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Abstract

The nuclear model with explicit mesons has been proposed to describe
the strong interaction between nucleons. In the explicit meson model
the mesons are treated explicitly as an degree of freedom. In the model
the nucleus becomes a superposition of states with differing numbers of
emitted mesons. The state transitions allow bound nuclear states. The
simplest incarnation of the model is the one-meson approximation with
the sigma-meson, and this incarnation can be applied to the deuteron.

By using a coupling between states proposed by D. V. Fedorov the
model is able to produce acceptable values for the ground state energy
and charge radius for a deuteron. Hence, confirming the result the pre-
vious examination. Applying the coupling proposed by Filip Jensen to
the deuteron the model produces bound states, however the produced
ground state energy and charge radius do not have acceptable values.
This result also confirms previous findings. By including the interaction
between single nucleons and mesons into the model with Filip Jensen’s
coupling, the model is able to produce acceptable results.

The contribution from higher order approximations and the correc-
tion from relativistic kinetic energy are examined for different meson
masses. The results imply that future studies that include the pion into
the explicit meson model should use the relativistic kinetic energy.

With the success of the explicit meson model on a deuteron system
future studies can take on more complex systems.
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1

Introduction

One of the fundamental interactions of nature is the strong interaction
between nucleons. In the low energy regime the strong interaction is be-
lieved to be mediated by mesons [13]. Common methods for describing
the strong interaction are One Boson Exchange Potential and Effective
Field Theory. Inspired by the successes of these models the explicit me-
son model has been introduced [1][6].

The explicit meson model is a phenomenological model with mesons
as explicit degrees of freedom. In this model the nucleus becomes a
superposition of states with differing number of emitted mesons. The
energy requirement of meson emission impose a potential barrier, pro-
portional to the number of mesons, onto the states. Compared to other
descriptions of the strong interaction the potential advantage of the ex-
plicit meson model is a reduced number of model parameters. The ex-
plicit meson model naturally includes few-body forces and meson physics.

So far only few studies have investigated the explicit meson model
with sigma-mesons [1][6]. These studies have applied the model to the
deuteron. Since the deuteron is the simplest stable nucleus, consisting of
a proton and a neutron, it is a logical first choice for investigations of the
validity of the explicit meson model. For a discussion of the s-wave part
of the deuteron wave-function see [14]. The investigations of deuteron in
[1][6] have shown different levels of success. These studies were limited
by a simple approximation with one emitted sigma-meson. The studies
have assumed that the kinetic energy for the deuteron system does not
have a significant relativistic correction.
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Chapter 1. Introduction

Pions have been incorporated into the explicit meson model in [5][8]
to investigate photoproduction off protons. In [5][8] Fedorov and Mikkelsen
have successfully reproduced the experimental cross section for neutral
pion photoproduction off protons. These studies further encourage the
development and investigation of the explicit meson model.

In this thesis the results from the previous studies, [1][6], of the ex-
plicit meson model will be recreated and expanded. The emission of
mesons from single nucleons will be investigated, so the dressing of sin-
gle nucleons can be incorporated into the model. The assumption of non-
relativistic kinetic energy will be tested by comparing the model with
nonrelativistic and relativistic energy.

The thesis structure is as follows:
In Chapter 2 the notation used throughout the thesis is presented.

Chapter 3 introduces Jacobi coordinate transformation. The explicit me-
son model is presented in Chapter 4.

Chapter 5 is an introduction of the variational method in quantum
physics. In Chapter 6 the explicitly correlated Gaussian mehod used in
the variational calculations is introduced along with relevant matrix ele-
ments. The non-analytic matrix element for the relativist kinetic energy
is calculated in Chapter 7. Some numerical tools relevant to the results in
later sections are presented in Chapter 8.

In Chapter 9 the results of previous examinations of the explicit me-
son model [1][6] are recreated.

Chapter 10 contains the results not previously examined. These in-
clude: Section 10.1 where the correction from meson-nucleon system is
included in the explicit meson model and tested on a deuteron system,
Section 10.2 where the correction from a second meson is investigated
and Section 10.3 which contains a comparison between the relativistic
and nonrelativistic model.

Chapter 11 contains the discussion of the results from the previous
sections and Chapter 12 is the conclusion of this thesis.
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2

Notation

This section introduces some notation used throughout this thesis follow-
ing the convention set by [6]. Let r be the position vector for a system of
N particles, with r⃗i being the 3-dimensional position vector for the i’th
particle:

r =

 r⃗1
...

r⃗N

 . (2.1)

If A is a N × N matrix then Ar is given by:

(Ar)i =
N

∑
j=1

Aj,i⃗rj. (2.2)

The product with a N-dimensional vector v is given by:

vTr =
N

∑
i=1

vi⃗ri. (2.3)

If A is a N × N matrix, then the reduced matrix ⌊A⌋ is the (N − 1)×
(N − 1) matrix where the N’th row and column have been removed from
the A matrix. The same notation can be applied to vectors. The general N
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Chapter 2. Notation

dimensional vector v = (⃗v1, · · · , v⃗N)
T can be reduced to ⌊v⌋ by removing

the last component v⃗N .
A N × N matrix A can be expanded to a (N + 1) × (N + 1) matrix

⌈A⌉ by adding a row and column of zeros:

⌈A⌉ =
(

A 0⃗
0⃗T 0

)
, (2.4)

where 0⃗ is a zero vector of dimension N.
This notation gives rise to a pair of useful identities [6]:

⌊Av⃗⌋ = ⌊A⌋⌊v⃗⌋+ vN⌊a⃗N⌋, (2.5)

⌊v⃗⌋T A⌊v⃗⌋ = v⃗T⌈A⌉v⃗, (2.6)

where A is a N × N matrix with column vectors (a⃗1, a⃗2, · · · , a⃗N) and v⃗ is
a vector of dimension N.
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3

Coordinate transformation

The Jacobi (Center-of-mass) coordinate transformation allows the elim-
ination of the center-of-mass motion, hence simplifying the numerical
calculations.

