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Abstract

Based on the semi-recent review paper by Jim Mitroy et al., on the method of Explicit
Correlated Gaussians, a more classical approach to low-energy scattering calculations
is tested and developed; both for Born-Oppenheimer and non-BO purposes. While the
model has been successfully constructed with all theoretical calculations and aspects
accounted for, the numerical verification did not bear much fruit and therefore no
data has been constructed that could be compared to contemporary experiments.
Although some graphs have been created that match theoretical expectations in the
preliminary formula testing.
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Chapter 1
Introduction

Gauging the dynamics and shape of a system through a systematic, precise and
aggressive poking with a scientific stick has been a practice for as long as humans
have had hands. After many centuries of refinement of the stick in question, we finally
got to see a glimpse of what this method could really do in 1911, when Rutherford
introduced the world to his gold foil experiment that could pry into the structure of
the atom itself[1]. This was our first step away from ideas such as Thompson’s plum
pudding model and it opened the world up to many new and important concepts
such as the atomic nucleus, which is still being studied extensively to this day.

Nowadays scattering experiments are, despite their seemingly simple nature, one
of the main tools we have at our disposal to learn about the shape and composition
of microscopic structures, as well as an integral part of both detector and particle
physics. For this reason, and many others, the field of scattering theory is wide and
rich in methodologies that attempt to create a backbone for the calculations that
underpin the experiments that are carried out at places like CERN. Unfortunately,
these often have to be approximations, as there is not a systematically good way
to deal with even the simplest differential equations in the realm of multi-body
dynamics, which is why physicists are always eager to discover new alternatives to
aid in the exploration of potential solutions.

In this thesis, we will be exploring one such alternative, and examine whether it
fares well compared to previous models.

The way forward

The main goal of this thesis is to explore an avenue of scattering calculations using
a more classical approach with Explicit Correlated Gaussians as the basis. This is
opposed to the methods mentioned in the semi-recent review study by Jim Mitroy
et al[2] that focused on more exotic methods, such as the complex scaling method
(CSM) and Kohn variational method for the calculation of resonances and low-energy
scattering respectively. The Gaussian method will be tested on one of the simplest
non-trivial systems, that being low-energy proton-hydrogen scattering. However,
the possibility for more complex calculations in the future will be also be discussed
as well as its potential shortcomings.
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6 Chapter 1 ⋅ Introduction

Outline

The thesis will be split into three sections, building up to the actual scattering, with
a conclusion at the end. First, we will quickly go through the relevant physics and
mathematics in the form of scattering theory and the Correlated Gaussians that will
be used as a basis in the numerical calculations later. We will also explore a specific
scattering scenario and discuss some results to determine whether or not it behaves
as expected. At the end, if successful, we will show the numerical results from the
scattering, which will be compared to some experimental data.



Chapter 2
Relevant theory

To truly understand why the theory in this chapter is relevant and to create a cohesive
throughline, I will dedicate the start of this chapter to give a brief overview of what
the project is about and what we are doing. The scattering we are interested in
studying is low-energy proton-hydrogen scattering using a numerical method called
the Ritz method (based on the variational principle, equation (2.1)) with Explicit
Correlated Gaussians (ECGs) as a basis. The numerical method is also special because
we are considering a semi-classical approach where the scattering will be modelled
with the use of delta functions, which will be used to keep the distance between
the two protons fixed; effectively ’freezing’ the incident proton. With this fixed
distance, we use Born-Oppenheimer (BO) to separate the proton and hydrogen
systems, allowing us to minimize the energy of the hydrogen for this given length,
which creates an effective energy curve, as in figure 3.4 or 3.5, for the incident particle.
This, together with some partial wave theory and the numerical grid method; a finite
difference method, described in detail in appendix C, will be used to find the phase
shift, an important quantity in scattering theory. This will be done, based on the
theory of section 2.2.1, through the asymptotic fitting of a sinusoidal expression.
Before getting that far, however, we first need to acquire an optimization process,
which includes a method for generating positive-definite matrices.

Therefore, we are starting out this chapter by focusing on the theory of ECGs,
endingwith the analytical delta functionmatrix elements, which have been calculated
in appendix B. We then move on to the scattering theory where our treatment also
ends with matrix elements, but this time for scattering coefficients, that will be used
in a non-BO approximation. These are calculated in appendix D. Lastly, there will also
be a section on the optimization itself, specifically the available optimization methods,
and the difficulties one might face using them, as well as the matrix construction
which is a central part of them all.

It is also worth mentioning that we are using appendices as a way to keep messy
calculations or explanations out of the main parts of the thesis, but that does not mean
they are irrelevant or insignificant in their contents. So for the full comprehension
and scope, they should be perused as well.

7



8 Chapter 2 ⋅ Relevant theory

2.1 Correlated Gaussians

One of the most fundamental tools in few-body calculations is the variational method.
This tells us that the expectation value of the Hamiltonian, 𝐻 , with any normalized
trial wave function, Ψ, will always be greater than, or equal to, the real ground state
energy, 𝐸0 of the system[3],

⟨Ψ |𝐻 |Ψ ⟩
⟨Ψ |Ψ ⟩

≥ 𝐸0. (2.1)

This is the foundation of the Ritz method, where one’s choice of Ψ is a linear com-
bination of 𝑁 known basis functions, 𝜓𝑖, parameterized by unknown coefficients,
𝑐𝑖, 𝑎𝑖,

Ψ =
𝑁
∑
𝑖=1

𝑐𝑖𝜓𝑖({𝑎𝑖}). (2.2)

Inserting the ansatz of equation (2.2) into equation (2.1) leaves us with the generalized
eigenvalue-problem1

𝐜 = 𝐸 𝐜, (2.3)

where both  and  are 𝑁 × 𝑁 matrices with elements 𝑖𝑗 = ⟨𝜓𝑖 |𝐻 |𝜓𝑗 ⟩ and
𝑖𝑗 = ⟨𝜓𝑖 |𝜓𝑗 ⟩. These can be used to optimize the 𝑐𝑖’s for a given choice of 𝑎𝑖
parameters; giving us a nonlinear optimization problem.

All of this leads us to the discussion of the (Explicit) Correlated Gaussian (ECG)
method, which is a specific choice of basis functions of the form of shifted Gaussians.
It was first introduced in 1960 by Boys [5] and Singer [6] for the study of molecular
systems, although the method remained widely unknown until the 1990’s where it
experienced a revival. In its most general form, the basis elements look like

𝐺(𝐬;𝐴, 𝐱) = exp(−𝐱𝑇𝐴𝐱 + 𝐬𝑇𝐱), 𝐱𝑇𝐴𝐱 =
𝑁
∑
𝑖,𝑗=1

𝑎𝑖𝑗𝐱𝑖 ⋅ 𝐱𝑗 , (2.4)

where 𝐱 = (𝐱1,⋯ , 𝐱𝑁 )𝑇 is an 𝑁 -dimensional vector consisting of 𝑑-dimensional
positional vectors, 𝐱𝑖, 𝐴 is an 𝑁 × 𝑁 symmetric2, positive-definite (x𝑇𝐴x > 0) matrix
and 𝐬 = (𝐬1,⋯ , 𝐬𝑁 )𝑇 is a constant shift vector analogous to 𝐱 in its construction. The
shift factor will only be used for theoretical calculations and in all numerical settings
they will be disregarded, so our Gaussians will have the much simpler form

𝐺(𝐴, 𝐱) = exp(−𝐱𝑇𝐴𝐱). (2.6)

More conceptually, the 𝐱 vector will contain all the positional vectors of the 𝑁
particles in our system and since we generally work in 3-dimensional space, we will
also set 𝑑 = 3 in all our calculations.
Below we will note some of the advantages of ECGs

1: See, for example, Peter Atkin’s "Molecular Quantum Mechanics" [4] for a complete derivation.
2: The reason for the symmetry requirement is that 𝐱𝑇𝐴𝐱 is a number which means (𝐱𝑇𝐴𝐱)𝑇 = 𝐱𝑇𝐴𝐱 and
(𝐱𝑇𝐴𝐱)𝑇 = 𝐱𝑇𝐴𝑇𝐱, but then

𝐱𝑇 (𝐴 − 𝐴𝑇 )𝐱 = 0 (2.5)

so the skew-symmetric part of the matrix does not contribute.
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• Center of mass removability

As will be seen in a moment, it is trivial, and necessary, to remove the center of
mass (COM)motion from any calculation. This procedure removes a dimension
from the problem, which, in turn, reduces the computational workload

• Analytical simplicity

Unlike something such as an exponential choice of basis with linear distance
factors, the factor 𝐱𝑇𝐴𝐱 allows for relatively simple analytical expressions for
the Hamiltonian matrix elements. More importantly, these expressions do
not increase in algebraic complexity when increasing the number of particles
involved either. This ensures continued tractability as the complexity of our
system grows.

• Correlated basis

Since our basis elements are correlated, albeit in a very simple way, it makes
them better at modelling strong interparticle interactions. In general the ECG
model is very flexible and is capable of accommodating most particles and
interactions; as long as they are not too correlated or complex (like inter-nuclear
interactions).

2.1.1 Jacobian coordinates

A common choice for calculations, when working in a system with no external forces,
is to change to Jacobian (center-of-mass) coordinates, as demonstrated in figure 2.1.
This reduces the computational workload (complexity), as the center of mass will
either be stationary or move at a constant velocity, which decouples it from the
system dynamics so it can be removed without any issues. In case of the scattering
problem, this transformation also serves a secondary purpose, as the new variables
will now indicate the relative positions, as opposed to their absolute position, of the
particles. This makes it easier to include the internal distances in the calculations by
use of delta functions.

r1

r2

r3

J x1x2

R

Figure 2.1: A picture depicting the transformation from absolute to Jacobi coordinates for

a three particle system. As can be seen, the system on the left shows absolute coordinates

measured in accordance with some origin, while the one on the right has two relative

coordinates, 𝐱1, 𝐱2, and a third, 𝑅, measured relative to the COM (from origo) which gets

removed. This means the origin in the new system is essentially arbitrary. The credit for the

image goes to its creator Martin C. Østerlund[7].
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It is well known that the Jacobian coordinate transformation is linear and given by
the matrix

𝐽 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 ⋯ 0
𝑚1
𝑀2

𝑚2
𝑀2

−1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
𝑚1
𝑀𝑁−1

𝑚2
𝑀𝑁−1

𝑚3
𝑀𝑁−1

⋯ −1
𝑚1
𝑀𝑁

𝑚2
𝑀𝑁

𝑚3
𝑀𝑁

⋯ 𝑚𝑛
𝑀𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑀𝑘 =
𝑘
∑
𝑖=1

𝑚𝑖, (2.7)

where𝑚𝑖 is the mass of the 𝑖’th particle. As seen in appendix A, it can be easily shown
that the transformation of a general kinetic matrix, 𝐾 , which will be introduced in
section 2.1.2, and general vector, 𝜔, will have the form

𝐾 → 𝐽𝐾𝐽 𝑇 , (A.4)

𝜔 → (𝐽−1)
𝑇 𝜔. (A.6)

In order to ignore the COM term we simply remove the last row of 𝐽 , which means ig-
noring the center of mass term is done by discarding the last row of 𝐽 and last column
of (𝐽−1)

𝑇 ; effectively reducing the dimensional complexity of the computation by 1.

2.1.2 Matrix elements

As noted, one of the advantages of the ECGs is that the matrix elements are relatively
simple and analytic. Therefore, when working with a new system, one of the first
courses of action is to determine, which of them are needed present in the Hamilto-
nian for the generalized eigenvalue problem. Below, all the elements that will be
used are noted and most of them have been explicitly calculated in appendix B with
the exception of the standard overlap, which we decided to take from other sources
[8]. As we are concerned with low-energy scattering, we will only be dealing with
s-waves and as such only the lowest order matrix elements have been used. However,
extending the calculations to p-waves, and even d-waves, is not too difficult once
one has these general expressions, as one can simply perform a Taylor expansion of
the terms relating to the total shift vector, 𝐯; see equation (2.9), and then match up
the elements on both sides3, which is a well-recognized trick when working with
generating functions and Taylor series.

In order to avoid unnecessary clutter in the following equations, a shorthand
notation for the Gaussian basis elements is introduced as

𝐺′ = 𝐺(𝐬′;𝐴′, 𝐱), 𝐺 = 𝐺(𝐬;𝐴, 𝐱). (2.8)

The Overlap Matrix Element

The most important element is the standard overlap between two basis elements as it
shows up in every calculation at some point. The idea of the calculation is that when

3: For an explicit example of this, see "Dressing of Proton with Virtual Pions in a Nuclear Model with
Explicit Mesons" by Martin Østerlund [7].
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the inner product is written in the integral form, we can combine the exponentials

⟨𝐺′ |𝐺 ⟩ = ∫ 𝑑𝐱 exp(−𝐱
𝑇 (𝐴′ + 𝐴) 𝐱 + (𝐬′ + 𝐬)

𝑇 𝐱)

= ∫ 𝑑𝐱 exp(−𝐱𝑇𝐵𝐱 + 𝐯𝑇𝐱),
(2.9)

where 𝐵 = 𝐴′ + 𝐴 and 𝐯 = 𝐬′ + 𝐬. One can then diagonalize 𝐵 so we end up with
a product of 𝑁 shifted Gaussians, which we can calculate individually and then
combine again. Once that has been done, one will end up with something of the
form[8]

⟨𝐺′ |𝐺 ⟩ = 𝑀0(𝐵, 𝐯) = exp(
1
4
𝐯𝑇𝑅𝐯)(

𝜋𝑁

det(𝐵))

3/2

𝐯=0−−−→ 𝑀0(𝐵, 𝟎) = (
𝜋𝑁

det(𝐵))

3/2

,

(2.10)

where 𝑅 = 𝐵−1. In our case we will also need the standard overlap with a delta
function, which we have calculated in appendix B and has the form

⟨𝐺′ |𝛿(𝜔𝑇𝐱 − 𝐲𝟎)|𝐺 ⟩ =
𝑀0(𝐵, 𝐯)
(2𝜋)3

exp(−
1
4𝛼

(𝐪 − 𝐲𝟎)2)(

√𝜋
𝛼)

3

𝐯=0−−−→
𝑀0(𝐵, 𝟎)
(2𝜋)3

exp(−
1
4𝛼

𝐲𝟎2)(

√𝜋
𝛼)

3

,
(B.11)

where 𝐪 = 1
2𝜔

𝑇𝑅𝐯 and 𝛼 = 1
4𝜔

𝑇𝑅𝜔.

The Kinetic Matrix Element

When working with Hamiltonians, we will always have a kinetic term so this is also
quite an important element. The kinetic operator has the general form

𝐾 = −𝜕𝐱Λ𝜕𝐱𝑇 = −∑
𝑖,𝑗

Λ𝑖𝑗𝜕𝑖𝜕𝑗 , 𝜕𝑖 =
𝜕
𝜕𝐱𝑖

, (2.11)

where Λ is a symmetric positive-definite matrix. Since we got no further restriction
on Λ, we see that 𝐾 , in principle, also can represent mixed second order partial
derivatives, but physics tells us that when used in a Hamiltonian the Λ matrix will
necessarily be a diagonal matrix with entries of the form Λ𝑖𝑖 = 1

2𝑚𝑖
, where 𝑚𝑖 is the

mass of the 𝑖’th particle.
The matrix element has the form

⟨𝐺′ |𝐾 |𝐺 ⟩ = 𝑀0(𝐵, 𝐯)(6 Tr(𝐴
′Λ𝐴𝑅) + (𝐬′ − 2𝐴′𝐮)

𝑇 Λ (𝐬 − 2𝐴𝐮))
𝐯=0−−−→ 6𝑀0(𝐵, 𝟎) Tr(𝐴′Λ𝐴𝑅),

(B.23)

where 𝐮 = 1
2𝑅𝐯. As for the delta expression, we want an extra restriction in place:

since we are effectively freezing a particle in place, we do not want it to contribute
anything to the kinetic energy and if we require that 𝐾𝜔 = 𝜔𝑇𝐾 = 𝟎 this will be
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accomplished. Fortunately, this also greatly simplifies the calculation, as the deltas
will no longer be effected by the differential operators in 𝐾 , which makes us able to
effectively split them up into the form

⟨𝐺′ |𝐾𝛿(𝜔𝑇𝐱 − 𝑦0)|𝐺 ⟩ =
⟨𝐺′ |𝐾 |𝐺 ⟩
𝑀0(𝐵, 𝐯)

⟨𝐺′ |𝛿(𝜔𝑇𝐱 − 𝐲𝟎)|𝐺 ⟩

𝐯=0−−−→
⟨𝐺′ |𝐾 |𝐺 ⟩
𝑀0(𝐵, 𝟎)

⟨𝐺′ |𝛿(𝜔𝑇𝐱 − 𝐲𝟎)|𝐺 ⟩.
(B.26)

Both of these have been fully calculated in appendix B.

