠′)𝑀 𝑠, 𝑠′ → 0−−−−−−→

1
2 [(

𝐚𝑇𝑅𝐴𝐾𝐵𝑅𝐛) (𝐜𝑇𝑅𝐝) + (𝐚𝑇𝑅𝐴𝐾𝐵𝑅𝐜) (𝐛𝑇𝑅𝐝) + (𝐚𝑇𝑅𝐴𝐾𝐵𝑅𝐝) (𝐜𝑇𝑅𝐝)]𝑀0

+
1
2 [(

𝐛𝑇𝑅𝐴𝐾𝐵𝑅𝐚) (𝐜𝑇𝑅𝐝) + (𝐛𝑇𝑅𝐴𝐾𝐵𝑅𝐜) (𝐚𝑇𝑅𝐝) + (𝐛𝑇𝑅𝐴𝐾𝐵𝑅𝐝) (𝐚𝑇𝑅𝐜)]𝑀0

+
1
2 [(

𝐜𝑇𝑅𝐴𝐾𝐵𝑅𝐚) (𝐛𝑇𝑅𝐝) + (𝐜𝑇𝑅𝐴𝐾𝐵𝑅𝐛) (𝐚𝑇𝑅𝐝) + (𝐜𝑇𝑅𝐴𝐾𝐵𝑅𝐝) (𝐚𝑇𝑅𝐛)]𝑀0

+
1
2 [(

𝐝𝑇𝑅𝐴𝐾𝐵𝑅𝐚) (𝐛𝑇𝑅𝐜) + (𝐝𝑇𝑅𝐴𝐾𝐵𝑅𝐛) (𝐚𝑇𝑅𝐜) + (𝐝𝑇𝑅𝐴𝐾𝐵𝑅𝐜) (𝐚𝑇𝑅𝐛)]𝑀0

(C.10)



Appendix D
Coulomb Interactions in the Nuclear

Model with Explicit Pions

In chapter 3 and chapter 4 we have argued that the exclusion of Coulomb interactions
is a small correction. In this chapter, we show explicitly why Coulomb interactions
can be omitted.

First, let us explicitly consider the isospin structure of the proton. The proton exists
in a coherent superposition of several pions. The one pion system has no coulomb
interactions when applied to the proton, so we consider only the two pion system.

(𝜏 ⋅ 𝜋⃗1) (𝜏 ⋅ 𝜋⃗2) 𝑝 =

𝑝𝜋0
1𝜋

0
2 +

√
2𝑛𝜋+

1 𝜋
0
2 −

√
2𝑛𝜋0

1𝜋
+
2 + 4𝑝𝜋−

1 𝜋
+
2

(D.1)

The only term where Coulombic interactions are relevant is the last term. As such,
when constructing the matrix matrix elements of the Hamiltonian, the kinetic terms
are multiplied by a factor of 9, and the Coulombic terms are multiplied by 4. If we
write the radial component of the Gaussian wavefunction as 𝜓𝑁̃ 𝜋𝜋(𝑟), we can write
the two-pion component as

⟨𝜓𝐴𝑁̃𝜋𝜋 |𝐾̂ + 𝑉𝐶 |𝜓𝐵𝑁̃𝜋𝜋⟩ = 9⟨𝜓𝐴𝑁̃𝜋𝜋(𝑟)|𝐾̂ |𝜓
𝐵
𝑁̃𝜋𝜋(𝑟)⟩ + 4⟨𝜓𝐴𝑁̃𝜋𝜋(𝑟)|𝑉𝐶 |𝜓

𝐵
𝑁̃𝜋𝜋(𝑟)⟩ (D.2)

Energy contribution to overlap
With Coulomb -587.5621 0.0018868

Without Coulomb -587.5618 0.0018861

Table D.1: Caption.
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58 Appendix D ⋅ Coulomb Interactions in the Nuclear Model with Explicit Pions

The effect of the Coulombic interactions can be seen in table D.1. The parameters
used are the same parameters used when showing the initial energy convergence
plot, fig. 5.2 in section 5.1. We have set 𝑆𝑊 = 41.5𝑀𝑒𝑉 and 𝑏𝑊 = 3.9𝑓 𝑚. The table
shows an energy difference in the energy at the third decimal place while, while the
contribution to the overlap is different at the seventh decimal place. These differences
are so small that they can easily be neglected.
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