The coordinate center-of-mass transformation from r to the Jacobi co-
ordinates x:

r → x = Jr, (3.1)

where J is the transformation matrix.
The transformation matrix J for a system of N particle is given as:

Jk,j =


mj

∑k
i=1 mi

for j ≤ k

−1 for j = k + 1
0 else

, (3.2)

where m1, m2, · · · , mN are the masses associated with the system.
The classical kinetic energy matrix transforms as:

K → JKJT. (3.3)

A description of the coordinate transformation of relativistic kinetic
energy is given in Chapter 7. Cyclic permutations of the Jacobi transfor-
mation is discussed in Appendix A.
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4

The explicit meson model

In this section the explicit meson model is introduced with respect to a
deuteron system. A deuteron is a simple nucleus consisting of two nu-
cleons, a neutron and a proton. Hence, a deuteron system presents a
natural first trial of the explicit meson model.

In the low energy regime the nucleon-nucleon interaction is believed
to be mediated by mesons [14]. The explicit meson model allows nu-
cleons to explicitly emit and absorb mesons. In the model the mesons
are treated in the same manor as the nucleons. Consequently the nu-
cleus becomes a superposition of states with differing numbers of emit-
ted mesons. For the deuteron system the Hamiltonian is given by the
matrix [6]:

H =


KN W 0
W KN + Kσ + mσ W · · ·
0 W KN + K2σ + 2mσ

...
. . .

 (4.1)

where KN is the kinetic energy of the nucleons, Kσ is the kinetic energy of
the meson, mσ is the mass of the meson and W is coupling term between
the subsystems. In the low energy-regime the states with emitted mesons
are under a potential barrier due to the energy required for the generation
of mesons. The strength of the potential is equal to the total mass of the
mesons for a given state.

It should be noted that zero energy is set equal to the total mass of the
nucleons mn + mp, where mp is the proton mass and mn is the neutron
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Chapter 4. The explicit meson model

mass. This simplifies the model to the form in Eq. (4.1), and this must be
kept in mind when incorporating dressed states into the model.

The Schrödinger equation corresponding to the Hamiltonian is:

H |Ψ⟩ = E0 |Ψ⟩ , (4.2)

where the wave-function |Ψ⟩ is a linear combination with a component
for every row in the Hamiltonian:

|Ψ⟩ =

 |ψN⟩
|ψN+σ⟩

...

 . (4.3)

In this trial of the explicit meson model the only allowed meson is
the scalar-isoscalar sigma-meson. The sigma-meson is believed to be re-
sponsible for the majority of the intermediate range interactions between
nucleons.

4.1 Classical kinetic energy

For a N-body system consisting of particles with coordinates r⃗i a general
form of the classical kinetic energy operator K̂ is given as [2]:

K̂ = −
N

∑
i,j=1

∂

∂⃗ri
Λi,j

∂

∂⃗rj
≡ ∂

∂r
Λ

∂

∂rT , (4.4)

where Λ is a symmetric positive-defined matrix.
The relativistic kinetic energy is described in Chapter 7.

4.2 One-meson approximation

In the explicit meson model the states with mesons find themselves under
a potential barrier equal to the total mass of the mesons. The expectation
is that in the first approximation only the state with one meson will have
a significant contribution to the system [1]. This subsection presents the
one-meson approximation in some detail, due to its significance to later
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Chapter 4. The explicit meson model

discussions. Higher order approximations, such as the two-meson ap-
proximation, follow naturally as a generalization of the one-meson ap-
proximation.

The Hamiltonian for the nucleus in the one-meson approximation be-
comes a 2 × 2 matrix:

H =

(
KN W
W KN + Kσ + mσ

)
. (4.5)

The corresponding Schrödinger equation is then given as:

(
KN W
W KN + Kσ + mσ

)(
ψN
ψNσ

)
= E0

(
ψN
ψNσ

)
, (4.6)

where ψN is the wave-function of the subsystem consisting of nucleons
without any mesons and ψNσ is the wave-function of the subsystem con-
sisting of nucleons and a meson. If the energy E0 is higher than the meson
mass the potential prevents the meson from leaving the nucleus.

A deuteron system consists of a proton and a neutron, hence the
wave-function in the one-meson approximation becomes a superposition
of a two-body subsystem and a three-body subsystem. The center-of-
mass coordinate for the two-body subsystem is:

r(d) =
(⃗
rnp
)

, (4.7)

where r⃗np is the first coordinate in the Jacobi transformation given in
Eq. (3.2). The reduced mass for the two-body subsystem is:

µnp =
mnmp

mn + mp
, (4.8)

where mn is the neutron mass and mp is the proton mass.
In the two-body subsystem the Λ matrix in Eq. (4.4) is:

Λ(d) =

(
h̄2

2µnp

)
. (4.9)
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Chapter 4. The explicit meson model

The center-of-mass coordinate for the three-body subsystem consist-
ing of a proton, a neutron and a meson has two components:

r(σ) =
(

r⃗np
r⃗σnp

)
. (4.10)

The reduced mass of the three-body susystem becomes:

µσnp =
mσ(mn + mp)

mσ + mn + mp
, (4.11)

where mσ is the mass of the sigma-meson. For the three-body system the
Λ matrix in Eq. (4.4) is:

Λ(σ) =

 h̄2

2µnp
0

0 h̄2

2µσnp

 . (4.12)

4.3 Coupling term

In Eq. (4.1) the term W is the coupling between states with a differing
number of mesons. Previous studies of the explicit meson model [1] [6]
have proposed different coupling terms. This section will describe differ-
ent coupling terms and show their form in the one-meson approximation.

In a realistic model the individual nucleon is allowed to emit mesons.
This is a feature of the coupling proposed by Filip Jensen in Eq. (4.16) [6].
For the general case with s sigma-mesons and N = s + 2 particles the
coupling term for the proton is given by [6]:

〈
r′
∣∣Gp,P

∣∣r〉 = δ3N (r−⌊Pr′
⌋) 1

γ
√

π
e
− 1

γ2 (⃗rp−(Pr′)N+1)
2

, (4.13)

where P is the permutation operator for the sigma-mesons corresponding
to the permutation P , r⃗p is the position coordinate for the proton and γ
is a range parameter with units of length.