Coulomb matrix element

For the Coulomb + delta term we have two constant vectors, 𝜔 and 𝜂, and two
scenarios based on whether these are parallel or not. The reason for this is that
normally the solution is a result of a Fourier transform of the coulomb potential, but
when they are parallel, the delta function turns the Coulomb term into a constant,
which has no bearing on the integral calculation; greatly simplifying everything.
The full calculation can be found in appendix B and yields the expression

⟨𝐺′ |
𝛿(𝜔𝑇𝐱 − 𝐲𝟎)

|𝜂𝑇𝐱|
|𝐺 ⟩ =

⎧⎪⎪
⎨⎪⎪⎩

⟨𝐺′ |𝛿(𝜔𝑇 𝐱−𝐲𝟎)|𝐺 ⟩
𝑐 erf (

𝑐
2
√
𝑎) 𝜂 ∦ 𝜔

⟨𝐺′ |𝛿(𝜔𝑇 𝐱−𝐲𝟎)|𝐺 ⟩
|𝑘||𝑦0 | 𝜂 = 𝑘 ⋅ 𝜔

(B.47)

𝐯=0−−−→ 𝐜 =
𝛽
𝛼
𝐲𝟎, (2.12)

where erf(𝑥) is the special integral function, also called the error function, which is
defined as

erf(𝑥) =
2
√
𝜋 ∫

𝑥

0
d𝑡 exp(−𝑡2). (2.13)

Unlike the other terms in this section,we decided just to show how the 𝐜 changes
for 𝐯 → 𝟎, as it would only muddy the equation to change the 𝐜’s themselves. We
have also introduced the new constants

𝛽 =
1
4
𝜔𝑇𝑅𝜂, 𝛾 =

1
4
𝜂𝑇𝑅𝜂, 𝑎 = 𝛾 −

𝛽2

𝛼
, (2.14)

and the vectors

𝐩 =
1
2
𝜂𝑇𝑅𝐯, 𝐜 = 𝐩 −

𝛽
𝛼
(𝐪 − 𝐲𝟎). (2.15)

2.2 Scattering theory

Scattering theory in quantum mechanics is built upon concepts that has their roots
in classical scattering. This is not too surprising since the classical analogue has
had quite a large head start, historically speaking, and they should both agree when
looking at certain systems and regimes. Classically one would look at an incoming
particle with energy 𝐸 and with what is called the impact parameter, typically denoted
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b

d𝜎 dΩ

𝜃

Figure 2.2: A picture depicting a classical scattering setup with the relevant quantities and

their relations. The red dot represents the scattering center.

𝑏, that measures the vertical displacement between the initial trajectory of the
incoming particle and the scattering center (often consisting of/centered around
some target – see figure 2.2 for illustration). The particle, when approaching the
center, will then be measurably deflected by it, until it is far enough away to be locally
in a free particle system where we know it will continue on a straight trajectory
until it hits something; like a detector in the case of experimental physics. The angle
between this deflected trajectory and the original one is what we call the scattering
angle, 𝜃, which is one of the quintessential quantities of the scatterings process, and
a lot of classical scattering is about finding a relationship between 𝐸, 𝑏 and 𝜃.

Once this relation has been acquired, one can, as illustrated in figure 2.2, explore
the relationship between the differential of cross section, d𝜎, and the differential of
solid angle, dΩ, which together form the differential cross section, d𝜎

dΩ , which is a very
important and useful quantity. It is a sort of probabilistic measure of how likely a
specific scattering event is to occur. Also, if one integrates over all of the solid angles
they will get the total cross section (the total chance of the scattering event)

𝜎 = ∮
𝑆2

d𝜎
dΩ dΩ. (2.16)

This framework of thinking of the differential cross section as a sort of probability
goes even further, as it can be related to the scattering amplitude, 𝑓 , in the following
way

d𝜎
dΩ = |𝑓 (𝜃)|2, (2.17)

which resembles the common Born rule for probabilities of quantum mechanics
quite a lot. This result is of tremendous importance, as it allows us to relate an
experimentally verifiable quantity (the cross section) to a strictly theoretical object
(the scattering amplitude). This, in turn, allows us to test our interaction theories
more carefully, which is especially practical considering most calculations in this
field are forced to be approximated due to the complexity of the actual computations.
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The relevant theoretical question then becomes how you calculate the scattering
amplitude, and to this end we will introduce the notion of partial waves.

2.2.1 Partial wave expansion

Most of the math from this subsection can be found in "Physics and Molecules" by
B.H Bransden & C.J. Joachain[9].

In physics we often work with two sorts of scattering: high-energy and low-
energy. High-energy scattering is the sort most often encountered in accelerator
physics, where we smash particles together at close to the speed of light, which
makes the interaction time between particles extremely short. Low-energy scattering,
also called s-wave scattering, on the other hand is what is typically found in nuclear
physics and sensitive instruments. Fortunately, with each of these regimes also follow
some natural approximations that we can use to get an answer to our calculation
within a precision that suits the situation. For example, in high-energy we have
the Born approximation and Born series[10], while low-energy has the partial wave
expansion which is what we will look at now.

The idea is that when one has a central potential, such that the potential only
depends on the magnitude of r, we expect to see azimuthal symmetry and our
solution4, Ψ(+)

𝐤𝑖 , should be able to be expanded as a series of Legendre polynomials as:

Ψ(+)
𝐤𝑖 (𝑘, 𝑟 , 𝜃) =

∞
∑
𝓁=0

𝑅𝓁(𝑘, 𝑟)𝑃𝓁 (cos (𝜃)) , (2.18)

where 𝑘 is the wave number and 𝑅𝓁(𝑘, 𝑟) is a solution to the radial equation

[
d2

d𝑟2 +
2
𝑟
d
d𝑟 −

𝓁(𝓁 + 1)
𝑟

− 𝑈 (𝑟) + 𝑘2]𝑅𝓁(𝑘, 𝑟) = 0, (2.19)

where 𝑈 (𝑟) = 2𝑚𝑉 (𝑟) in Hartree atomic units. Usually one solves this by first
introducing a new radial function

𝑢𝓁(𝑘, 𝑟) = 𝑟𝑅𝓁(𝑘, 𝑟), (2.20)

which removes the linear differential term from equation (2.19), leaving

[
d2

d𝑟2 −
𝓁(𝓁 + 1)
𝑟2

− 𝑈 (𝑟) + 𝑘2] 𝑢𝓁(𝑘, 𝑟) = 0. (2.21)

The radial function can then be expanded in a power series using the Frobenius
method

𝑢𝓁(𝑘, 𝑟) = 𝑟 𝑠
∞
∑
𝑛=0

𝑎𝑛𝑟𝑛 (2.22)

which gives us the indicial equation for 𝑠. Going through the calculation yields two
solutions, one which is regular at the origin and behaves like

𝑢𝓁(𝑘, 𝑟) −−−→𝑟→0
𝑟 𝓁+1 (2.23)

4: The (+) stands for positive phase velocity which simply means the phases of all the frequency com-
ponents travel together in the positive direction.
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and one which is irregular and behaves like

𝑢𝓁(𝑘, 𝑟) −−−→𝑟→0
𝑟−𝓁 (2.24)

Since we need this to describe a physical process, it cannot be infinite anywhere, so
near the origin we must make sure it is the regular solution for 𝑢𝓁(𝑘, 𝑟) that is chosen.
Now, assuming that the potential only has a certain range 𝑎 (after which it can be
ignored) we can also solve the radial equation (equation (2.19)) in this region where
it reduces to the much simpler

[
d2

d𝜌2 +
2
𝜌

d
d𝜌 + 1 −

𝓁(𝓁 + 1)
𝜌2 ]𝑅𝓁(𝜌) = 0, 𝜌 = 𝑘𝑟. (2.25)

This equation is known as the spherical Bessel differential equation and the general
solution is a linear combination of the spherical Bessel, 𝑗𝓁, and Neumann, 𝜂𝓁, function

𝑗𝓁(𝜌) = (
𝜋
2𝜌)

1
2

𝐽𝓁+1/2(𝜌), 𝜂𝓁(𝜌) = (−1)𝓁+1(
𝜋
2𝜌)

1
2

𝐽−𝓁−1/2(𝜌), (2.26)

where 𝐽𝜈(𝜌) is a Bessel function of order 𝜈. An interesting property of these spherical
functions is their limiting behaviour, which for small values looks like5

𝑗𝓁(𝜌) −−−→𝜌→0

𝜌𝓁

(2𝓁 + 1)!! [
1 −

𝜌2

2(2𝓁 + 3)
+⋯] , (2.27)

𝜂𝓁(𝜌) −−−→𝜌→0
−
(2𝓁 + 1)!!
𝜌𝓁+1 [1 −

𝜌2

2(1 − 2𝓁)
+⋯] . (2.28)

So we see that just like 𝑢𝓁(𝑘, 𝑟), we have a regular and irregular solution for 𝑟 , 𝜌 → 0.
Likewise, for 𝜌 → ∞, although it still works well for values of 𝜌 somewhat larger
than 𝓁(𝓁+1)

2 , we have the asymptotic formulas

𝑗𝓁(𝜌) −−−−→𝜌→∞

1
𝜌
sin(𝜌 − 𝓁

𝜋
2 )

,

𝜂𝓁(𝜌) −−−−→𝜌→∞
−
1
𝜌
cos(𝜌 − 𝓁

𝜋
2 )

,
(2.29)

which will be useful shortly.
We now return to the radial functions 𝑅𝓁(𝑘, 𝑟) and 𝑢𝓁(𝑘, 𝑟). We see that in the

external region (𝑟 > 𝑎) we have the solution

𝑅𝓁(𝑘, 𝑟) = 𝐵𝓁(𝑘)𝑗𝓁(𝑘𝑟) + 𝐶𝓁(𝑘)𝜂𝓁(𝑘𝑟), (2.30)

5: 𝑛!! is the double factorial, which is a product starting at 𝑛 that then jumps down in steps of two

𝑛!! = 𝑛(𝑛 − 2)(𝑛 − 4)⋯

{
1, 𝑛 odd
2, 𝑛 even
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which by using 𝐴𝓁 = [𝐵2𝓁 (𝑘) + 𝐶2
𝓁 (𝑘)]

1
2 , tan(𝛿𝓁(𝑘)) = −𝐶𝓁(𝑘)

𝐵𝓁(𝑘) as well as the asymptotic
relations (equation (2.29)), gives us an asymptotic relation for 𝑅𝓁(𝑘, 𝑟) of the form

𝑅𝓁(𝑘, 𝑟) −−−−→𝜌→∞

𝐴𝓁(𝑘)
𝑘𝑟

sin(𝑘𝑟 − 𝓁
𝜋
2
+ 𝛿𝓁(𝑘)) . (2.31)

It is also possible to show that this relationship is true, as long as the potential
vanishes faster than 𝑟−1. The introduced quantity, 𝛿𝓁(𝑘), is called the phase shift and
is a measure for how much the potential mixes the regular and irregular solutions
through its interaction. That is, if one had zero potential everywhere, the shift
would be 0 and our solution would be a pure spherical Bessel function. In the next
section, we will discuss the importance of the phase shift through its connection to
the scattering amplitude which is what we were trying to find.

What is the phase shift good for?

We are now interested in the stationary state wave function, denoted Ψ(+)
𝐤𝑖 (𝐫), which

is a particular solution to the differential equation

(∇2 + 𝑘2 − 𝑈 (𝐫))Ψ(𝐫) = 0 (2.32)

that satisfies the asymptotic boundary condition

Ψ(+)
𝐤𝑖 (𝐫) −−−−→𝑟→∞

𝐴 [exp(𝑖𝐤𝑖 ⋅ 𝐫) + 𝑓 (𝑘, 𝜃, 𝜙)
exp(𝑖𝑘𝑟)

𝑟 ] (2.33)

where 𝐤𝑖 is some initial wave vector. If we rewrite equation (2.33) using the well-
known expansion of a plane wave in Legendre polynomials, 𝑃𝓁(𝑥),

𝐴 exp(𝑖𝑘𝑧) = 𝐴 exp(𝑖𝑘𝑟 cos(𝜃)) = 𝐴
∞
∑
𝓁=0

(2𝓁 + 1)𝑖𝓁𝑗𝓁(𝑘𝑟)𝑃𝓁(cos(𝜃)) (2.34)

where 𝑖 is the imaginary unit, we can then compare it to the asymptotic form of
the radial function 𝑅𝓁(𝑘, 𝑟), through their connection in equation (2.18), which after
some coefficient comparisons gives us

𝑓 (𝑘, 𝜃) =
1
𝑘

∞
∑
𝓁=0

(2𝓁 + 1) exp(𝑖𝛿𝓁(𝑘)) sin(𝛿𝓁(𝑘))𝑃𝓁(cos(𝜃)). (2.35)

We now have a direct relation between the desired scattering amplitude and the
phase shift, but we can also find an expression for the total cross-section based on
the connection between it and the amplitude

𝜎tot(𝑘) =
4𝜋
𝑘2

∞
∑
𝓁=0

(2𝓁 + 1) sin2(𝛿𝓁(𝑘)). (2.36)

Now, in general, the idea of the partial wave method is that, the lower the energy
of the incident particle, the less terms in the sumwill be needed. This can be explained
by looking back at equation (2.21) and writing an effective potential by adding a
centrifugal barrier term to the potential

𝑈eff(𝑟) = 𝑈 (𝑟) +
𝓁(𝓁 + 1)
𝑟2

. (2.37)
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When 𝓁 increases, the second term becomes more prominent and the incident particle
will need more energy to overcome this repulsion in order to probe the interaction
region. Consequently, as we are only interested in low-energy scattering; s-wave
scattering, we only need the lowest order possible, 𝓁 = 0. Therefore we will be
particularly interested in the expressions (using that 𝑃0(𝑥) = 1)

𝑓 (𝑘) =
1
𝑘
exp(𝑖𝛿0(𝑘)) sin(𝛿0(𝑘)), 𝜎tot(𝑘) =

4𝜋
𝑘2

sin2(𝛿0(𝑘)). (2.38)

2.2.2 Our system

To try out the ECG method, we are going to use one of the simplest non-trivial
systems, that being low-energy proton-hydrogen scattering which would fall within
the theory of ’non-relativistic scattering by a real potential’. As with most things in
quantum mechanics, the place to begin is with Schrödinger’s equation which states

𝐻Ψ(x, 𝑡) = [𝑇 (x) + 𝑉 (x)] Ψ(x, 𝑡) = 𝐸Ψ(x, 𝑡) (2.39)

where 𝐻 is our Hamiltonian, 𝑇 (x) describes the kinetic energy of the system and
𝑉 (x) is the potential of our system. As is conventional in this field, we will be using
Hartree atomic units, in which our Hamiltonian will have the form the

𝐻 = 𝑇𝑝𝐻 + 𝑇𝑝𝑖 + 𝑇𝑒 −
1

|𝐱𝑒 − 𝐱𝑝𝐻 |
−

1
|𝐱𝑒 − 𝐱𝑝𝑖 |

+
1

|𝐱𝑝𝐻 − 𝐱𝑝𝑖 |
(2.40)

where 𝐱𝑝𝐻 is the position vector corresponding to the hydrogen proton, 𝐱𝑝𝑖 is the
incident proton, 𝐱𝑒 is the electron and 𝑇𝑖 = − 1

2𝑚𝑖
𝜕2𝐱𝑖 are the kinetic energies.

At first glance it might seem like our entire analysis in section 2.2.1 was in vain
considering that:

1) We are not dealing with a central potential

2) We only have coulomb terms, which do not satisfy the vanishing requirement

but luckily, we have a workaround for both of these. As will be discussed further in
section 2.2.3, our strategy will be to use the Born-Oppenheimer approximation to
separate the system into two parts which will net us an effective potential energy,
𝜖(𝐲). Other than greatly simplifying the calculation, this also has the added benefit of
turning it into a central potential problem; solving the first complication. As for the
vanishing requirement, we have to think about the system electrodynamically. The
hydrogen atom does not have an electric monopole so when far away the potential is
effectively immediately 0. Meanwhile, as the incident proton moves closer, the best
place for the electron to be, energetically speaking, is in-between the two protons;
creating an ion-induced dipole, which, as luck would have it, has an inverse square
potential[11], 𝑟−2. Therefore our analysis is still valid for our system and, by the
theory of this section, we should eventually be able to fit a sine wave far away and
find the phase shift as we wanted.
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2.2.3 Born-Oppenheimer approximation

One of the primary methods for calculation we are going to utilise is the Born-
Oppenheimer (BO) approximation which is a sort of adiabatic approximation where
we separate our system into a fast moving, and slow moving, part and assume that
these can be solved separately. Normally, this comes in the form of separating the
nuclear and electronic motion, but in our case we have the fast relative motion
between the hydrogen proton and its electron and the slow relative motion between
the hydrogen proton and incident proton. As such, if we denote the slow moving
position coordinate with 𝐲 and the fast moving with 𝐱 we can then rewrite our
solution as

Ψ(𝐱, 𝐲) =
𝑁
∑
𝑛=1

𝑓𝑛(𝐲)𝜙𝑛(𝐱, 𝐲) (2.41)

where the 𝜙𝑛(𝐱, 𝐲)s form an orthonormal basis and satisfy

[𝑇𝑥 + 𝑉 (𝐱, 𝐲)]𝜙𝑛(𝐱, 𝐲) = 𝜖𝑛(𝐲)𝜙𝑛(𝐱, 𝐲) (2.42)

if we insert these two conditions into equation (2.39) we obtain:

[𝑇𝑥 + 𝑇𝑦 + 𝑉 (𝐱,𝐲)]
𝑁
∑
𝑛=1

𝑓𝑛(𝐲)𝜙𝑛(𝐱, 𝐲)

= 𝑇𝑦
𝑁
∑
𝑛=1

𝑓𝑛(𝐲)𝜙𝑛(𝐱, 𝐲) +
𝑁
∑
𝑛=1

𝑓𝑛(𝐲)[𝑇𝑥 + 𝑉 (𝐱, 𝐲)]𝜙𝑛(𝐱, 𝐲)

= [𝑇𝑦 + 𝜖𝑛(𝐲)]
𝑁
∑
𝑛=1

𝑓𝑛(𝐲)𝜙𝑛(𝐱, 𝐲) = 𝐸
𝑁
∑
𝑛=1

𝑓𝑛(𝐲)𝜙𝑛(𝐱, 𝐲)

(2.43)

We then do the classic trick of applying ⟨𝜙𝑚(𝐱, 𝐲) |, or rather ∫ d3𝑥𝜙∗𝑚, since we are
keeping 𝐲 constant, on both sides giving us:

𝑁
∑
𝑛=1

⟨𝜙𝑚 |𝑇𝑦𝑓𝑛(𝐲)|𝜙𝑛 ⟩ +
𝑁
∑
𝑛=1

𝜖𝑛(𝐲)𝑓𝑛(𝐲)⟨𝜙𝑚 |𝜙𝑛 ⟩ = 𝐸
𝑁
∑
𝑛=1

𝑓𝑛(𝐲)⟨𝜙𝑚 |𝜙𝑛 ⟩ (2.44)

where orthogonalisation then allows us to write it as

𝑁
∑
𝑛=1

⟨𝜙𝑚 |𝑇𝑦𝑓𝑛(𝐲)|𝜙𝑛 ⟩ + 𝜖𝑚(𝐲)𝑓𝑚(𝐲) = 𝐸𝑓𝑚(𝐲). (2.45)

If we now assume that 𝑦 is slow enough, such that the operator 𝑇𝑦 will not influence
𝜙𝑛 too much, we can do another BO approximation to simply pull 𝑇𝑦 outside like the
other terms, giving us the equation

[𝑇𝑦 + 𝜖(𝐲)]𝑓 (𝐲) = 𝐸𝑓 (𝐲). (2.46)

This is another sort of Hamiltonian relation, but for 𝑓 (𝐲). So the plan is to rewrite the
𝜙𝑛(𝐱, 𝐲) using the method of ECGs and then solve equation (2.42) to get an ’effective
potential’ depending only on 𝑦, 𝜖(𝐲). We then use this potential to solve equation
(2.46) via the grid method, described in appendix C, which should give us our 𝑓𝑛’s,
as well as the real energy of the system.
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2.2.4 Non-Born-Oppenheimer approximation

If we instead choose not to do the second BO approximation, we need another way to
deal with the summation term of equation (2.45). Since we know that 𝑇𝑦 = 1

2𝑚𝑦
𝜕2𝑦 , we

can simply just insert 𝜕2𝑦 into ⟨𝜙𝑚 |𝑇𝑦𝑓𝑛(𝐲)|𝜙𝑛 ⟩ and use it to the right, which should
give us 3 terms

𝜕𝑦 (𝑓 (𝐲)𝜙𝑛(𝐱, 𝐲)) = 𝜕2𝑦(𝑓 (𝐲))𝜙𝑛(𝐱, 𝐲) + 𝑓 (𝐲)𝜕2𝑦𝜙𝑛(𝐱, 𝐲) + 2 (𝜕𝑦𝑓 (𝐲)) (𝜕𝑦𝜙𝑛(𝐱, 𝐲)) .
(2.47)

Inserting equation (2.47) back into equation (2.45) gives us:

𝑇𝑦𝑓𝑚(𝐲)+
1

2𝑚𝑦

𝑁
∑
𝑛=1

(2𝜕𝑦𝑓𝑛(𝐲)⟨𝜙𝑚 | 𝜕𝑦𝜙𝑛 ⟩ + 𝑓𝑛(𝐲)⟨𝜙𝑚 | 𝜕2𝑦𝜙𝑛 ⟩)+𝜖𝑚(𝐲)𝑓𝑚(𝐲) = 𝐸𝑓𝑚(𝐲).

(2.48)
We can now introduce the scattering coefficients, 𝑃𝑚𝑛 and 𝑄𝑚𝑛

𝑃𝑚𝑛(𝐲) = ⟨𝜙𝑚 | 𝜕𝑦𝜙𝑛 ⟩, 𝑄𝑚𝑛(𝐲) = ⟨𝜙𝑚 | 𝜕2𝑦𝜙𝑛 ⟩, (2.49)

and get

𝑇𝑦𝑓𝑚(𝐲) +
1

2𝑚𝑦

𝑁
∑
𝑛=1

(2𝜕𝑦𝑓𝑛(𝐲)𝑃𝑚𝑛(𝐲) + 𝑓𝑛(𝐲)𝑄𝑚𝑛(𝐲)) + 𝜖𝑚(𝐲)𝑓𝑚(𝐲) = 𝐸𝑓𝑚(𝐲), (2.50)

which is a more difficult differential equation for 𝑓𝑚(𝐲). The next step is then to find
an explicit form of 𝑃𝑚𝑛 and 𝑄𝑚𝑛. This, like all our other matrix elements from 2.1.2,
will be done through ECGs, but we keep in mind that the inner product is specifically
not integrating over the slow variable, from how we introduced it in the previous
section. So if we assume that the basis functions, 𝜙𝑖, have the form

𝜙𝑛 = exp (−𝐱𝑇𝐴𝐱) , 𝜙𝑚 = exp (−𝐱𝑇𝐴′𝐱) , (2.51)

then the scattering coefficients will have the following form6

𝑃𝑚𝑛 = −2(𝐮̃
𝑇
𝑘 [𝐴]

𝑘̃ + 𝐴𝑘𝑘𝐱𝑇𝑘) 𝑀̃𝑘 , (D.27)

𝑄𝑚𝑛 = 4((𝐴′Λ𝑘𝐴)𝑘𝑘 𝐱
2
𝑘 + 𝐮̃𝑇𝑘 ([𝐴′Λ𝑘𝐴]

𝑘̃ + ([𝐴′Λ𝑘𝐴]𝑘̃)
𝑇

) 𝐱𝑘+

3
2
Tr(

̃(𝐴′Λ𝑘𝐴)𝑘𝑅̃𝑘) + (𝐮̃𝑘)𝑇 ̃(𝐴′Λ𝑘𝐴)𝑘𝐮̃𝑘) 𝑀̃𝑘 ,
(D.28)

where 𝑘 denotes the index of the slow changing variable of 𝐱; that is, in our prior
notation we would write 𝐲 = 𝐱𝑘 . If our object is adorned by a ◦̃𝑘 , it will imply the
removal of all indices of the object having to do with 𝑘 (The 𝑘’th row and column
for matrices, and for column and row vectors, respectively), Λ𝑘 is the matrix that has
a value of 1 at index 𝑘𝑘 and is 0 everywhere else. [◦]𝑛 or [◦]𝑛 being either a row or
column vector respectively created from the 𝑛’th row or column of the matrix in the

6: Although, only the reduced forms without shift vectors. For more general coefficients see appendix E.
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brackets. If the 𝑛 has a tilde on it, like so [◦]𝑛̃, it will mean the vector created from
this operation with the 𝑛’th index removed. Lastly we have the symbols:

𝐮̃𝑘 =
1
2
𝑊𝑘𝜉𝐤, 𝑊𝑘 = (𝐵̃𝑘)−1, 𝜉𝑖 = 2𝐵𝑘𝑖𝐱𝑘 , (2.52)

𝑀̃𝑘 = exp (−𝐵𝑘𝑘𝐱2𝑘) exp(
1
4 (

𝜉𝐤)
𝑇
𝑊𝑘𝜉𝐤)(

𝜋𝑁−1

det(𝐵̃𝑘))

3/2

. (D.12)

If one wishes to see explicit, written-out examples of the notation in action, they can
check out the designated section in appendix D.

The scattering coefficients, 𝑄 and 𝑃 , are alternating and decreasing in nature[12].
Therefore we will overshoot and undershoot our target by less and less as we add
more terms. Thus, the ’real value’ will lie somewhere between the zeroth term
(double BO) and first term approximation, which just adds 𝑄01,

𝑇𝑦𝑓0(𝐲) +
1

2𝑚𝑦
𝑓1(𝐲)𝑄01(𝐲) + 𝜖0(𝐲)𝑓0(𝐲) = 𝐸𝑓0(𝐲). (2.53)

This enables us to find both a lower and upper bound on our calculations with a bit
more effort.

2.3 Optimization

Looking back at the ansatz used in the Ritz method from equation (2.2),

Ψ =
𝑁
∑
𝑖=1

𝑐𝑖𝜓𝑖({𝑎𝑖}), (2.2)

in light of the discussion of the ECGs, it should now be clear that the coefficients
𝑎𝑖, in our case, represent the matrices, 𝐴𝑖, used in the complete description of our
Gaussian basis elements as per their reduced form in equation (2.6),

𝐺(𝐴, 𝐱) = exp(−𝐱𝑇𝐴𝐱). (2.6)

However, while the 𝑐𝑖’s are given to us "for free" when we solve the generalized
eigenvalue problem, equation (2.3),

𝐜 = 𝐸 𝐜, (2.3)

we still need to generate some positive-definite 𝐴𝑖’s before we get to the optimization
process. So the question becomes both how should we generate them and how
should we optimize them. Overall we will have two different optimization strategies
to choose between: we can either optimise everything at once or generate the 𝐴𝑖’s
stochastically before optimizing the 𝑐𝑖’s via the generalized eigenvalue problem. Both
of these options will be discussed below.
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2.3.1 The generation of 𝐴matrices

As noted during the definition of the ECGs, we need the 𝐴 matrices to be symmetric
and positive-definite. This is simply to ensure that all our integrals will be convergent.
The naive, but obvious, approach to generating the𝐴matrices would be the following
process:

1. Create a random 𝑁 × 𝑁 matrix

2. Symmetrize it

3. Check if it is positive-definite7 (if not return to step 1).

But it turns out that there is a pretty big bottleneck hidden in plain sight in
the form of step number 3. It turns out that positive-definite matrices are actually
quite scarce once the dimensionality is increased, which is discussed further in
appendix E. Therefore it quickly becomes an impractical solution for even small
systems, but luckily, in this section, we will argue for the existence of a method for
generating positive semi-definite matrices8, which we can then massage into proper
definite matrices. The idea is that if we can somehow find a way to rewrite 𝐱𝑇𝐴𝐱 as
∑𝑁
𝑖<𝑗 (

𝐱𝑖−𝐱𝑗
𝑏𝑖𝑗 )

2
then we are guaranteed to get a non-negative result for all choices of

𝐱’s. It turns out that the choice of 𝐴, which makes this possible is

𝐴 = ∑
𝑖<𝑗

w(𝑖, 𝑗)w(𝑖, 𝑗)𝑇

𝑏2𝑖𝑗
, (2.54)

where w(𝑖, 𝑗) is the vector that has a 1 in entry 𝑖, a −1 in entry 𝑗 and 0 otherwise. It
is quite easy to show this works as w(𝑖, 𝑗)𝑇𝐱 = 𝐱𝑖 − 𝐱𝑗

𝐱𝑇𝐴𝐱 = 𝐱𝑇
(
∑
𝑖<𝑗

w(𝑖, 𝑗)w(𝑖, 𝑗)𝑇

𝑏2𝑖𝑗 )
𝐱 = ∑

𝑖<𝑗

(𝐱𝑇w(𝑖, 𝑗)) (w(𝑖, 𝑗)𝑇𝐱)
𝑏2𝑖𝑗

= ∑
𝑖<𝑗

(𝐱𝑖 − 𝐱𝑗)
2

𝑏2𝑖𝑗
.

(2.55)

However, the semi-definiteness turns out not just to be a possibility, but a con-
sequence, as one might notice that a vector that has identical entries in 𝑖 and 𝑗 has a
zero inner product with a given w(𝑖, 𝑗) and therefore the vector containing all 1’s,
let us call it 𝐦, satisfies:

w(𝑖, 𝑗)𝑇𝐦 = 0, ∀𝑖, 𝑗 . (2.56)

If this is true, then 𝐦 must necessarily also be an eigenvector of 𝐴 with eigenvalue 0

𝐴𝐦 = ∑
𝑖<𝑗

w(𝑖, 𝑗) (w(𝑖, 𝑗)𝑇𝐦)
𝑏2𝑖𝑗

= ∑
𝑖<𝑗

0 = 0, (2.57)

7: This would be done through a diagonalisation routine by checking if all the eigenvalues are positive
which is an equivalent criteria.

8: Semi-definiteness simply means that 𝐱𝑇𝐴𝐱 ≥ 0 instead of 𝐱𝑇𝐴𝐱 > 0.
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so all matrices generated this way are guaranteed to be positive semi-definite, which
is not quite strict enough for our purpose. Fortunately, we know that this eigenstate
corresponds to the center of mass coordinate, when we have transformed it to Jacobi
coordinates, and it has an eigenvalue of 0 exactly because there are no external forces
acting on our system. Therefore, there is not a problem, as we are disregarding the
center of mass coordinate completely by removing it after the transformation. Thus,
we have ensured that our 𝐴’s are positive-definite as we wanted.