The coupling term for the neutron Gn,P has the same form as Eq. (4.14),
where the position coordinate for the proton is replaced with the position

9



Chapter 4. The explicit meson model

coordinate for the neutron r⃗p → r⃗n. The full interaction is the sum of the
contribution from the two nucleons [6]:

WFJ = g ∑
P
Gp,P + Gn,P , (4.14)

where the sum goes over every permutation of the mesons and g is the
strength parameter.

In the one-meson approximation the permutation operator becomes
the identity operator. By letting the strength parameter absorb the front
factor Eq. (4.14) takes the form:

〈
r(σ)
∣∣∣WFJ

∣∣∣r(d)〉 = g′
(

exp

(
−

r⃗2
σp

γ2

)
+ exp

(
− r⃗2

σn
γ2

))
, (4.15)

where r⃗σp = r⃗σ − r⃗p and r⃗σn = r⃗σ − r⃗n can be calculated using permuta-
tions of the coordinate transformation (see Eq. (7.10)).

This form of the coupling allows for bound states between single nu-
cleons, hence the nucleons becomes “dressed” by the meson. In a realistic
model the energy difference from dressed nucleon must be included into
the model.

In [1] D. V. Fedorov’s proposed a different coupling term in the one-
meson approximation. This coupling assumes that the nucleons already
are “dressed” with mesons, hence the operator only accounts for mesons
emitted due to the presence of another nucleon. The coupling is given as:

〈
r(σ)
∣∣∣WDF

∣∣∣r(d)〉 = Sσ exp

(
−

r⃗2
np + r⃗2

σnp

b2
σ

)
, (4.16)

where Sσ and bσ are the strength and range parameter of the model re-
spectively. It is assumed that the position of the nucleons remains fixed
under the generation of the meson, hence the two-body and three-body
systems share the same first coordinate. The coupling term in Eq. (4.16)
goes to zero unless the three particles are in close proximity.

10



Chapter 4. The explicit meson model

4.4 Charge radius

In addition to the state energies, the mean square charge radius is a prop-
erty of nuclei that allows for a quantitative comparison between theoret-
ical calculations and experimental data. For a system with N particles,
the charge radius Rc can be defined as [1][7]:

R2
c =

N

∑
i=1

Zi
〈⃗
r2

i
〉
=

N

∑
i=1

Zi

〈
rTwiwT

i r
〉

, (4.17)

where Zi is the charge in unit charges of the i’th particle in the system, the
brakets ⟨⟩ signify the expectation value in the given state of the system,
r⃗i is the coordinate vector for the i’th particle of the system in the center-
of-mass frame. wi is the column unit vector for the i’th coordinate in
the center-of-mass frame, hence r⃗i = wT

i r. Under the Jacobi coordinate
transformation wi transforms as wi → J−Twi (see Chapter 3).

In this model the only allowed meson in the explicit meson model is
the chargeless sigma-meson, hence the only charge particle in the deuteron
system is the proton. To compute the charge radius it is therefore suffi-
cient to calculate the expectation value of the proton in Eq. (4.17).
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5

Variational method

The variational method serves as the basis for a number of approaches
for solving few-body problems in quantum physics, among them is the
correlated Gaussian method used in this thesis [13]. Variational methods
do not yield an exact solution, but given the right trial functions they
can give a good approximation of the wave-function and ground state
energy.

For a Hamiltonian H with associated ground-state energy E0 the so-
lution to the eigenvalue problem:

H
∣∣Ψ̃〉 = E′ ∣∣Ψ̃〉 , (5.1)

for any linear combination of trial functions
∣∣Ψ̃〉 = ∑m

i=1 ci |ψ̃i⟩, is a upper
bound for the ground state energy E′ ≥ E0 [12]. If the calculated upper
limit for the energy approximates the ground state energy, it implies that
the trial functions are a good approximation of the actual wave-function
[12].

Multiplying Eq. (5.1) by
〈
ψ̃j
∣∣ to the left yields the generalized eigen-

value problem:

Hc = E′N c, (5.2)

where c⃗ = {ci} is a vector of the linear parameters, the overlap matrix N
and Hamiltonian matrix H are given as:

12



Chapter 5. Variational method

Ni,j =
〈
ψ̃i
∣∣ψ̃j
〉

, (5.3)

Hi,j =
〈
ψ̃i
∣∣H∣∣ψ̃j

〉
. (5.4)

Solving the generalized eigenvalue problem yield the linear parameters
c⃗ = {ci}.

The correlated Gaussian method described in Chapter 6 introduces a
convenient set of trial functions that leads to analytic matrix elements for
N and H.
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6

Correlated Gaussians method

A popular variational method for solving quantum-mechanical few-body
problems such as evaluating the deuteron system in this thesis is the cor-
related Gaussian method (or explicitly correlated Gaussian method). The
advantages of this method are that a number of relevant matrix elements
are fully analytic, and thus simplifying the numerical calculation. In this
section the correlated Gausians method is described and the relevant ma-
trix elements are presented.

The variational method, described in Chapter 5, requires a reasonable
set of trial functions. In the correlated Gaussian method a linear combi-
nation of stochastic generated Gaussian functions are chosen as the trial
functions. In a system of N particles with coordinates r, the correlated
Gaussians have the form [2]:

⟨r|A⟩ = exp

(
−

N

∑
i<j=1

(
r⃗i − r⃗j

bi,j

)2
)

≡ exp
(
−rT Ar

)
, (6.1)

where r⃗i is the coordinate corresponding to the i-th particle, bi,j is the
stochastic range parameter and the matrix A is given as:

A =
N

∑
i<j=1

wi,jwT
i,j

b2
i,j

, (6.2)

where the vectors wi,j are defined through the equation:

14



Chapter 6. Correlated Gaussians method

r⃗i − r⃗j = wT
i,jr. (6.3)

In a two-body system in the laboratory frame wi,j is given as:

w1,2 =

(
1
−1

)
, (6.4)

and for a three-body system the vectors are given as:

w1,2 =

 1
−1
0

 , w1,3 =

 1
0
−1

 , w2,3 =

 0
1
−1

 . (6.5)

A given coordinate transformation r → Jr, wi,j transforms as wi,j →(
J−1)T wi,j.