Another advantage of this rewritten form is that it gives us a clear thing to use
in the optimization, that being the 𝑁 (𝑁+1)

2 𝑏𝑖𝑗 -coefficients making up 𝐴.

2.3.2 The stochastic method

As for the actual optimization, a more exotic method one could use is a stochastic
one. In this method, we have two parameters to change the quality of the fit: the
amount of repeats and the amount of iterations, 𝑡. The repeats is how many times
we iterate through the entire basis set, as the first element we found might not be as
good as it could be, once the entire basis has been created. Iterations, on the other
hand, is just how many elements we test per position in the basis. The algorithm is
then as follows (for a basis of 𝑘 elements)

1. Generate the proper amount of 𝑏𝑖𝑗 ’s, using some suitable random distribution,
and use them to create 𝑡 candidates for your first basis element, 𝐴1.

2. Out of the 𝑡 candidates, pick the𝐴1 whichminimizes the energy, using equation
(2.2), on its own and move on to your second basis element, 𝐴2.

3. Do the same procedure as for 𝐴1, except when you compare the candidates,
you do it with respect to the two-element basis, {𝐴1, 𝐴2}. Pick the 𝐴2 which
made {𝐴1, 𝐴2} yield the lowest energy, and you have a provisional basis of two
elements.

4. Continue this procedure until the basis is full: {𝐴1, 𝐴2,⋯ , 𝐴𝑘}.

5. Now, for each repeat, we start over at 𝐴1 and go through the same thing again,
except now all the choices have to be weighed against a full basis.

6. After all the repeats, we should now have a basis set which has been properly
minimized. The energy here will be used as our ground state energy of the
system.

We then do this for different 𝑦’s, as described in section 2.2.3, and this should give us
an effective energy curve as a function of 𝑦. This method has a lot of advantages
when compared to its competition. First of all, it reduces the amount of objects to
optimize over significantly which is usually the bottleneck of most other methods. It
also does not require us to recalculate the Hamiltonian at every iteration nor to fully
rediagonalize it every time we select a new basis element.

However, the method is not without problems. Since it only takes on one element
at a time in the beginning there is a high probability that it ends up in a local
minima instead of a global minima. This is not always fixed by further repeats since
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by then the other elements will have been picked to minimize inside this minima.
This problem is by no means unique to this method however. Another problem is
that its efficiency is very dependent on the random distribution we choose. This is
analogous to how a good starting guess and region of search is very important for
other optimization strategies. If the matrix is big enough, corresponding to having
a system with a lot of particles, this method is also not particularly faster than the
direct approach, since the amount of numbers one needs to generate each time grows
as 𝑁 2, which quickly adds up when including all the repeats and iterations on top.

We also had problems with getting it to converge properly, but this has been a
general issue that we will discuss in section 2.3.4. In any case, after a lot of trouble,
we chose to do what seemed to be a more direct approach.

2.3.3 The direct approach

Instead of doing the stochastic method, one could simply optimize everything at once
which we decided to do instead. After much trouble and many attempts, we ended up
settling on the ’Nelder-Mead’ (NM) method, also called the downhill simplex method,
which has be implemented using the Python library SciPy through a function called
’optimize.minimize’. Like the stochastic method this routine also has a chance of
only finding a local minima since it is a local search heuristic[13], but it is also a
lot easier to set up. For most calculations, except for the purposes of comparison,
we usually chose to only optimize 3 ECGs which, as we will see later in section 3.2,
seemed to be sufficient.

2.3.4 Problems with convergence

The biggest problemwith the numerical aspect of this thesis, when using the methods
presented in section 2.3.2 and 2.3.3, has been getting the optimization to act as we
wanted it to. A lot of it probably boils down to poor implementation, but oftentimes
we would simply end up with ground state energy lower, much lower, than what
should be allowed through the variational method. It is almost as though the optim-
ization would run into an algebraic error and then just insert random values. The
running hypothesis for where this numerical problem arises is the from the fact that
the double-precision floating-point format has very limited resolution when working
with both large and small numbers at the same time; especially during division. This
is further supported by equation (B.26) in which we have a variable 𝑎, which we
proved in appendix B could not be equal to 0 unless we had collinearity between
the constant vectors in the delta function and Coulomb potential. However, despite
this analytical impossibility of 0, "ZeroDivisionError: division by zero" was
by far the most common error in my script, and it always referred back to that very
same equation. If nothing else, this tells us that if a robust numerical calculation is
required, then we would need to use another datatype for our variables with higher
precision, or rewrite the equations in a more numerically friendly way, which is
outside my area of expertise.

After much hassle we did manage to get it to behave a little bit, for 3 ECGs
specifically, but the limiting behaviour was still giving us values that were way too
small. After having a discussion with my supervisor, who did not seem experience
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the same complication, we found out the difference in our approaches was that he
had set the off-diagonal elements, of the 𝐴 matrices, to 0. After we did the same,
we obtained the same result, but we have still yet to figure out what went wrong
with the off-diagonal elements, and why they allowed for ground state values lower
than physically possible. Only using diagonals thankfully also reduced the amount
division errors, although they did not remove them completely.



Chapter 3
The Scattering System

In this section we will go into greater detail about the scattering system using most
of the things derived in the previous chapter. A lot of preliminary numerical results
will also be presented to check that the matrix elements are working as intended.

3.1 The system

As mentioned in section 2.2.2, the scattering problem we are going to try to look at
is proton-hydrogen scattering, which means we are going to have a three-particle
system. The reason for this choice is that we are only going to test whether or not
this ECG method even makes sense to use, and for this purpose we deemed it useful
to start with what seemed to be one of the simplest non-trivial scattering examples.
First we want to rewrite our Hamiltonian, previously seen in equation (2.40); which
we will write below for ease of access

𝐻 = 𝑇𝑝𝐻 + 𝑇𝑝𝑖 + 𝑇𝑒 −
1

|𝐱𝑒 − 𝐱𝑝𝐻 |
−

1
|𝐱𝑒 − 𝐱𝑝𝑖 |

+
1

|𝐱𝑝𝐻 − 𝐱𝑝𝑖 |
. (2.40)

To rewrite it, we will introduce the variable and matrix

𝐫 = [𝐱𝑒 , 𝐱𝑝𝐻 , 𝐱𝑝𝑖]
𝑇 , Λ =

⎡
⎢
⎢
⎢
⎣

1
2𝑚𝑒

0 0
0 1

2𝑚𝑝
0

0 0 1
2𝑚𝑝

⎤
⎥
⎥
⎥
⎦

, (3.1)

while reintroducing the notation 𝐰(𝑖, 𝑗) from section 2.3.1 and 𝐾 from section 2.1.2,
allowing us to write it more succinctly as

𝐻 = 𝐾 −
1

|𝐰(1, 2)𝑇 𝐫|
−

1
|𝐰(1, 3)𝑇 𝐫|

+
1

|𝐰(2, 3)𝑇 𝐫|
. (3.2)

This is a more useful form when considering the shape of the calculated matrix
elements. We can then Jacobi coordinate transform the system into the form seen in
figure 3.1.
This reduces the complexity quite a bit since we now only have two variables, that
being the fast variable, 𝐱, and our slow variable, 𝐲 (as per the discussion in section

25
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Figure 3.1: An illustration of our transformed system with the relevant variables noted. We

note that we have reduced the degrees of freedom by one. We also note that when reducing

𝐲, which we are using as our slow variable, 𝑝𝑖 comes way closer to 𝑝𝐻 than to 𝑒, since it goes
through the COM of hydrogen and 𝑝𝐻 is more than 1800 heavier than 𝑒. This is relevant
for the analysis we do in section 3.2. The credit for the image goes to its creator Martin C.

Østerlund.

2.2.3). We also note that since the proton is about 1800 times more massive than the
electron, the CoM of hydrogen is effectively right next to the hydrogen proton. This
will be relevant when we have to test the limits of our matrix elements.

3.2 The limit test

Tomake sure we obtained the correct matrix elements, we thought it would be fruitful
to reduce the complexity of the system by disregarding the repulsion between the
protons, since, in this system, we have two recognizable limits for 𝑦. In one end,
when the incident proton is far away, corresponding to large 𝑦 values, all we have left
is a single unperturbed hydrogen atom and we know that in our unit system this has
a ground state energy of − 1

2 . Meanwhile, for small 𝑦, we just have a hydrogen atom
with a nucleus of twice the mass and, more importantly, charge. One can show[14]
that the energy of a hydrogen-like (one electron) atom with charge 𝑍 , in our units,
is:

𝐸𝑛 = −
𝑍2

2𝑛2
. (3.3)

That is to say, in this particular situation the ground state energy is simply 𝐸1 = −𝑍2

2
and therefore we expect the other limit to approach − 22

2 = −2.
This result can be seen in figure 3.2, and it also supports the choice of using only

3 ECGs, as mentioned during section 2.3.3. This is because it seems noticeably better
as a choice than 2, while not being significantly worse than 4, even though it is a lot
quicker for my program to calculate. To see this comparison more clearly, we also
made a plot comparing the differences between the 5 functions in figure 3.3.
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Figure 3.2: A semi-logarithmic plot showing the limiting behaviour of our proton-hydrogen

wave functions, where we have disregarded the repulsion term between the protons, for a

variable amount of ECGs in our basis. We see that in one end it quickly approaches −2 while
in the other it approaches − 1

2 as we expected theoretically from the discussion in section

3.2. It can also be seen, although it is made more clear in figure 3.2, that 3 ECGs seems to

be the sweet spot as it is still noticeably better than 2, but not seemingly much worse than

4. The units of the 𝑥-axis are Bohr radii, 𝑎0, and the units of the 𝑦-axis are Hartree energy
units, Ha.

3.3 The actual calculation

The problems first become apparent when having to do the calculation with the
repulsion included. Before the limit test, when doing the calculations with a non-
diagonal matrix, we managed to make the curves seen in figure 3.4,
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Figure 3.3: A semi-logarithmic plot showing the value difference between thewave functions

of figure 3.2. This supports the choice of 3 ECGs being sufficient for the calculations. The
units of the 𝑥-axis are Bohr radii, 𝑎0, and the units of the 𝑦-axis are Hartree energy units,

Ha.

Figure 3.4: An energy curve plot for the proton-hydrogen scattering system when using

non-diagonal PD matrices. We notice that it has a valley of minimum energy as is typical

for bound systems like ours. The units of the 𝑥-axis are Bohr radii, 𝑎0, and the units of the

𝑦-axis are Hartree energy units, Ha.

which matches the sort of curve one would want to find during these sorts of
calculations. The issue is that using non-diagonal positive-definite matrices always
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Figure 3.5: Typical energy curve plot for the proton-hydrogen scattering system when using

diagonal matrices only. We notice that there is no valley this time unlike figure 3.4. The

units of the 𝑥-axis are Bohr radii, 𝑎0, and the units of the 𝑦-axis are Hartree energy units,

Ha.

yielded the wrong limits, when performing the test afterwards, as mentioned in
section 2.3.4. On the other hand, if we change to diagonal matrices we can obtain
the limits just fine, but then when going back to calculate these energy curves, we
can no longer reproduce the energy valleys that we expect, as seen in figure 3.5.

This is a problem since we know that 𝐻+
2 exists, which would indicate a bound

state solution exists somewhere, when moving the incident proton closer to the
hydrogen atom. We have been discussing possible explanation for this difference.
One possibility is that our figure 3.5 indeed contains the right minimum energies, but
not for the ground state; making this an issue of ending up in some local minimum
for a higher 𝑠-state. To test this, one could try getting closer to the global optimum
right out of the gate by choosing a global optimization algorithm, like ’simulated
annealing’; which is also available in SciPy’s ’optimize’ package, and let that find
the global minimum for some initial choice of 𝑦, 𝑦0. Then as we slowly vary 𝑦
away from 𝑦0, it should only move the minimum slightly in response. Therefore, we
could use the global minimum for 𝑦0 as a starting condition for the NM method for
the reminder of the optimization. We do not know if this would work in practice,
however, as we only tried changing the starting conditions manually, and sadly only
ended up with errors or analogous plots to figure 3.5.

3.3.1 The grid plot

Considering that we did not end up with a proper result in the previous section, it is
not surprising that the same holds true for the grid plot, but we will still go through
the methodology as based on the description in appendix C, where one can also see
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an example of it working in practice. Like so many times before, we start out with
the general Hamiltonian equation

𝐻 = 𝑇 + 𝑉 , (3.4)

where our potential, in this case, is the effective energy curve from figure 3.5, denoted
𝜖(𝑦), and the kinetic energy is discretely rewritten like in appendix C by using the
symmetric central-difference approximation equation[15]

𝑢′′𝑖 =
𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1

(Δ𝑟)2
. (C.4)

In the end, we effectively end up with a Hamiltonian of the form

𝐻 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
𝜇(Δ𝑟)2 + 𝜖(𝑦1) 1 0 ⋯ 0

1 − 1
𝜇(Δ𝑟)2 + 𝜖(𝑦2) 1 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 1 − 1

𝜇(Δ𝑟)2 + 𝜖(𝑦𝑁−1) 1
0 ⋯ 0 1 − 1

𝜇(Δ𝑟)2 + 𝜖(𝑦𝑁 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(3.5)
where 𝜇 = 𝑚𝑒

𝑚𝑝+𝑚𝑒
. We can solve this via diagonalisation and then pick the eigenvector

corresponding to the lowest energy/eigenvalue as our ground state.
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Results and Discussion

In this section we would have compared the results of the direct ECG method, for
both BO and non-BO proton-hydrogen scattering, to some experimental values, but
since we did not get any numerical results to compare, we will simply discuss the
efficiency of the method, and some possible further explorations one could do if so
desired.

4.1 Efficiency of the method

Even though we failed to the desired numerical result, we can still comment on
whether we expect the method to be particularly efficient. If we disregard the
actual coding aspect, the final step will be to approximate the asymptotic sinusoidal
behaviour of the outgoing radial wave function, as seen from partial waves. One
could then rightfully ask if we even expect a finite amount of Gaussian functions to
be especially well-suited to mimic sinusoidal behaviour at all. On the same topic of
asymptotic behaviour, the people behind the initial review paper[2] also comment
on the fact that the scattering wave function changing to a simple product form,
once the incoming particle is far enough away, is one of the reasons for ECGs to
be considered unfavorable for approximating asymptotic behaviour. The reason for
this is that they implicitly assume all the vectors/particles are to be treated equally,
mathematically speaking, which does not mesh well with shifts in the system where
one, or more, particles suddenly can be considered completely disconnected from the
rest. This change to product form can be illustrated mathematically by letting 𝐑 be
the collection of coordinate vectors used in the wave function describing the object
at the wave center and 𝐫 being the coordinate vectors of the incoming/outgoing
particle

Ψin = 𝜓𝑖(𝐑, 𝐫) → Ψout = 𝜓𝑜(𝐑)𝜙(𝐫). (4.1)

To mitigate the efficiency reduction from the asymptotic behaviour, they created an
asymptotic basis, which is a reduced ECG where the wave center and the outgoing
particle have their own ECG basis, that they could mix in with the normal basis

Ψ𝑜 = ∑
𝑛
𝑐𝑛 exp(−𝐑𝑇𝐴𝑛𝐑), 𝜙(𝐫) = ∑

𝑛
𝑑𝑛 exp(−𝐫𝑇𝐵𝑛𝐫). (4.2)

31
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A natural consequence this mixing of both types, is that it only saves computation
time if one already has a large basis to begin with9, as otherwise one would need to
expand their own to make room, which might not be feasible to do without more
computational power than what is available on an average laptop. In any case,
whoever wants to continue with this method might want to look into how to best
represent the asymptotic behaviour once they get to that part.