This thesis applies the correlate Gaussian method to the deuteron sys-
tem described in the explicit meson model by the Hamiltonian in Eq. (4.1).
The trial wave-function for the system is a linear combination of Gaus-
sians with different dimensionality. For a given dimensionality d the trial
function is:

|ψ̃d⟩ =
nd

∑
i=1

cd,i |Ad,i⟩ , (6.6)

where nd is the number of Gaussians with the given dimensionality. The
full trial wave becomes:

∣∣Ψ̃〉 = ∑
d
|ψ̃d⟩ . (6.7)

Returning to the generalized eigenvalue problem Eq. (5.2), the matri-
ces N and H have a block structure:
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Chapter 6. Correlated Gaussians method

H =

⟨A1,i|KN |A1,i′⟩
〈

A1,i
∣∣W∣∣A2,j

〉
· · ·〈

A2,j
∣∣W∣∣A1,i

〉 〈
A2,j

∣∣KN + Kσ + mσ

∣∣A2,j′
〉

· · ·
...

...
. . .

 , (6.8)

N =

⟨A1,i|A1,i′⟩ 0 · · ·
0

〈
A2,j

∣∣A2,j′
〉

· · ·
...

...
. . .

 , (6.9)

where i, i′ = 1, . . . , n1 and j, j′ = 1, . . . , n2 .

6.1 Overlap and classical kinetic energy

To evaluate the generalized eigenvalue problem in Eq. (5.2), the matrix el-
ements in Eq. (5.3) must be computed. This subsection shows the matrix
elements for the overlap and classical kinetic energy.

The overlap ⟨A′|A⟩ between two N-particle Gaussians |A⟩ and |A′⟩
is given as [2]:

⟨A′|A⟩ =
(

π(N−1)

det(A + A′)

) 3
2

. (6.10)

The general form of the classical kinetic energy operator K̂ is given in
Eq. (4.4). The corresponding matrix element is [2]:

〈
A′
∣∣∣∣− ∂

∂r
Λ

∂

∂rT

∣∣∣∣A〉 = 6⟨A′|A⟩trace
(

A′ΛA(A′ + A)−1
)

. (6.11)

6.2 Coupling term

In the explicit meson model the only allowed interaction between sys-
tems of different dimensions is through the coupling term. Hence, for all
operators X, except the coupling term W [1]:

〈
A(m)

∣∣∣X∣∣∣A(m′)

〉
= 0, (6.12)
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Chapter 6. Correlated Gaussians method

where
∣∣∣A(m)

〉
and

∣∣∣A(m′)

〉
are Gaussians with dimensionalities m and m′

respectively, where m, m′ ∈ 1, 2, · · · and m ̸= m′.
If m ∈ 1, 2, 3, · · · , then for any m-body Gaussian A(m) and (m + 1)-

body Gaussian A(m−1) the matrix element for the kernel in Eq. (4.13) is
given as [6]:

〈
A(m)

∣∣∣Ĝp,P

∣∣∣A(m+1)

〉
=

1
γ
√

π

 πm

det
(
A+ A(m+1) +

⌊ωp⌋⌊ωp⌋T

γ2

)
 3

2

.

(6.13)

The matrix A is given by:

A =
⌊

JPJ−1
⌋T ⌈

A(m)

⌉ ⌊
JPJ−1

⌋
, (6.14)

where J is the coordinate transformation given in Eq. (3.2) and P is the
permutation operator. In the one-meson approximation the permutation
operator is unity, hence Eq. (6.14) becomes A =

⌈
A(m)

⌉
. The column

vector ωp is defined by:

ω⃗p =
(

PJ−1
)T (

ep˘em+1
)

, (6.15)

where ep is the unit vector for the proton and em+1 is the unit vector for
the emitted meson. The last equality only holds true in the one-meson
approximation, where s = 0.

The matrix element for Ĝn,P can be calculated using Eq. (6.13), by re-
placing ep with the unit vector for the neutron en in Eq. (6.15).

So far the discussion of the coupling term has been for a arbitrary
number of mesons. Continuing on with the one-meson approximation
relevant for most of this thesis and discussion of the coupling term in
Eq. (4.16). For a two-body Guassian

∣∣∣A(d)

〉
and a three-body Gaussian∣∣∣A(σ)

〉
the matrix element of coupling term in Eq. (4.16) is [6]:

〈
A(d)

∣∣∣Ŵ∣∣∣A(σ)

〉
= Sσ

〈
Ã
∣∣∣A(σ)

〉
, (6.16)
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Chapter 6. Correlated Gaussians method

where
∣∣Ã〉 is a Gaussian with associated 2 × 2 matrix Ã given by:

Ã =

(
A(d) +

1
b2

σ
0

0 1
b2

σ

)
. (6.17)

6.3 Charge radius

The matrix element for the charge radius in Eq. (4.17) between two N-
body Gaussians, |A⟩ and |A′⟩ is given as [2]:

〈
A
∣∣∣rTwiwT

i r
∣∣∣A′
〉
=

3
2

wT
i
(

A + A′)−1 wi
〈

A
∣∣A′〉 . (6.18)
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7

Relativistic kinetic energy

For particles with high velocity the non-relativistic approximation for the
kinetic energy no longer applies. The evaluations of the matrix element
for relativistic kinetic energy in a correlate Gaussian basis are nontrivial.
It turns out that the matrix element is non analytic. The matrix element
for the relativistic kinetic energy is derived in this section following the
approach from [13].

For a system of N particles the classical kinetic energy is given as:

TCl =
N

∑
i=1

p⃗2
i

2mi
, (7.1)

where p⃗i and mi is the momentum and mass of the i’th particle. The
relativistic kinetic energy for the system is given by:

TSR =
N

∑
i=1

√
p⃗2

i + m2
i − mi. (7.2)

In Eq. (7.1) the center of mass motion can easily be separated. Eq. (4.4)
gives the matrix element for the classical kinetic energy. The separation
of the center of mass motion for the relativistic kinetic energy necessi-
tates the introduction of permutations of the coordinate transformation.
Permutations are discussed in more details in Appendix A. It turns out
that the cyclic permutations of the coordinate transformation simplify the

evaluation of the matrix element of
√

p⃗2
i + m2

i .
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Chapter 7. Relativistic kinetic energy

7.1 Permutations of the coordinate transformation

Let J be the Jacobi coordinate transformation for a system of N particles,
and let P(k) be the permutation operator for the k’th cyclic permutation
of the system. Then the permutation of the coordinate transformation is
given by:

J(k) = P(k) J. (7.3)

For a three-particle system, such as a deuteron system in the one-
meson approximation, the cyclic permutation of the coordinate transfor-
mation matrix is:

J(1) =

 0 1 −1
−1 m2

m2+m3

m3
m2+m3m1

m1+m2+m3

m2
m1+m2+m3

m3
m1+m2+m3

 ,

J(2) =

 −1 0 1
m1

m1+m3
−1 m3

m1+m3m1
m1+m2+m3

m2
m1+m2+m3

m3
m1+m2+m3

 ,

J(3) = J. (7.4)

Returning to the general N-particle system, the momentum of the i’th
particle in the Jacobi coordinates is defined by the transformation:

π ≡ J−1p, (7.5)

where π is a size-N vector of particle momenta π⃗i. Eq. (7.5) implies that
the cyclic permutation of the momentum is:

π(k) =
(

J(k)
)−1

p. (7.6)

The motion of the system’s center of mass is irrelevant to the internal
mechanics of the system, hence the center of mass motion is set to zero:

π⃗N ≡
N

∑
i=0

p⃗i = 0. (7.7)

20



Chapter 7. Relativistic kinetic energy

Combining Eqs. (7.6) and (7.7) with the special form of the coordi-
nate transformation matrix gives the useful substitution of the momen-
tum into the center of mass frame:

p⃗k = −π⃗
(k)
N−1 for (k = 1, 2, . . . , N). (7.8)

This substitution can be inserted into the square root in Eq. (7.2):

√
p⃗2

i + m2
i =

√(
π⃗
(i)
N−1

)2
+ m2

i . (7.9)

The transformation from the standard center of mass coordinates x to
the permutation coordinates x(i) is given by the matrix V(i):

x = V(i)x(i) with V(i) =

⌊
J(N)

(
J(i)
)−1

⌋
, (7.10)

where J(N) = J follows from the definition of the permutations.

7.2 Calculating the matrix element

With the permutations of the coordinate transformation introduced, the
matrix element of the relativistic kinetic energy can be evaluated. Let |A⟩
and |A′⟩ be (N − 1) × (N − 1) correlated Gaussians on the form given
in Eq. (6.1). Applying Eq. (7.10) on the Gaussian |A⟩ gives the useful
relation:

⟨x|A⟩ = exp
(
−xT Ax

)
= exp

(
−xT

(
V(i)

)−T (
V(i)

)T
A
(

V(i)
) (

V(i)
)−1

x
)

= exp
(
−
(

x(i)
)T

A(i)x(i)
)
≡
〈

x(i)
∣∣∣A(i)

〉
, (7.11)

where A(i) = (V(i))T AV(i).

Evaluating the matrix element
√

p⃗2
i + m2

i using Eqs. (7.10) and (7.11)
gives the inner product:
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Chapter 7. Relativistic kinetic energy

〈
A′
∣∣∣∣√ p⃗2

i + m2
i

∣∣∣∣A〉 =

〈
A′

∣∣∣∣∣
√(

π⃗
(i)
N−1

)2
+ m2

i

∣∣∣∣∣A
〉

=
(

detV(i)
)3

×
∫

dx(i)
〈

A(i)′
∣∣∣x(i)〉〈x(i)

∣∣∣∣∣
√(

π⃗
(i)
N−1

)2
+ m2

i

∣∣∣∣∣x(i)
〉〈

x(i)
∣∣∣A(i)

〉
, (7.12)

where
(

detV(i)
)3

is the Jacobian corresponding to the change of integra-
tion variable.

To further evaluate the integral in Eq. (7.12), the Fourier transforma-
tion can be applied to transition into momentum space:

(
detV(i)

)3 ∫
dx(i)

〈
A(i)′

∣∣∣x(i)〉〈x(i)
∣∣∣∣∣
√(

π⃗
(i)
N−1

)2
+ m2

i

∣∣∣∣∣x(i)
〉〈

x(i)
∣∣∣A(i)

〉
=
(

detV(i)
)3 ∫

dk
〈

A(i)′
∣∣∣k〉〈k

∣∣∣∣∣
√(

π⃗
(i)
N−1

)2
+ m2

i

∣∣∣∣∣k
〉〈

k
∣∣∣A(i)

〉
. (7.13)

The kernel of the integral in Eq. (7.13) can be evaluated as:

〈
k′

∣∣∣∣∣
√(

π⃗
(i)
N−1

)2
+ m2

i

∣∣∣∣∣k
〉

= δ
(
k − k′)√h̄2⃗k2

N−1 + m2
i . (7.14)

Inserting this into Eq. (7.13) gives:

(
detV(i)

)3 ∫
dk
〈

A(i)′
∣∣∣k〉〈k

∣∣∣∣∣
√(

π⃗
(i)
N−1

)2
+ m2

i

∣∣∣∣∣k
〉〈

k
∣∣∣A(i)

〉
=
(

detV(i)
)3 ∫

dkdq
√

h̄2q2 + m2
i

〈
A(i)′

∣∣∣k〉 δ (kN−1 − q)
〈

k
∣∣∣A(i)

〉
.