4.2 Future work

The obvious step forward is for someone to make some code that actually works
properly and consistently to make sure that this semi-classical ECG approach is
actually worth pursuing despite its numerical annoyances and huge algebraic expres-
sions. Once this has been confirmed, one can begin mixing it with other theories and
systems to check the boundaries of its application. One notable scattering problem
is that of strong force nucleon-nucleon scattering, which would allow one to check
how compatible it is with different nuclear models; in particular the explicit pion
model which my supervisor has worked with a lot previously10.

9: As an example, for a 𝑒−-He (2𝑆𝑒) (s-wave scattering of electrons from the helium ground state) phase
shift calculation[16], they could get better convergence from 800 three-electron ECGs supplemented
by 40 additional asymptotic basis functions than a basis of 1600 three-electron ECG by themselves.

10: As an example, see previously mentioned Østerlund [7] or his own article [17].



Chapter 5
Conclusion

In this thesis, we set out to develop and test a more classical method of low-energy
scattering calculations using ECGs. First, the mathematical and theoretical ground-
work was laid and explored in great detail, primarily through the calculation of
various matrix elements; the results of which can be found primarily in sections
2.1.2 and 2.2.4 (or, for the full calculation, in appendix B and appendix D). Then we
moved on to questions about the methodology for numerical implementation which
we described in great detail with a lot of focus on the ’whys’ which one might not
initially consider. The following preliminary tests of the formulas we found showed
a promising agreement between the theoretical expectations and numerical results,
but further troubles with convergence in the code limited the scope of the project
from that point forward.

However, even with this limited scope, future prospects were still discussed and
the possibility for a future numerical investigation, that even includes other models
as well, might still be possible, and will be even easier to instigate now that the
foundation has been laid down entirely.
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Appendix A
Jacobi Transform

In this appendix we will quickly derive the Jacobi basis transformation relations
as seen in equation (A.4) on page 10. The only thing we will use is that we have a
transformation matrix, 𝐽 , which gives us the following relation

𝐫 = 𝐽𝐱 ⟺ 𝐱 = 𝐽−1𝐫. (A.1)

• The kinetic term

The general kinetic term of the Hamiltonian of a 𝑁 -particle system can be
written as 𝐾 = −𝜕𝐱Λ𝜕𝐱𝑇 where 𝜕𝐱 = (𝜕𝑥1 ,⋯ , 𝜕𝑥𝑁 ) and Λ is a 𝑁 × 𝑁 positive-
definite matrix, which means a general 𝑖𝑗 ’th term has the form

𝜕
𝜕𝑥𝑖

Λ𝑖𝑗
𝜕
𝜕𝑥𝑗

, (A.2)

which through the chain rule and transformation becomes

𝜕
𝜕𝑟𝑘

𝜕𝑟𝑘
𝜕𝑥𝑖

Λ𝑖𝑗
𝜕
𝜕𝑟𝓁

𝜕𝑟𝓁
𝜕𝑥𝑗

=
𝜕
𝜕𝑟𝑘

𝐽𝑘𝑖Λ𝑖𝑗 𝐽𝓁𝑗
𝜕
𝜕𝑟𝓁

, (A.3)

from which we can infer that the general matrix transformation has the form

𝐾 → 𝐽𝐾𝐽 𝑇 . (A.4)

• Vectors

We will also come across a lot of terms of the form 𝜔𝑇𝐱, which will be trans-
formed like above

𝜔𝑇 (𝐽−1𝐫) = ((𝐽
−1)

𝑇 𝜔)
𝑇
𝐫, (A.5)

from which we infer that the general vector transformation has the form

𝜔 → (𝐽−1)
𝑇 𝜔. (A.6)
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Appendix B
Calculation of Matrix Elements

In this appendix we will calculate some of the matrix elements seen on page 10. As a
shorthand we will write

𝐺′ = 𝐺(𝐬′;𝐴′, 𝐱), 𝐺 = 𝐺(𝐬;𝐴, 𝐱), 𝜕𝑎 =
𝜕
𝜕𝑎
. (B.1)

B.1 The Delta Function Matrix Element

For this calculation we will only be requiring two well-known formulas, that being
the overlap between two ECGs for a 3-dimensional system with 𝑁 particles[8]

⟨𝐺′ |𝐺 ⟩ = 𝑀0(𝐵, 𝐯) = exp(
1
4
𝐯𝑇𝑅𝐯)(

𝜋𝑁

det(𝐵))

3/2

, (B.2)

where 𝑅 = 𝐵−1, 𝐵 = 𝐴 + 𝐴′ and 𝐯 = 𝐬 + 𝐬′, and the Fourier transform of the (three
dimensional) delta function

𝛿(𝐲 − 𝐲𝟎) =
1

(2𝜋)3 ∫
exp (𝑖𝐤𝑇 (𝐲 − 𝐲𝟎)) d3𝐤. (B.3)

As equation (B.3) alludes to, we want to work with a Fourier transform at some point.
Therefore we first want to look at the matrix element for exp (𝑖𝐤𝑇 (𝜔𝑇𝐱)), as it will
allow us to generalise the matrix elements of functions of the form 𝑓 (𝜔𝑇𝐱) later

⟨𝐺′ | exp (𝑖𝐤𝑇 (𝜔𝑇𝐱)) |𝐺 ⟩ = 𝑀0(𝐵, 𝐯 + 𝑖𝐤𝜔)

= exp(
1
4
(𝐯 + 𝑖𝐤𝜔)𝑇 𝑅 (𝐯 + 𝑖𝐤𝜔))(

𝜋𝑁

det(𝐵))

3/2

= 𝑀0(𝐵, 𝐯) ⋅ exp (−𝛼𝐤2 + 𝑖𝐤𝑇𝐪) ,

(B.4)

where

𝛼 =
1
4
𝜔𝑇𝑅𝜔, 𝐪 =

1
2
𝜔𝑇𝑅𝐯. (B.5)

In the calculation we used the fact that exp (𝑖𝐤𝑇 (𝜔𝑇𝐱)) was linear in 𝐱 and therefore
only affected the final shift term. As an important remark, we will just point out
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that 𝛼 > 0 since 𝑅 is a positive-definite matrix. We now define 𝐹(𝐤) as the Fourier
transform of the function 𝑓 (𝜔𝑇𝐱) and look at the matrix element of the function via
the transform

⟨𝐺′ |𝑓 (𝜔𝑇𝐱)|𝐺 ⟩ = ⟨𝐺′ | ∫
𝑑3𝐤
(2𝜋)3

𝐹(𝐤) exp (𝑖𝐤𝑇 (𝜔𝑇𝐱)) |𝐺 ⟩

= ∫
𝑑3𝐤
(2𝜋)3

𝐹(𝐤)⟨𝐺′ | exp (𝑖𝐤𝑇 (𝜔𝑇𝐱)) |𝐺 ⟩

=
𝑀0(𝐵, 𝐯)
(2𝜋)3 ∫ 𝑑3𝐤 𝐹(𝐤) exp (−𝛼𝐤2 + 𝑖𝐤𝑇𝐪) .

(B.6)

We can now work with the delta function, 𝛿(𝜔𝑇𝐱 − 𝐲𝟎), with 𝜔𝑇𝐱 = 𝐲, for which
we know 𝐹(𝐤) = exp (−𝑖𝐤𝑇𝐲𝟎) due to equation (B.3), and we get

⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎)|𝐺 ⟩ =
𝑀0(𝐵, 𝐯)
(2𝜋)3 ∫ 𝑑3𝐤 exp (−𝑖𝐤𝑇𝐲𝟎) exp (−𝛼𝐤2 + 𝑖𝐤𝑇𝐪)

=
𝑀0(𝐵, 𝐯)
(2𝜋)3 ∫ 𝑑3𝐤 exp(−𝛼(𝐤

2 −
𝑖
𝛼
𝐤𝑇 (𝐪 − 𝐲𝟎))) .

(B.7)

To calculate this, we simply complete the square in the exponential, which is done
by multiplying and dividing by exp( 1

4𝛼 (𝐪 − 𝐲𝟎)2), giving us

⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎)|𝐺 ⟩ =
𝑀0(𝐵, 𝐯)
(2𝜋)3

exp(−
1
4𝛼

(𝐪 − 𝐲𝟎)2)∫ 𝑑3𝐤 exp
(
−𝛼(𝐤 −

𝑖
𝛼
(𝐪 − 𝐲𝟎))

2

)
.

(B.8)

Since we can split the square of a vector into the square of its constituents, 𝐯2 =
𝑣21 +⋯ + 𝑣2𝑁 , and the exponential and integral satisfies:

exp(𝑥 + 𝑦) = exp(𝑥) exp(𝑦), ∬ d𝑥d𝑦𝑓 (𝑥)𝑔(𝑦) = ∫ d𝑦 𝑔(𝑦)∫ d𝑥 𝑓 (𝑥), (B.9)

what we have left is a product of three integrals of the well-known form[18]

∫
∞

−∞
d𝑥 exp(−𝑎(𝑥 − 𝑏)2) =

√𝜋
𝑎
. (B.10)

This leaves us with the final result

⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎)|𝐺 ⟩ =
𝑀0(𝐵, 𝐯)
(2𝜋)3

exp(−
1
4𝛼

(𝐪 − 𝐲𝟎)2)(

√𝜋
𝛼)

3

𝐯=0−−−→
𝑀0(𝐵, 𝟎)
(2𝜋)3

exp(−
1
4𝛼

𝐲𝟎2)(

√𝜋
𝛼)

3 (B.11)

B.2 The Delta Function + Kinetic Matrix Element

In this section, we will calculate the kinetic matrix element that includes a delta
function

⟨𝐺′ |𝐾𝛿(𝜔𝑇𝐱 − 𝐲𝟎)|𝐺 ⟩, 𝐾 = −𝜕𝐱Λ𝜕𝐱𝑇 = −∑
𝑖,𝑗

Λ𝑖𝑗𝜕𝐱𝑖𝜕𝐱𝑗 , 𝜕𝐱𝑖 =
𝜕
𝜕𝐱𝑖

, (B.12)
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where Λ is another symmetric positive-definite matrix, and

𝜕𝐱𝑇 = [𝜕𝐱1 , 𝜕𝐱2 ,⋯ , 𝜕𝐱𝑁 ]
𝑇 , 𝜕𝐱 = [𝜕𝐱1 , 𝜕𝐱2 ,⋯ , 𝜕𝐱𝑁 ] . (B.13)

First we want to calculate the kinetic energy matrix element, ⟨𝐺′ |𝐾 |𝐺 ⟩ , by itself.
In order to do this we need to calculate some differentiation identities. The simplest
is that if 𝐱𝑖 is 𝑑-dimensional for all 𝑖 then

𝜕𝐱𝐱 =
𝑁
∑
𝑖=1

𝜕𝐱𝑖𝐱𝑖 =
𝑁
∑
𝑖=1

𝑑
∑
𝑗=1

(𝜕𝐱𝑖)𝑗 (𝐱𝑖)𝑗 =
𝑁
∑
𝑖=1

𝑑
∑
𝑗=1

= 𝑑 ⋅ 𝑛. (B.14)

If𝑀 is a symmetric positive-definite matrix then we can generalize this result further
by looking at the differential 𝜕𝐱𝑀𝐱, which can transform via diagonalization into

𝜕𝐱𝑀𝐱 = (𝜕𝐫𝑄)𝑀 (𝑄𝑇 𝐫) = 𝜕𝐫𝐷𝐫 =
𝑁
∑
𝑖=1

𝐷𝑖𝑖𝜕𝐱𝑖𝐱𝑖 = 𝑑 ⋅
𝑁
∑
𝑖=1

𝐷𝑖𝑖 = 𝑑 ⋅ Tr(𝐷) = 𝑑 ⋅ Tr(𝑀).

(B.15)

We see that it reduces to the result above when we set𝑀 as the 𝑁 ×𝑁 identity matrix,
as we expected. We can also show that if we have another vector of vectors, 𝐛, then

𝜕𝐱 (𝐛𝑇𝐱) = [𝜕𝐱1 (𝐛
𝑇
1𝐱1 +⋯) ,⋯ , 𝜕𝐱𝑁 (𝐛

𝑇
1𝐱1 +⋯)] = [𝐛𝑇1 ,⋯ , 𝐛𝑇𝑁 ] = 𝐛𝑇 , (B.16)

as well as the important quadratic identity

𝜕𝐱 (𝐱𝑇𝑀𝐱) = 𝜕𝐱 (𝐫𝑇𝐷𝐫) = [𝜕𝐱1 (𝐷1𝐫21 +⋯) ,⋯ , 𝜕𝐱𝑁 (𝐷1𝐫21 +⋯)]

=
[
∑
𝑖
𝐷𝑖𝑖 (𝜕𝐫𝑖𝐫

2
𝑖 )

𝜕𝐫𝑖
𝜕𝐱1

,⋯ ,∑
𝑖
𝐷𝑖𝑖 (𝜕𝐫𝑖𝐫

2
𝑖 )

𝜕𝐫𝑖
𝜕𝐱𝑁 ]

.
(B.17)

Using the transformation 𝐫 = 𝑄𝐱 again, we can rewrite one of these sums as:

∑
𝑖
𝐷𝑖𝑖 (𝜕𝐫𝑖𝐫

2
𝑖 )

𝜕𝐫𝑖
𝜕𝐱𝑚

= 2∑
𝑖
𝐷𝑖𝑖𝐫𝑇𝑖 𝑄𝑖𝑚 = 2∑

𝑖,𝑗
𝐷𝑖𝑖 (𝑄𝑖𝑗𝐱𝑗)

𝑇 𝑄𝑖𝑚

= 2∑
𝑗
𝐱𝑇𝑗 ∑

𝑖
𝑄𝑇
𝑖𝑗𝐷𝑖𝑖𝑄𝑖𝑚 = 2∑

𝑗
𝐱𝑇𝑗𝑀𝑗𝑚 = 2 [𝑥𝑇𝑀]𝑚 ,

(B.18)

and if we reinsert this back into the equation, it will give us

𝜕𝐱 (𝐱𝑇𝑀𝐱) = 2 [[𝐱𝑇𝑀]1 , [𝐱
𝑇𝑀]2 ,⋯ , [𝐱𝑇𝑀]𝑁 ] = 2𝐱𝑇𝑀. (B.19)

One could use the exact same methods to show the analogous identities for 𝜕𝐱𝑇 ,
although they are the exact same except for a transposition.

Armed with these identities, we are now ready to calculate the matrix element
of the kinetic energy. This will be done by first calculating ⟨𝐺′ |𝐱|𝐺 ⟩, using that
we have an exponential factor of the form exp(𝐯𝑇𝐱) when calculating the standard
matrix element ⟨𝐺′ |𝐺 ⟩ since then

𝜕𝐯𝑇 exp(𝐯𝑇𝐱) = 𝐱 exp(𝐯𝑇𝐱). (B.20)
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Using that as well as equation (B.2) gives us

⟨𝐺′ |𝐱|𝐺 ⟩ = 𝜕𝐯𝑇 ⟨𝐺′ |𝐺 ⟩ = (
𝜋𝑁

det(𝐵))

3/2

𝜕𝐯𝑇 exp(
1
4
𝐯𝑇𝑅𝐯)

= 𝑀0(𝐵, 𝐯)𝜕𝐯𝑇 (
1
4
𝐯𝑇𝑅𝐯) =

𝑀0(𝐵, 𝐯)
2

𝑅𝐯 = 𝑀0(𝐵, 𝐯)𝐮,
(B.21)

where we have introduced the new vector 𝑢 = 1
2𝑅𝐯. We can then go on to show the

matrix element for the quadratic form

⟨𝐺′ |𝐱𝑇 𝐹𝐱|𝐺 ⟩ = 𝜕𝐯𝐹𝜕𝐯𝑇 ⟨𝐺′ |𝐺 ⟩ = 𝜕𝐯𝐹𝐮𝑀0(𝐵, 𝐯)
= 𝜕𝐯 (𝐹𝐮)𝑀0(𝐵, 𝐯) + (𝜕𝐯𝑀0(𝐵, 𝐯)) 𝐹𝐮

= (
𝑑
2
Tr(𝐹𝑅) + 𝐮𝑇 𝐹𝐮)𝑀0(𝐵, 𝐯),

(B.22)

and with this we can finally calculate ⟨𝐺′ |𝐾 |𝐺 ⟩ (for 𝑑 = 3)

⟨𝐺′ |𝐾 |𝐺 ⟩ = ⟨𝐺′ | − 𝜕𝐱Λ𝜕𝐱𝑇 |𝐺 ⟩ = ⟨𝐺′ | ((𝐬
′)
𝑇 Λ − 2𝐴′𝐱)

𝑇
Λ (𝐬 − 2𝐴𝐱) |𝐺 ⟩

= (𝐬′)
𝑇 Λ𝐬⟨𝐺′ |𝐺 ⟩ − 2((𝐬

′)
𝑇 Λ𝐴⟨𝐺′ |𝐱|𝐺 ⟩ + ⟨𝐺′ |𝐱𝑇 |𝐺 ⟩𝐴′Λ𝐬) + 4⟨𝐺′ |𝐱𝑇 (𝐴′Λ𝐴) 𝐱|𝐺 ⟩

= 𝑀0(𝐵, 𝐯)(6 Tr(𝐴
′Λ𝐴𝑅) + (𝐬′ − 2𝐴′𝐮)

𝑇 Λ (𝐬 − 2𝐴𝐮))
𝐯=0−−−→ 6𝑀0(𝐵, 𝟎) Tr(𝐴′Λ𝐴𝑅).