(7.15)

The element ⟨x|k⟩ between the position and momentum is:

⟨x|k⟩ = (2π)−
3
2 (N−1) exp

(
ikTx

)
. (7.16)
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This means that the product ⟨k|A⟩ in Eq. (7.15) is a Gaussian [2]:

⟨k|A⟩ =
∫

d3Nx ⟨k|x⟩ ⟨x|A⟩

=
∫

d3Nx (2π)−
3
2 (N−1) exp

(
ikTx − xT Ax

)
= exp

(
−1

4
kT A−1k

)
(detA)−

3
2 . (7.17)

To evaluate the inner product of the delta function in Eq. (7.15) it can
be noted [13]:

∫
dx
〈

A′∣∣x〉 δ
(
xj − r

)
⟨x|A⟩

=
(

4π
(

A + A′)
j,j

)− 3
2

exp
(
−1

4
(

A + A′)−1
j,j r
) 〈

A′∣∣A〉
for j = 1, 2, . . . , N − 1. (7.18)

The integral in Eq. (7.15) can be evaluated by applying the Eqs. (7.17)
and (7.18):

〈
A′

∣∣∣∣∣
√(

π⃗
(i)
N−1

)2
+ m2

i

∣∣∣∣∣A
〉

=
(

detV(i)
)3 (

detA(i)detA′(I)
)− 3

2
∫

dk exp
(
−1

4
kT
(
(A(i))−1 + (A′(i))−1

)
k
)

×
( ci

π

) 3
2
∫

dqe−ciq2
√

h̄2q2 + m2
i

=
〈

A′∣∣A〉 f (ci, mi), (7.19)

with

c−1
1 =

((
V(i)

)T
A(A + A′)−1A′V(i)

)
N−1,N−1

, (7.20)

and the function f defined by:
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f (x, m) =
( x

π

) 3
2
∫

dq e−xq2
√

h̄2q2 + m2

= 4π
( x

π

) 3
2
∫ ∞

0
dq e−xq2

√
h̄2q2 + m2q2. (7.21)

The function f in Eq. (7.21) is not analytic, but can be solved using
numeric analysis [4] .

By inserting the result in Eq. (7.19) back into Eq. (7.2) from the start of
this section the matrix relativistic kinetic energy can be calculated. Due to
the non analytic nature of the solution the relativistic calculation requires
a significant larger computational load than the classical counterpart.

24



8

Numerical method

Before discussing the calculated results in section Chapter 9 and Sec-
tions 10.1 to 10.3, some general aspects of the numerical analysis are dis-
cussed in this section.

In this thesis the neutron and proton are set to have the same mass
to simplify the calculations. The mass of the nucleons is mn = mp =
929 MeV and the reduced Planck constant times the speed of light is h̄c =
197.327 Mev fm [9].

8.1 Generation of Gaussians

In the correlated Gaussian method described in Chapter 6 the Gaussians
are generated from stochastic variables. Eq. (6.2) describes how the ma-
trices in Eq. (6.1) are constructed from a number of stochastic range pa-
rameters bi,j. The range parameter must be taken from an appropriate
distribution, in this thesis the distribution is given by:

bi,j = − ln(u)b, (8.1)

where b is the scale and u ∈]0, 1[ is a stochastic variable. In this thesis the
stochastic variable is taken from a Van der Corput sequence. The scale b is
set to 6 fm when generating two-body Gaussians, 7 fm when generating
three-body Gaussians and 8 fm when generating four-body Gaussians.

Using a quasi-random Van der Corput sequence as opposed to a pseudo-
random sequence offers a number of advantages. Firstly, given consis-
tent input parameters, the Van der Corput sequence always produces

25



Chapter 8. Numerical method

the same output. Hence, the Gaussians remain constant over repeated
numerical simulations. This makes the process of reproducing results
simple and makes optimization of the model parameters consistent. Sec-
ondly, the quasi-random sequences have low-discrepancy [3]. The low-
discrepancy is expected to result in a better description of the physical
system compared to the high discrepancy pseudo-random sequence [3].
This also results in a lower number of required Gaussians to simulate the
system, hence decreases the computational load of the calculations. The
low-discrepancy sequence minimizes the overlap between the Gaussians.
This is desired since large overlap between states can result in computa-
tional errors.

8.2 Solving the generalized eigenvalue problem

Solving the generalized eigenvalue problem Eq. (5.2) demands some con-
siderations. Since the overlap matrix N is hermitian and positive-defined,
the matrix can be decomposed into the product of a lower triangle matrix
and its transposed by using Cholesky decomposition [4]:

N = LLT, (8.2)

where L is a lower triangle matrix and its transposed is an upper triangle
matrix. This allows the generalized eigenvalue problem of Eq. (5.2) to be
written on the form:

L−1HL−TLTc = H′c′ = E′c′, (8.3)

where H′ = L−1HL−T is a matrix with same dimensionality as H and
c′ = LT is a column vector with same number of elements as c. In Eq. (8.3)
the generalized eigenvalue problem has the form of a classic eigenvalue
problem, which can be solved using the Jacobi eigenvalue algorithm [4].

Both Cholesky decomposition and the Jacobi eigenvalue algorithm
have complexity of O(n3) [4]. The H′ matrix has dimensions equal to the
number of all Gaussians (regardless of Gaussians dimensionality) used
in the simulation. Consequently the computational load increases signif-
icantly for large numbers of Gaussians. To minimize the computational
load it is therefore desirable to find the smallest number of Gaussians
required to simulate the system in a satisfying level of detail.
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Chapter 8. Numerical method

If two or more Gaussians have a large overlap, the process of solv-
ing the generalized eigenvalue problem can become numerical unstable,
hence the code becomes unable to compile.

8.3 Optimizing the model parameters

Given that the Gaussians offer a satisfying description of the system, the
free parameters of the model will be chosen so that the results correspond
to experimental findings. The model parameters in question are the mass
of the sigma-meson mσ and the two parameters in the coupling operator,
see Eqs. (4.14) and (4.16). In this simulation the mass of the sigma-meson
is set to a reasonable value between 100 MeV and 1000 MeV. Then the
two remaining model parameters are tuned until the simulation matches
the experimental values for the ground state energy and charge radius.

The experimental values for the ground state energy and charge ra-
dius for the deuteron used in this thesis are E(exp) = −2.22 MeV, and
R(exp)

c, = 2.13 fm [9]. A measurement for the difference between the cal-
culated results and the expectation is given by the root square sum of
relative errors:

V =

√√√√(E(mod) − E(exp)

E(exp)

)2

+

(
R(mod)

c − R(exp)
c

R(exp)
c

)2

, (8.4)

where E(mod) and R(mod)
c are the computed values for the ground state

energy and charge radius respectively.
Eq. (8.4) is minimized by applying the downhill simplex method, to

tune the model parameters [4] [10]. For each iteration of the downhill
simplex the generalized eigenvalue problem is solved, hence requiring a
high computational load.

8.4 Numerical integration

Calculating the matrix elements for the relativistic kinetic energy requires
evaluating the non-analytic f function in Eq. (7.21). This numerical inte-
gration is computed using an adaptive quadrature [4]. By requiring nu-
merical integration the calculation of the matrix elements for the relativis-
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tic kinetic energy has a substantially larger computational load compared
to calculating the classical alternative.
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Results I: Verification of previous
results

The examinations of the the explicit meson model in [1] and [6] have
applied different coupling terms resulting in different levels of success.

In this section the results in [1] and [6] will be recreated. Firstly, in
Section 9.1 the explicit meson model will be used to simulate the deuteron
system using the coupling operator in Eq. (4.16) to verify the results in [1].
Secondly, in Section 9.2 the simulation is attempted using the coupling
operator in Eq. (4.14) to verify the results in [6]. Note that all simulations
in this section use the one-meson approximation, as it is the case in [1]
and [6].

9.1 Deuteron with D. V. Fedorov’s coupling

The study performed by D. V. Fedorov in [1], where a deuteron system
was simulated in the explicit meson model with the coupling term given
in Eq. (4.14), produced a satisfying simulation of the system. In this sub-
section these results will be recreated.

In Chapter 8 it is described how the free parameters in the coupling
term are tuned for any given meson mass. It turns out that for a suffi-
ciently large number of Gaussians the root square sum of relative error
becomes acceptable. Concretely given n(2) = 20 two-body Gaussians and
n(3) = 100 three-body Gaussians, then for any given mass of the sigma-
meson in the interval between 10 MeV and 1000 MeV, the two free model
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Figure 9.1: The deuteron ground-state energy E0 calculated with n(2) two-body
Gaussians and 100 three-body Gaussians. The applied coupling operator is seen
in Eq. (4.16).

parameters can be chosen so that the root square sum of relative error
becomes below 0.01.

An example: If the number of Gaussians is n(2) = 20 two-body Gaus-
sians and n(3) = 100 three-body Gaussians with a mass of the sigma-
meson set to mσ = 500 MeV, then the root square sum of relative er-
rors becomes V = 8.4 · 10−4. The free model parameters are found to
Sσ = 18.39 MeV and bσ = 3.134 MeV, which result in a ground state
energy E0 = −2.223 MeV and a charge radius of Rc = 2.129 fm for the
deuteron system.

Figs. 9.1 and 9.2 show the convergence of ground state energy for a
varied number of Gaussians. In Fig. 9.1 the number of two-body Gaus-
sians is varied and in Fig. 9.2 the number of three-body Gaussians is var-
ied. Both figures show that the ground state energy converges within a
reasonable number of Gaussians. This allows the deuteron system to be
analyzed using a relative low computational capacity. When the number
of three-body Gaussians is set to 100, the ground state energy converges
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Figure 9.2: The deuteron ground-state energy E0 calculated with n(3) three-body
Gaussians and 20 two-body Gaussians. The applied coupling operator is seen
in Eq. (4.16).

within 1 % with 5 two-body Gaussians. If the number of two-body Gaus-
sians is set to 20, the ground state energy converges within 1 % with 50
three-body Gaussians.

For the two-body neutron-proton deuteron subsystem the wave-function
can be computed, see Eqs. (6.1) and (6.6). The radial wave-function is
given as u(r) = rψ(2)(r), where ψ(2) is the wave-function of the two-body
deuteron subsystem. Fig. 9.3 illustrates the radial wave-function with the

asymptotic form exp(−κr), where κ =

√
2µ(2)|E0|

h̄2 and µ(2) is the reduced

mass of the subsystem. The radial wave-function follows the asymptotic
curve. This is the asymptotic behavior associated with the deuteron [14].

The results in this section confirm the results presented by D. V. Fe-
dorov in [1]. The differences between the exact numerical values in this
subsection and [1], are the result of the two simulations using different
Gaussians throughout the calculations.
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Figure 9.3: The radial wave-function for the neutron-proton subsystem of
deuteron and the asymptotic form, exp(−κr). The applied coupling operator
is seen in Eq. (4.16).

9.2 Deuteron with Filip Jensen’s coupling

In this subsection a deuteron system will be simulated applying the ex-
plicit meson model using the coupling term proposed by Filip Jensen,
given in Eq. (4.14) [6]. The coupling allows the nucleons to emit mesons
even outside the proximity of other nucleons. This makes the coupling
operator more realistic than Eq. (4.14) used in 9.1. Previous simulations
of the explicit meson model using this coupling have been performed by
Filip Jensen [6]. These simulations found that the model was unable to
produce results matching experimental findings [6]. This is in contrast to
the simulation performed by D. V. Fedorov [1].

In Fig. 9.4 the convergence of the ground state energy is shown as the
number of Gaussians in the two-body subsystem increases, the number
of Gaussians in the three-body subsystem remains constant at n(σ) = 100.
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Figure 9.4: The deuteron ground-state energy E0 calculated with n(2) two-body
Gaussians and 100 three-body Gaussians. The applied coupling operator is seen
in Eq. (4.14).

The ground state energy converges within 1 % with about 6 Gaussians.
Fig. 9.5 shows the ground state energy convergence, if the number of
Gaussians in the two-body subsystem is held constant at 20 and the num-
ber of three-body Gaussians is varied. Here the ground state energy con-
verges far slower compared to Fig. 9.2. To achieve a convergence of the
ground state energy within 1 % about 360 Gaussians are required. Note
that the larger number of required three-body Guassians increases the
computational load significantly compared to Section 9.1.

With a mass of the sigma-meson set to mσ = 500 MeV the free pa-
rameters in the model could not be tuned in a way such that the root
square sum of relative errors has a value lower than V = 1.6. This
is despite using a large number of Gaussians in the three-body subsys-
tem. The best result, using 20 Gaussians in the two-body subsystem and
300 Gaussians in the three-body subsystem, gave the root square sum of
relative errors of V = 1.688. Here the calculated ground state energy
becomes E0 = −4.079 MeV and the calculated charge radius becomes
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Figure 9.5: The deuteron ground-state energy E0 calculated with n(3) three-body
Gaussians and 20 two-body Gaussians. The applied coupling operator is seen
in Eq. (4.14).