(B.23)

It would seem that it should be annoying to calculate the matrix element when
we introduce the delta function, 𝛿(𝜔𝑇𝐱 − 𝐲0), but since we intend to use it to keep a
particle in place, that particle should effectively not contribute any kinetic energy
to the system. In practice this means that we want the condition Λ𝜔 = 𝜔𝑇Λ = 0 to
hold. However, this makes it very easy to calculate the matrix element since (we
remember that 𝐤 is a standard vector while 𝐱 is a vector of vectors)

Λ𝜕𝐱𝑇 (exp(𝑖𝐤𝑇 (𝜔𝑇𝐱))𝑓 (𝐱)) = Λ (𝑖𝜔𝐤𝑓 (𝐱) + 𝑓 ′(𝐱)) exp(𝑖𝐤𝜔𝑇𝐱) = Λ exp(𝑖𝐤𝜔𝑇𝐱)𝑓 ′(𝐱).
(B.24)

So, in a sense, the exponential factor we get from the delta function does not interact
with the differential from the kinematic operator at all. This means what we will
get is the kinetic matrix element as usual, but with a shift from exp(𝑖𝐤𝜔𝑇𝐱) in the
Gaussians by the end. Therefore the result will simply be the kinetic matrix element
multiplied by 𝑀0(𝐵, 𝐯 + 𝑖𝐤𝜔), which we already calculated in equation (B.4)

⟨𝐺′ |𝐾 exp(𝑖𝐤𝜔𝑇𝐱)|𝐺 ⟩ = ⟨𝐺′ |𝐾 |𝐺 ⟩ exp (−𝛼𝐤2 + 𝑖𝐤𝑇𝐪) . (B.25)

But we already did the Fourier calculation with that exponential so our final result
can be written as the separation

⟨𝐺′ |𝐾𝛿(𝐲 − 𝐲𝟎)|𝐺 ⟩ =
⟨𝐺′ |𝐾 |𝐺 ⟩
𝑀0(𝐵, 𝐯)

⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎)|𝐺 ⟩. (B.26)
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B.3 The Delta Function + Coulomb Matrix Element

In this section, we will calculate the matrix element of the combined delta function
and Coulomb interaction

⟨𝐺′ |
𝛿(𝐲 − 𝐲𝟎)
|𝜂𝑇𝐱|

|𝐺 ⟩. (B.27)

First we need to do the same trick as the standard overlap and look at the matrix
element of a delta function with another complex exponential exp (𝑖𝐤𝑇 (𝜂𝑇𝐱)) so
we can set up another Fourier transform. Like before, the exponential only affects
the shift, leaving us with the delta function overlap we calculated in equation (B.11)
with an extra shift:

⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎) exp (𝑖𝐤𝑇 (𝜂𝑇𝐱)) |𝐺 ⟩ =
𝑀0(𝐵, 𝐯 + 𝑖𝐤𝜂)

(2𝜋)3
exp(−

1
4𝛼

(𝐪′ − 𝐲𝟎)2)(

√𝜋
𝛼)

3

.

(B.28)

We already know how 𝑀0(𝐵, 𝐯 + 𝑖𝐤𝜂) changes, from equation (B.4), so we just need
to look a 𝐪′

𝐪′ =
1
2
𝜔𝑇𝑅 (𝐯 + 𝑖𝐤𝜂) = 𝐪 +

𝑖
2 (

𝜔𝑇𝑅𝜂) 𝐤 = 𝐪 + 𝑖2𝛽𝐤, (B.29)

(𝐪′ − 𝐲𝟎)
2 = (𝐪 + 2𝑖𝛽𝐤 − 𝐲𝟎)2 = (𝐪 − 𝐲𝟎)2 − (2𝛽𝐤)2 + 4𝑖𝛽𝐤 (𝐪 − 𝐲𝟎)

= (𝐪 − 𝐲𝟎)2 − (2𝛽𝐤)2 + 4𝑖𝐰 ⋅ 𝐤,
(B.30)

where 𝛽 = 1
4𝜔

𝑇𝑅𝜂 and 𝐰 = 𝛽(𝐪 − 𝐲𝟎). This means we can write our expression as

⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎) exp (𝑖𝐤𝑇 (𝜂𝑇𝐱)) |𝐺 ⟩ = ⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎)|𝐺 ⟩ exp(−(𝛾 −
𝛽2

𝛼 ) 𝐤2 + 𝑖(𝐩 −
𝐰
𝛼 ) ⋅ 𝐤)

= ⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎)|𝐺 ⟩ exp (−𝑎𝐤2 + 𝑖𝐜 ⋅ 𝐤) ,
(B.31)

where 𝛾 = 1
4𝜂

𝑇𝑅𝜂, 𝐩 = 1
2𝜂

𝑇𝑅𝐯, 𝑎 = 𝛾 − 𝛽2
𝛼 and 𝐜 = 𝐩 − 𝐰

𝛼 . Since we are eventually
going to integrate over this exponential factor, it would be a good idea to discuss
when it actually gives us something convergent. All that is required is that 𝑎 > 0,
which means we want:

𝛼𝛾 − 𝛽2 > 0 → (𝜂𝑇𝑅𝜂) (𝜔𝑇𝑅𝜔) − (𝜔𝑇𝑅𝜂)
2 > 0, (B.32)

since 𝛼 > 0. Because |⟨𝑎,𝑀𝑏⟩| defines an inner product norm when 𝑀 is positive-
definite[19], we can use the Cauchy-Schwartz inequality[20]

|⟨𝐮, 𝐯⟩|2 ≤ ⟨𝐮, 𝐮⟩ ⋅ ⟨𝐯, 𝐯⟩, (B.33)

to say that

(𝜔𝑇𝑅𝜂)
2 ≤ (𝜂𝑇𝑅𝜂) (𝜔𝑇𝑅𝜔) . (B.34)
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We can then utilise that𝑄𝑇𝑅𝑄 = 𝐷, for some orthogonal matrix11, 𝑄, and set𝜔 = 𝑄𝜔′

and 𝜂 = 𝑄𝜂′ after which we see that the equality is only satisfied when 𝜔′ and 𝜂′ are
collinear, 𝜔′ ∥ 𝜂′ (as the inequality reduces to the normal Cauchy-Schwarz inequality
for vectors), but since the transformation 𝑄 preservers inner products, we can say
that the only requirement for convergence is that 𝜔 ∦ 𝜂. However this is expected
since when 𝜔 ∥ 𝜂 we can write 𝜂 = 𝑘 ⋅ 𝜔, for 𝑘 ∈ ℝ/{0}, and then

|𝜂𝑇𝐱| = |𝑘| ⋅ |𝜔𝑇𝐱| = |𝑘||𝐲| →
𝛿(𝐲 − 𝐲𝟎)
|𝑘||𝐲|

=
𝛿(𝐲 − 𝐲𝟎)
|𝑘||𝐲𝟎|

, (B.35)

and since we used the Fourier transformation of 1
|𝐱| in the calculation, it is only

natural it breaks down when we turn it into a constant. This also makes the collinear
case quite trivial to calculate

⟨𝐺′ |
𝛿(𝐲 − 𝐲𝟎)
|𝜂𝑇𝐱|

|𝐺 ⟩ =
1

|𝑘| ⋅ 𝑦0
⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎)|𝐺 ⟩. (B.36)

With those considerations explored, we can now move onto the actual matrix
element, which we will calculate like we did (B.11), but with 𝑓 (𝜂𝑇𝐱) = 1

|𝜂𝑇 𝐱| instead.
As can be shown pretty easily, using the distribution form exp(−𝑎|𝑥 |)/|𝑥 | with 𝑎 → 0,
the Fourier transform of the Coulomb potential is 𝐹(𝐤) = 4𝜋

𝐤2 , and inserting this gives
us the integral:

⟨𝐺′ |
𝛿(𝐲 − 𝐲𝟎)
|𝜂𝑇𝐱|

|𝐺 ⟩ =
⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎)|𝐺 ⟩

(2𝜋)3 ∫ d3𝐤4𝜋
𝐤2

exp (−𝑎𝐤2 + 𝑖𝐜 ⋅ 𝐤) . (B.37)

In order to solve this, we first change to spherical coordinates, (𝑘, 𝜃, 𝜙), and rotate
it such that one of our vectors are along the z-axis, allowing us to write 𝐜 ⋅ 𝐤 =
|𝐜| ⋅ |𝐤| ⋅ cos(𝜃), leaving us the integral (𝐤2 = 𝑘2)

∫
∞

0
d𝑘 exp(−𝑎𝑘2) ∫

2𝜋

0
d𝜙∫

𝜋

0
d𝜃 sin(𝜃) exp (𝑖𝑐𝑘 cos(𝜃)) . (B.38)

First we calculate the 𝜃-integral separately

∫
𝜋

0
d𝜃 sin(𝜃) exp (𝑖𝑐𝑘 cos(𝜃)) = ∫

1

−1
d𝑡 exp (𝑖𝑐𝑘𝑡) = 2𝑖

𝑖𝑐𝑘
sin(𝑐𝑘) =

2
𝑐
⋅
sin(𝑐𝑘)
𝑘

,

(B.39)

by way of substitution by 𝑡 = cos(𝜃). Since the total integral does not depend on the
other angle, 𝜙, we just get a factor of 2𝜋 from the 𝜙-integral. This leaves us with the
total 𝑘-integral

⟨𝐺′ |
𝛿(𝐲 − 𝐲𝟎)
|𝜂𝑇𝐱|

|𝐺 ⟩ =
⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎)|𝐺 ⟩

(2𝜋)3
16𝜋2

𝑐 ∫
∞

0
d𝑘 exp (−𝑎𝑘2) ⋅

sin(𝑐𝑘)
𝑘

. (B.40)

This particular integral can be solved through two uses of Feynman’s trick12. First
we write the integral as a function, 𝐽 (𝑎, 𝑐), of the coefficients we do not integrate

11: An orthogonal matrix satisfies 𝑄𝑇 = 𝑄−1.
12: Feynman’s trick is when you differentiate an integral with respect to some integral parameter, that

you are not integrating over, and then exchange the differentiation and integral operation to get an
easier integral

𝜕𝑡 ∫ d𝑥𝑓 (𝑥, 𝑡) → ∫ d𝑥 (𝜕𝑡𝑓 (𝑥, 𝑡))

This allows you to solve integrals as differential equations instead.
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over, and then differentiate with respect to 𝑐 to obtain a more familiar integral, which
we denote 𝐼 (𝑎, 𝑐)

𝜕𝑐𝐽 (𝑎, 𝑐) = 𝜕𝑐 (∫
∞

0
d𝑘 exp (−𝑎𝑘2) ⋅

sin(𝑐𝑘)
𝑘 ) = ∫

∞

0
d𝑘 exp (−𝑎𝑘2) ⋅ cos(𝑐𝑘) = 𝐼 (𝑎, 𝑐).

(B.41)

This integral can also be solved via Feynman’s trick and partial integration

𝜕𝑐𝐼 (𝑎, 𝑐) = −∫
∞

0
d𝑘 𝑘 ⋅ exp (−𝑎𝑘2) ⋅ sin(𝑐𝑘)

=
[
exp(−𝑎𝑘2)

2𝑎
⋅ sin(𝑐𝑘)

]

𝑘=∞

𝑘=0

−
𝑐
2𝑎 ∫

∞

0
d𝑘 exp (−𝑎𝑘2) ⋅ cos(𝑐𝑘)

= −
𝑐
2𝑎
𝐼 (𝑎, 𝑐),

(B.42)

where we used that ∫ d𝑥 𝑥 ⋅ exp(−𝑎𝑥2) = − exp(−𝑎𝑥2)
2𝑎 + 𝐶 which is easily shown

through substitution. As can be seen, this use of differentiation gave us a differential
equation of the form (the boundary condition, 𝐼 (𝑎, 0), stems from equation (B.10) for
𝑏 = 0)

𝜕𝑐𝐼 (𝑎, 𝑐) = −
𝑐
2𝑎
𝐼 (𝑎, 𝑐), 𝐼 (𝑎, 0) =

√
𝜋

2
√
𝑎
, (B.43)

which is a separable differential equation13 with the solution

𝐼 (𝑎, 𝑐) = ∫
∞

0
d𝑘 exp (−𝑎𝑘2) ⋅ cos(𝑐𝑘) =

√
𝜋

2
√
𝑎
exp(−

𝑐2

4𝑎)
. (B.44)

Therefore the original integral solves the differential equation

𝜕𝑐𝐽 (𝑎, 𝑐) =
√
𝜋

2
√
𝑎
exp(−

𝑐2

4𝑎)
, 𝐽 (𝑎, 0) = 0, (B.45)

from which we can obtain the answer by simply integrating both sides with respect
to 𝑐. This means our original integral has the solution

𝐽 (𝑎, 𝑐) = ∫
∞

0
d𝑘 exp (−𝑎𝑘2) ⋅

sin(𝑐𝑘)
𝑘

=
𝜋
2
erf(

𝑐
2
√
𝑎)

, (B.46)

where erf(𝑥) denotes the error function as defined in equation (2.13). Lastly, we just
insert equation (B.46) into equation (B.40) and we get the final result:

⟨𝐺′ |
𝛿(𝐲 − 𝐲𝟎)
|𝜂𝑇𝐱|

|𝐺 ⟩ =
⟨𝐺′ |𝛿(𝐲 − 𝐲𝟎)|𝐺 ⟩

𝑐
erf(

𝑐
2
√
𝑎)

. (B.47)

13: This means it can be written in the form 𝑦′ = 𝑓 (𝑥)𝑔(𝑦).





Appendix C
The Grid/Lattice Method

In this appendix we will be looking at a numerical finite difference method called
the grid/lattice method that is often used to solve boundary value problems. The
idea is that when solving a differential equation, we are looking for a function that
changes continuously in a certain way when we vary the input. But, as it turns out,
this action can be broken down into smaller steps where the value at each step is
influenced by the values around it. We can then use these values to draw a graph
and we expect the limiting behaviour of this graph to equal the original solution to
our differential equation as the amount of steps increase.

To demonstrate its usefulness we can use it to solve the Hydrogen atom. In
Hartree atomic units, the lowest order radial solution of the Schrödinger equation
for the hydrogen atom has the following form

−
1
2
𝑢′′(𝑟) −

1
𝑟
𝑢(𝑟) = 𝜖𝑢(𝑟), 𝑢(𝑟) = 𝑟 ⋅ Ψ(𝑟) (C.1)

where our boundary conditions are

lim
𝑟→0

𝑢(𝑟) → 0, lim
𝑟→∞

𝑢(𝑟) → 0 (C.2)

The next step is to make the grid. The simplest way is to make all the points
equidistant using a fixed step size of Δ𝑟 , and then our wave function will simply be a
vector 𝐮 with indices, 𝑢𝑖, evaluated at these points

𝑟𝑖 = 𝑖 ⋅ Δ𝑟 , 𝑖 ∈ {1,⋯ , 𝑁 } 𝑁 =
𝑟max
Δ𝑟

− 1, 𝑢𝑖 = 𝑢(𝑟𝑖). (C.3)

We point out that neither 𝑟0 nor 𝑟max will be a part of our steps. This is due to our
boundary conditions where we are using 𝑟max as a stand-in for ∞ which is fine since
we expect our real function to fall off quite quickly; doing it like this allows us to
build the boundary conditions into our Hamiltonian. The next step is to use the
finite difference to transform the second-order derivative into a discrete object like
so (equation (C.4) is also called the symmetric central-difference approximation [15])

𝑢′′𝑖 =
𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1

(Δ𝑟)2
. (C.4)
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ar
b.
un

its

Radius, r [a0]

Figure C.1: Comparison between three radial numerical eigenstate approximations, using

different step sizes, compared to the analytically known radial ground state solution, r ⋅ R100.

These eigenstates have been created using the grid method. The red, green and blue line

are all pretty close, so a zoomed window has been added for visual clarity. The units of the

𝑥-axis are Bohr radii, 𝑎0.

With all of this, we are ready to write down the Hamiltonian

𝐻 = 𝐾 + 𝑉 , (C.5)

where

𝑉 = −

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑟1 0 ⋯ 0 0
0 1

𝑟2 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 1

𝑟𝑁−1
0

0 ⋯ 0 0 1
𝑟𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐾 = −
1

2(Δ𝑟)2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 1 0 0 ⋯ 0
1 −2 1 0 ⋯ 0
0 1 −2 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 1 −2 1
0 ⋯ 0 0 1 −2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (C.6)

giving us the eigenvalue equation

𝐻𝐮 = 𝜖𝐮, (C.7)

which we can solve with any standard diagonalization routine. In figure C.1 is a plot
comparing14 the analytic solution of the radial ground state of Hydrogen, denoted
r ⋅ R100, to the one we get from the grid for different step sizes.

Since the step size of Δ𝑟 = 0.01 is not noticeably slower than 0.1 to calculate, but
still gives a better result, it will be the one we typically use. For good measure, we
have also included how the eigenvalue changes for different step sizes in figure C.2.

14: When comparing, it is important to properly scale the eigenstate one obtains from the diagonalization.
One can show this normalization constant will be equal to 1√

Δ𝑟 .
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1 0.1 0.01

Radialial dependendence

Step Size, Δ𝑟 [a0]

Figure C.2: Eigenvalue for different step lengths in logarithmic scale. The three values

used for figure C.1 are noted. As it can be seen, the value of 𝜖 quickly converges to a value

of − 1
2 , which is also what we expect theoretically. The units of the 𝑥-axis are Bohr radii, 𝑎0,

and the units of the 𝑦-axis are Hartree energy units, Ha.





Appendix D
The Scattering Coefficients

In this appendix we will derive the general formulas for 𝑃𝑚𝑛(𝑦) and 𝑄𝑚𝑛(𝑦) as seen
in equation (2.53). Both of these will be solved in the same fashion and therefore a
bigger focus will be placed on the overall methodology, starting with the notation
that will be used.

Let ⟨𝐺′ |𝐺 ⟩𝐤 denote the overlap between two ECGs, but where we do not integ-
rate over the variable 𝐱𝑘 . Then we can write

𝑃 = ⟨𝐺′ |𝜕𝐤|𝐺 ⟩𝐤, 𝑄 = ⟨𝐺′ |𝜕2𝐤|𝐺 ⟩𝐤 𝜕𝐤 = 𝜕𝐱𝑘 . (D.1)

To calculate these we will first have to calculate ⟨𝐺′ |𝐺 ⟩𝐤, ⟨𝐺′ |𝐱𝑖|𝐺 ⟩𝐤, ⟨𝐺′ |𝐱𝑇𝑖 𝐱𝑗 |𝐺 ⟩𝐤
and ⟨𝐺′ |𝐱𝑇 𝐹𝐱|𝐺 ⟩𝐤, but before any of that, wewant to quickly go through the notation
that will be used since it is a bit hairy.

D.1 The Notation

In the calculations to come, the strategy will generally be to separate out the variable
we are not integrating over, which will be denoted 𝑥𝐤, and then using formulas we
have already calculated on whatever is left. Therefore it will be useful to introduce
notation that deals with the absence of this variable and its index, so we do not have
to drag summations all over the place, and so that this connection to the already
calculated formulas becomes more apparent.

We will let vectors and matrices equipped with a ◦̃𝑘 denote the same vector and
matrix after the removal of the 𝑘’th index and the 𝑘’th column and row, respectively.
For example:

𝐱 =
⎡
⎢
⎢
⎣

𝐱1
𝐱2
𝐱3

⎤
⎥
⎥
⎦
→ 𝐱̃𝟐 = [

𝐱1
𝐱3]

, 𝑀 =
⎡
⎢
⎢
⎣

𝑀11 𝑀12 𝑀13
𝑀21 𝑀22 𝑀23
𝑀31 𝑀32 𝑀33

⎤
⎥
⎥
⎦
→ 𝑀̃2 = [

𝑀11 𝑀13
𝑀31 𝑀33]

. (D.2)

The reason it is very useful notation is because it allows for the following shorthand
notation

𝑥̃𝑇𝐤 𝐵̃𝑘𝑥̃𝐤 = ∑
𝑖,𝑗

(𝑥̃𝐤)𝑇𝑖 (𝐵̃𝑘)𝑖𝑗 (𝑥̃𝐤)𝑗 = ∑
𝑖,𝑗≠𝑘

𝑥𝑖𝐵𝑖𝑗𝑥𝑗 , (D.3)
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which will be useful in turning our summations back into quadratic expressions so
we can better match old expressions. However, there are some issues with this simple
notation. The first one has probably already been noticed, which is that it sort of
steps over the toes of index notation since 𝐱𝑘 and 𝐱̃𝑘 could easily be mistaken for each
other, although they are entirely different objects. Also, that the index notation for
the tilded parameters will either be potentially confusing, 𝑥̃𝐤,𝑖, 𝑀̃𝑘,𝑖𝑗 , or a bit clunky;
with two sets of indexes, as in equation (D.3), (𝑥̃𝐤)𝑖, (𝐵̃𝑘)𝑖𝑗 . As we feel it is more clear,
the second of these options have been chosen for the calculations, but we are also
sure that one could come up with something better if needed.

The bigger problem comes from the indexing differences between the regular
and tilded parameters when one changes from one to the other, which will be useful
in quite a lot of the calculations. This is because we have to work around the missing
index which means that

𝐱𝑖 = (𝐱̃𝑘)𝑖−H(𝑖−𝑘) , 𝑖 ≠ 𝑘, H(𝑖 − 𝑘) =

{
1, 𝑖 ≥ 𝑘
0, 𝑖 < 𝑘

, (D.4)

where H(𝑥) is the Heaviside step function. It will clutter too much to have the entire
thing in the subscript, so we will use the notation ℎ(𝑖) = 𝑖−H(𝑖− 𝑘) as a placeholder,
(𝐱̃𝑘)ℎ(𝑖). Even though it is technically also dependant on 𝑘, we will never sum over
that in calculations, and it will be tied to the subscript of the variable itself, 𝐱̃𝑘 , so it
will probably be fine to omit it explicitly.

We also want some notation to represent the 𝑛’th column or row of a matrix as a
vector; this is for the sake of removing some ugly summations and more accurately
representing how the expression will look in the code. The chosen notation is square
brackets with a subscript 𝑛 for rows and superscript 𝑛 for columns. For example:

𝑀 =
⎡
⎢
⎢
⎣

𝑀11 𝑀12 𝑀13
𝑀21 𝑀22 𝑀23
𝑀31 𝑀32 𝑀33

⎤
⎥
⎥
⎦
→ [𝑀]3 = [𝑀31 𝑀32 𝑀33] , [𝑀]3 =

⎡
⎢
⎢
⎣

𝑀13
𝑀23
𝑀33

⎤
⎥
⎥
⎦
. (D.5)

Lastly, to better distinguish between [̃𝑀]𝑛 and [𝑀̃]𝑛, and not using to many
subscripts, we will use [𝑀]𝑛̃ as a shorthand for ’the 𝑛’th row vector of matrix𝑀 with
the 𝑛’th index removed’. For example:

𝑀 =
⎡
⎢
⎢
⎣

𝑀11 𝑀12 𝑀13
𝑀21 𝑀22 𝑀23
𝑀31 𝑀32 𝑀33

⎤
⎥
⎥
⎦
→ [𝑀]3̃ = [𝑀31 𝑀32] , [𝑀]3̃ = [

𝑀13
𝑀23]

. (D.6)

With all this notation in our possession, we are now ready to tackle the actual
calculations starting with the standard overlap.

D.2 The Modified Standard Overlap

Reusing the notation from section 2.1.2, we can write out the result of the product of
two Gaussian terms exp(−𝐱𝑇𝐴′𝐱 + 𝐬′𝐱) exp(−𝐱𝑇𝐴𝐱 + 𝐬𝐱) = exp(−𝐱𝑇𝐵𝐱 + 𝐯𝐱) as
such

−𝐱𝑇𝐵𝐱 + 𝐯𝑇𝐱 = −∑
𝑖,𝑗
𝐵𝑖𝑗𝐱𝑇𝑖 𝐱𝑗 +∑

𝑖
𝐯𝑇𝑖 𝐱𝑖. (D.7)
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We want to separate out everything that has to do with 𝐱𝑘 leaving us with

= −𝐵𝑘𝑘𝐱2𝑘 + 𝐯𝑇𝑘𝐱𝑘 − ∑
𝑖≠𝑘,𝑗≠𝑘

𝐵𝑖𝑗𝐱𝑇𝑖 𝐱𝑗 + 2∑
𝑖≠𝑘

𝐵𝑘𝑖𝐱𝑇𝑘𝐱𝑖 +∑
𝑖≠𝑘

𝐯𝑇𝑖 𝐱𝑖

= −𝐵𝑘𝑘𝐱2𝑘 + 𝐯𝑇𝑘𝐱𝑘 − ∑
𝑖≠𝑘,𝑗≠𝑘

𝐵𝑖𝑗𝐱𝑇𝑖 𝐱𝑗 +∑
𝑖≠𝑘

(𝐯𝑖 + 2𝐵𝑘𝑖𝐱𝑘)𝑇 𝐱𝑖.
(D.8)

We now introduce 𝐵̃𝑘 and 𝐱̃𝑘; the reduced 𝐵 matrix and 𝐱 vector, as explained in
section D.1, as well as the vector 𝜉 , with indices 𝜉𝑖 = 𝐯𝑖 + 2𝐵𝑘𝑖𝐱𝑘 , as a shorthand. We
can now simplify the above expression by use of equation (D.3)

= −𝐵𝑘𝑘𝐱2𝑘 + 𝐯𝑘𝐱𝑘 − 𝐱̃𝑇𝑘 𝐵̃𝑘𝐱̃𝑘 + (𝜉𝐤)
𝑇
𝐱̃𝑘 . (D.9)

But the first two terms of the expression are not affected by the integral, since we do
not integrate over 𝐱𝑘 , and the last two terms have the standard form of the product
of two Gaussians, as seen in equation (2.10), but with a modified matrix and shift
vector (both of one index less, 𝑁 − 1). Therefore we expect our integral to have the
form

⟨𝐺′ |𝐺 ⟩𝑘 = exp (−𝐵𝑘𝑘𝐱2𝑘 + 𝐯𝑘𝐱𝑘)𝑀0(𝐵̃𝑘 , 𝜉𝐤)
𝐯=0−−−→= exp (−𝐵𝑘𝑘𝐱2𝑘)𝑀0(𝐵̃𝑘 , 𝜉𝐤),

(D.10)

𝑀0(𝐵̃𝑘 , 𝜉𝐤) = exp(
1
4 (

𝜉𝐤)
𝑇
𝑊𝑘𝜉𝐤)(

𝜋𝑁−1

det(𝐵̃𝑘))

3/2

𝐯=0−−−→ 𝜉𝑖 = 2𝐵𝑘𝑖𝐱𝑘 ,

(D.11)

with 𝑊𝑘 = (𝐵̃𝑘)
−1. For the sake of mathematical brevity in future calculations, we

will use the notation:

𝑀̃𝑘 = ⟨𝐺′ |𝐺 ⟩𝑘 = exp (−𝐵𝑘𝑘𝐱2𝑘 + 𝐯𝑘𝐱𝑘)𝑀0(𝐵̃𝑘 , 𝜉𝐤). (D.12)

The last thing we need tomake sure of, is that thematrix remains positive-definite
if we delete a row and column because otherwise we cannot always use the above
calculation. This can be easily shown by noticing that there exists a non-diagonal
matrix, 𝑄𝑘 , such that:

𝑄𝑘𝐱 = 𝐱̃𝑘 , 𝑄𝑘𝐵𝑄𝑇
𝑘 = 𝐵̃𝑘 , (D.13)

that has the form of the identity matrix with the 𝑘’th row deleted. Here is an example
for three indices:

𝑄2 = [
1 0 0
0 0 1] . (D.14)

This means we can write:

𝐱̃𝑇𝑘 𝐵̃𝑘𝐱̃𝑘 = (𝑄𝑘𝐱)𝑇 (𝑄𝑘𝐵𝑄𝑇
𝑘 ) (𝑄𝑘𝐱) = (𝑄𝑇

𝑘𝑄𝑘𝐱)
𝑇 𝐵 (𝑄𝑇

𝑘𝑄𝑘𝐱) 𝐱 = (𝑁𝑘𝐱)𝑇 𝐵 (𝑁𝑘𝐱) ,
(D.15)
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or, all in all

𝐱̃𝑇𝑘 𝐵̃𝑘𝐱̃𝑘 = (𝑁𝑘𝐱)𝑇 𝐵 (𝑁𝑘𝐱) , (D.16)

and by simple calculations, one can show these 𝑁𝑘 matrices are simply identity
matrices where the 𝑘’th diagonal element is equal to 0. That means 𝑁𝑘𝐱 is just 𝐱 with
the 𝑘’th index equal to 0. Since we already know 𝐵 is positive-definite, we know the
RHS will be strictly positive as long as 𝑁𝑘𝐱 is not the zero vector, but this will only
happen if all elements, except for 𝐱𝑘 , are 𝟎 which will correspond to the case where
𝐱̃𝑘 itself is the zero vector. This means that the LHS is also different from 0, as long
as 𝐱̃𝑘 is not the zero vector, which implies that our 𝐵̃𝑘 matrix is also positive-definite,
as we wanted to show.

D.3 The Modified Linear Operator Overlap

Continuing on from the prior calculation, we will now calculate ⟨𝐺′ |𝐱𝑖|𝐺 ⟩𝑘 in pretty
much the same way, but with an added trick to deal with the linear operator in front
of the integral. If 𝑖 = 𝑘 then there is no problem since our integral does not depend
on 𝐱𝑘 . As such, we simply reduce to our prior calculation

⟨𝐺′ |𝐱𝑘 |𝐺 ⟩𝑘 = 𝐱𝑘⟨𝐺′ |𝐺 ⟩𝑘 . (D.17)

Let us now look at the situation where 𝑖 ≠ 𝑘. In this case we can write 𝐱𝑖 = 𝜌𝑇ℎ(𝑖)𝐱̃𝑘 ,
where 𝜌ℎ(𝑖) is simply the vector that picks out the index of a vector corresponding to
𝑖 − H(𝑖 − 𝑘). With this we can now write

⟨𝐺′ |𝐱𝑖|𝐺 ⟩𝑘 = 𝜌𝑇ℎ(𝑖)⟨𝐺
′ |𝐱̃𝑘 |𝐺 ⟩𝑘 , (D.18)

and if we write the Gaussian in terms of the modified matrix and shift vector like
above, we now have a matrix element that looks exactly like ⟨𝐺′ |𝐱|𝐺 ⟩. This is an
element we have already calculated, in equation (B.21), giving us

⟨𝐺′ |𝐱𝑖|𝐺 ⟩𝑘 = 𝜌𝑇ℎ(𝑖) exp (−𝐵𝑘𝑘𝐱
2
𝑘 + 𝐯𝑘𝐱𝑘)𝑀0(𝐵̃𝑘 , 𝜉𝐤)𝐮̃𝑘

= 𝑀̃𝑘 (𝜌𝑇ℎ(𝑖)𝐮̃𝑘) = 𝑀̃𝑘 (𝐮̃𝑘)ℎ(𝑖) ,
(D.19)

where 𝐮̃𝑘 = 1
2𝑊𝑘𝜉𝐤. From this we also get that

⟨𝐺′ |𝐚𝑇 𝐹𝐱|𝐺 ⟩𝑘 = ∑
𝑖𝑗
𝐹𝑖𝑗𝐚𝑇𝑖 ⟨𝐺

′ |𝐱𝑗 |𝐺 ⟩𝑘

= ∑
𝑖
𝐹𝑖𝑘𝐚𝑇𝑖 𝐱𝑘⟨𝐺

′ |𝐺 ⟩𝑘 +∑
𝑖
∑
𝑗≠𝑘

𝐹𝑖𝑗𝐚𝑇𝑖 ⟨𝐺
′ |𝐱𝑗 |𝐺 ⟩𝑘

=
(
∑
𝑖
𝐹𝑖𝑘𝐚𝑇𝑖 𝐱𝑘 +∑

𝑖
∑
𝑗≠𝑘

𝐹𝑖𝑗𝐚𝑇𝑖 (𝐮̃𝑘)ℎ(𝑗))
𝑀̃𝑘

=
((

∑
𝑖
𝐹𝑖𝑘𝐚𝑇𝑖 )

𝐱𝑘 + 𝐚𝑇𝑘 ∑
𝑗≠𝑘

𝐹𝑘𝑗 (𝐮̃𝑘)ℎ(𝑗) + ∑
𝑖,𝑗≠𝑘

𝐹𝑖𝑗𝐚𝑇𝑖 (𝐮̃𝑘)ℎ(𝑗))
𝑀̃𝑘 ,

(D.20)

and if we then introduce 𝐚̃𝑘 and 𝐹𝑘 , as well as the matrix row and column vector
notation, we can rewrite this more succinctly as:

⟨𝐺′ |𝐚𝑇 𝐹𝐱|𝐺 ⟩𝑘 = ((𝐚𝑇 [𝐹 ]𝑘) 𝐱𝑘 + 𝐚𝑇𝑘 ([𝐹 ]𝑘̃ 𝐮̃𝑘) + 𝐚̃𝑇𝑘𝐹𝑘𝑢̃𝑘) 𝑀̃𝑘 . (D.21)
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D.4 The ModifiedQuadratic Operator Overlap

Nowwe look at the general quadratic operator ⟨𝐺′ |𝐱𝑇𝑖 𝐱𝑗 |𝐺 ⟩𝑘 whichwill be calculated
much like the linear one. Assuming 𝑖, 𝑗 ≠ 𝑘 we have

⟨𝐺′ |𝐱𝑇𝑖 𝐱𝑗 |𝐺 ⟩𝑘 = ⟨𝐺′ |(𝜌𝑇ℎ(𝑖)𝐱̃𝑘)
𝑇𝜌𝑇ℎ(𝑗)𝐱̃𝑘 |𝐺 ⟩𝑘 = ⟨𝐺′ |𝐱̃𝑇𝑘 (𝜌ℎ(𝑖)𝜌

𝑇
ℎ(𝑗)) 𝐱̃𝑘 |𝐺 ⟩𝑘 , (D.22)

we can now utilise equation (B.22), with 𝐹 = 𝜌ℎ(𝑖)𝜌𝑇ℎ(𝑗), giving us

⟨𝐺′ |𝐱𝑇𝑖 𝐱𝑗 |𝐺 ⟩𝑘 = (
3
2
Tr(𝜌ℎ(𝑖)𝜌𝑇ℎ(𝑗)𝑊𝑘) + 𝐮̃𝑇𝑘 (𝜌ℎ(𝑖)𝜌

𝑇
ℎ(𝑗)) 𝐮̃𝑘) 𝑀̃𝑘

= (
3
2
(𝑊𝑘)ℎ(𝑗)ℎ(𝑖) + (𝐮̃𝑘)𝑇ℎ(𝑖) (𝐮̃𝑘)ℎ(𝑗)) 𝑀̃𝑘 ,

(D.23)

where we utilised that 𝜌ℎ(𝑖)𝜌𝑇ℎ(𝑗) will be a (𝑁 − 1) × (𝑁 − 1) matrix with a 1 in row
ℎ(𝑖) and column ℎ(𝑗). When we multiply such a matrix onto any other matrix, it
has the effect of moving row ℎ(𝑗) to row ℎ(𝑖) and setting everything else to 0. That
means the trace of the product of these matrices will necessarily be the element in
the ℎ(𝑖)’th column of row ℎ(𝑗), which is why we have (𝑊𝑘)ℎ(𝑗)ℎ(𝑖).

D.5 The ModifiedQuadratic Matrix Operator Overlap

While this calculation brings nothing new to the table, as it is simply a combination
of the three calculations above, the result is still going to be used when calculating
𝑄, so we thought it would be worth noting separately as well. Underway, we will
be utilising equation (B.22), like above, and we are still assuming 𝑑 = 3 like in prior
calculations

⟨𝐺′ |𝐱𝑇 𝐹𝐱|𝐺 ⟩𝑘 = ∑
𝑖𝑗
𝐹𝑖𝑗 ⟨𝐺′ |𝐱𝑇𝑖 𝐱𝑗 |𝐺 ⟩𝑘

= 𝐹𝑘𝑘𝐱2𝑘⟨𝐺
′ |𝐺 ⟩𝑘 +∑

𝑖≠𝑘
𝐹𝑖𝑘⟨𝐺′ |𝐱𝑇𝑖 |𝐺 ⟩𝑘𝐱𝑘 +∑

𝑗≠𝑘
𝐹𝑘𝑗𝐱𝑇𝑘 ⟨𝐺

′ |𝐱𝑗 |𝐺 ⟩𝑘 + ∑
𝑖,𝑗≠𝑘

𝐹𝑖𝑗 ⟨𝐺′ |𝐱𝑖𝐱𝑗 |𝐺 ⟩𝑘

= 𝐹𝑘𝑘𝐱2𝑘⟨𝐺
′ |𝐺 ⟩𝑘 +(

∑
𝑖≠𝑘

𝐹𝑖𝑘 (𝐮̃𝑘)𝑇ℎ(𝑖))
𝐱𝑘𝑀̃𝑘 + 𝐱𝑇𝑘 (

∑
𝑗≠𝑘

𝐹𝑘𝑗 (𝐮̃𝑘)ℎ(𝑗))
𝑀̃𝑘 + ⟨𝐺′ |𝐱̃𝑇𝑘𝐹𝑘𝐱̃𝑘 |𝐺 ⟩𝑘

= (𝐹𝑘𝑘𝐱
2
𝑘 + (𝐮̃

𝑇
𝑘 [𝐹 ]

𝑘̃
) 𝐱𝑘 + 𝐱𝑇𝑘 ([𝐹 ]𝑘̃ 𝐮̃𝑘) +

3
2
Tr(𝐹𝑘𝑊𝑘) + (𝐮̃𝑘)𝑇 𝐹𝑘𝐮̃𝑘) 𝑀̃𝑘 ,

(D.24)

all in all:

⟨𝐺′ |𝐱𝑇 𝐹𝐱|𝐺 ⟩𝑘 = (𝐹𝑘𝑘𝐱
2
𝑘 + 𝐮̃𝑇𝑘 ([𝐹 ]

𝑘̃ + ([𝐹 ]𝑘̃)
𝑇
) 𝐱𝑘 +

3
2
Tr(𝐹𝑘𝑊𝑘) + (𝐮̃𝑘)𝑇 𝐹𝑘𝐮̃𝑘) 𝑀̃𝑘 .

(D.25)

D.6 The Calculation of P

Using the differentiation rules of section B.2 and the expressions above, we have
everything we need to calculate the first differential overlap, 𝑃 .
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𝑃 = ⟨𝐺′ |𝜕𝑘 |𝐺 ⟩𝑘 = ⟨𝐺′ |𝜕𝑘 (−𝐱𝑇𝐴𝐱 + 𝐬𝑇𝐱) |𝐺 ⟩𝑘 = ⟨𝐺′ | − 2∑
𝑖
𝐴𝑖𝑘𝐱𝑇𝑖 + 𝐬𝑇𝑘 |𝐺 ⟩𝑘

= −2∑
𝑖≠𝑘

𝐴𝑖𝑘⟨𝐺′ |𝐱𝑇𝑖 |𝐺 ⟩𝑘 + (−2𝐴𝑘𝑘𝐱𝑇𝑘 + 𝐬𝑇𝑘) ⟨𝐺
′ |𝐺 ⟩𝑘

=
(
−2∑

𝑖≠𝑘
𝐴𝑖𝑘 (𝐮̃𝑘)𝑇ℎ(𝑖) − 2𝐴𝑘𝑘𝐱𝑇𝑘 + 𝐬𝑘)

𝑀̃𝑘 = (−2𝐮̃
𝑇
𝑘 [𝐴]

𝑘̃ − 2𝐴𝑘𝑘𝐱𝑇𝑘 + 𝐬𝑘) 𝑀̃𝑘 ,

(D.26)

which means that for 𝐬, 𝐯 → 𝟎 we obtain

𝑃 = −2(𝐮̃
𝑇
𝑘 [𝐴]

𝑘̃ + 𝐴𝑘𝑘𝐱𝑇𝑘) 𝑀̃𝑘 . (D.27)

D.7 The Calculation of Q

For this, we can pretty much reuse our calculation for the kinetic matrix element, as
well as section B.2, but with the identities above instead. Although this time we do
not have to be as general since we will necessarily have a lambda matrix with only
the 𝑘’th entry equal to 1 which, most importantly, means it is symmetric. For this
reason we will denote it Λ𝑘 throughout the calculation. Writing it out we have:

𝑄 = ⟨𝐺′ |𝜕2𝑘 |𝐺 ⟩𝑘 = ⟨𝐺′ |𝜕𝐱Λ𝑘𝜕𝐱𝑇 |𝐺 ⟩𝑘 = ⟨𝐺′ | (𝐬′ − 2𝐴′𝐱)
𝑇 Λ𝑘 (𝐬 − 2𝐴𝐱) |𝐺 ⟩𝑘

= (𝐬′)
𝑇 Λ𝑘𝐬⟨𝐺′ |𝐺 ⟩𝑘 − 2⟨𝐺′ | (𝐬′)

𝑇 Λ𝑘𝐴𝐱|𝐺 ⟩𝑘 − 2⟨𝐺′ |𝐱𝑇𝐴′Λ𝑘𝐬|𝐺 ⟩𝑘 + 4⟨𝐺′ |𝐱𝑇 (𝐴′Λ𝑘𝐴) 𝐱|𝐺 ⟩𝑘 ,
(D.28)

we will utilise that 𝐱𝑇𝐴′Λ𝑘𝐬 = (𝐴′Λ𝑘𝐬)𝑇 𝑥 = 𝐬𝑇Λ𝑘𝐴′𝑥 , since it is a constant. We now
have one constant term, two terms of the form 𝐚𝑇 𝐹𝐱 and one of the form 𝐱𝑇 𝐹𝐱 so we
can insert our formulas above

=
((𝐬′)

𝑇 Λ𝑘𝐬 − 2(((𝐬
′)
𝑇 [Λ𝑘𝐴]𝑘) 𝐱𝑘 + (𝐬′)

𝑇
𝑘 ([Λ𝑘𝐴]𝑘̃ 𝐮̃𝑘) +

̃(𝐬′)
𝑇
𝑘 (Λ̃𝑘𝐴)𝑘 𝑢̃𝑘)−

2((𝐬
𝑇 [Λ𝑘𝐴′]

𝑘
) 𝐱𝑘 + 𝐬𝑇𝑘 ([Λ𝑘𝐴

′]𝑘̃ 𝐮̃𝑘) + 𝐬̃𝑇𝑘 (Λ̃𝑘𝐴
′
)𝑘

𝑢̃𝑘) + 4((𝐴′Λ𝑘𝐴)𝑘𝑘 𝐱
2
𝑘+

𝐮̃𝑇𝑘 ([𝐴′Λ𝑘𝐴]
𝑘̃ + ([𝐴′Λ𝑘𝐴]𝑘̃)

𝑇

) 𝐱𝑘 +
3
2
Tr(

̃(𝐴′Λ𝑘𝐴)𝑘𝑊𝑘) + (𝐮̃𝑘)𝑇 ̃(𝐴′Λ𝑘𝐴)𝑘𝐮̃𝑘))
𝑀̃𝑘 .

(D.29)

This is quite a long and complicated expression, but luckily we are only looking at
the Gaussians without shifts, reducing our expression down to

𝑄 = 4((𝐴′Λ𝑘𝐴)𝑘𝑘 𝐱
2
𝑘 + 𝐮̃𝑇𝑘 ([𝐴′Λ𝑘𝐴]

𝑘̃ + ([𝐴′Λ𝑘𝐴]𝑘̃)
𝑇

) 𝐱𝑘+

3
2
Tr(

̃(𝐴′Λ𝑘𝐴)𝑘𝑊𝑘) + (𝐮̃𝑘)𝑇 ̃(𝐴′Λ𝑘𝐴)𝑘𝐮̃𝑘) 𝑀̃𝑘 ,
(D.30)

which is a bit more manageable. Sadly it does not simplify as much as the kinetic
case since we also have a shift from the linear 𝐱𝑘 terms back when we rewrote the
Gaussians, such that 𝑢̃𝑘 ≠ 𝟎.



Appendix E
The Construction of Positive-definite

Matrices

In this appendix we will be discussing the fundamental issue of generating positive-
definite matrices using a randommatrix approach. Naively, one would think the most
computationally heavy part of checking if a matrix is positive-definite should be find-
ing its eigenvalues, which can be done through procedures such as numpy.linalg.eig.
However, if such a program is actually created, it is immediately obvious that it takes
longer than one would expect. This observation is supported by figure E.1.

Figure E.1: Semi-log plot of the average time, 𝑡, it takes my algorithm to find a random

positive-definite matrix as a function of the matrix size, 𝑁 . The values of the fitted constants

are (𝑎, 𝑏, 𝑐) = (0.38,−0.35,−10.29).

55
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As it turns out, the problem is not one of computational complexity, but of
probability, as it is exceedingly rare for a random symmetric matrix to also be positive-
definite. More specifically, the chance for an 𝑁 × 𝑁 matrix to be positive-definite
asymptotically approaches 𝑝𝑁 ∼ 𝑒−

ln(3)
4 𝑁 2 [21] which matches pretty well with what

is observed in the figure. This means that if our calculations require significant
amounts of large positive-definite matrices (corresponding to a big particle systems),
then it would be wise to explore other avenues.

The random matrix approach is of course only relevant if one wishes to do
the stochastic optimization method, because otherwise you would have nothing to
optimize over, but it still shows the superiority of the approach that was developed
in its stead using the (𝐱𝑖 − 𝐱𝑗)

2 formalism from section 2.3.1.
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