Rc = 5.253 fm. The strength parameter was tuned to g = 14.19 MeV and
the range parameter was tuned to γ = 6.908 fm.

The large differences between the computed values and the experi-
mental findings imply that the explicit meson model with the coupling
in Eq. (4.14) is unable to simulate a deuteron system. A possible solution
to this problem is to incorporate the “dressing” of nucleons by mesons
into the model. This will be examined in the two following sections Sec-
tions 10.1 and 10.2.
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Results II

In this chapter the results not previously published are presented.

10.1 Filip Jensen’s coupling with dressed nucleons

In Section 9.2 it was shown that the explicit meson model in the one-
meson approximation with the coupling operator that is given in Eq. (4.14),
is unable to describe a deuteron system. The model is unable to produce
a ground state energy and a charge radius that correspond to the experi-
mental data.

In this section additional complexity will be introduced into the model,
by including the correction from bound nucleon-meson states, the so
called “dressing” of nucleons.

The coupling operator in Eq. (4.14) allows a nucleon to emit mesons
regardless of whether the nucleon is in the proximity of any other nucle-
ons or not. This opens the possibility for bound nucleon-meson states. In
the one-meson approximation a nucleon-meson system will become a su-
perposition of a one-body nucleon subsystem and a two-body nucleon-
meson subsystem. Performing a coordinate transformation, see Chap-
ter 3, and subtracting the center-of-mass coordinate reduces the system
to a single coordinate. Hence, analyzing the system only requires Gaus-
sians in the two-body subsystem. It is natural to reuse the Gaussians in
the deuteron two-body subsystem.

The correction from the nucleon-meson states can be included into
the model by calculating the ground state energies for the nucleon-meson
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subsystem. Then subtracting the ground state energies of the two nucle-
ons from the deuteron energies.

It should be noted that zero energy is set equal to the total mass of the
nucleons, hence the correction from the dressing of the nucleons must be
subtracted from the result.

The inclusion of the correction from the nucleon-meson states, re-
quires a larger computational load when simulating the system. This
added complexity originates from the solution of the generalized eigen-
value problem for the nucleon-meson subsystem. It should be noted
that the simulation of the nucleon-meson system only requires a small
fraction of the computational load required to simulate the full deuteron
system. The nucleon-meson system uses the same coupling term as the
deuteron system. Therefore the two free parameters in the coupling can
only be tuned to the experimental data after the correction from the nucleon-
meson states is included into the model. The tuning of the free model
parameters is described in more detail in Chapter 8.

By including the correction from the bound nucleon-meson states, the
free-parameters can be tuned so that the root square sum relative errors,
see Eq. (8.4), become lower than 0.01 for any mass of the sigma-meson be-
tween 10 MeV and 1000 MeV. This is similar to the result in Section 9.1,
where the coupling operator applied is Eq. (4.15). The result is imply-
ing that including the correction from the bound nucleon-meson states is
necessary when using the Filip Jensen’s coupling operator, in Eq. (4.14).

If the mass of the sigma-meson is set to mσ = 500 MeV the free-
parameters can be tuned so that the strength becomes g = 77.49 MeV
and the range becomes γ = 2.088 fm. This gives a ground state energy of
E0 = 2.230 MeV and a charge radius of Rc = 2.127 fm, corresponding to a
root square sum of relative errors of V = 0.0021. The ground state energy
of the nucleon-meson becomes −14.20 MeV. Compared to the result for
the same meson mass in Section 9.1 the strength and range parameters
differ.

The figures Figs. 10.1 and 10.2 show the convergence of the ground
state energy for varying numbers of Gaussians. Fig. 10.1 shows the con-
vergence of the energy for varying numbers of two-body Gaussians, when
the number of three-body Gaussians is constant. At first glance the con-
vergence of the energy in Fig. 10.1 looks nonphysical, since the expecta-
tion from the variation principle is that the energy falls as the descrip-
tion of the system increases. The reason for the increasing energy is that
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Figure 10.1: The deuteron ground state energy E0 calculated with n(2) two-
body Gaussians and 100 three-body Gaussians. The applied coupling opera-
tor is given in Eq. (4.14). The calculation includes the correction from dressed
nucleon states.

the ground state energy of the two nucleon-meson systems is subtracted
from the deuteron ground state energy. Since the energy of the nucleon-
meson system converges slower than the energy of the deuteron system,
the convergence curve increases. The energy converges within 1 % with
about 9 Gaussians in the two-body subsystem. This is slower than the
convergence in Section 9.2.

In Fig. 10.2 is shown the convergence of the ground state energy when
the number of Gaussians in the three-body subsystem is varied and the
number of Gaussians in the two-body subsystem constant. The conver-
gence curve has the expected form, since the energies of the nucleon-
meson systems are independent of the three-body Gaussians. The ground
state energy converges within 1 % in about 76 Gaussians. This is substan-
tially faster than in Fig. 9.5 in Section 9.2.

The radial wave-function can be computed for the neutron-proton
subsystem by the method described in Section 9.1. In Fig. 10.3 the re-
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Figure 10.2: The deuteron ground state energy E0 calculated with n(3) three-
body Gaussians and 20 two-body Gaussians. The applied coupling operator is
given in Eq. (4.14). The calculation includes the correction from dressed nucleon
states.

sulting curve is shown together with the wave-function from Fig. 9.3.
The comparison of the two curves illustrates that the wave-function cal-
culated in this section is slightly different compared to the previous re-
sult. The asymptotic behavior of the wave-function calculated with Filip
Jensen’s coupling does not match the exponential exp(−κr) where κ =√

2µ(2)|E0|
h̄2 . An explanation for the asymptotic behavior of the wave-function,

which does not match the expectations, is that the model only incorpo-
rates the one-meson approximation. In Section 10.2 the contribution from
a second meson will be examined.
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Figure 10.3: The radial wave-function for the neutron-proton subsystem of
deuteron for the coupling term given in Eq. (4.16), denoted “DVF” and the cou-
pling term given in Eq. (4.14), denoted “FJ”. Both wave-functions computed
in the one-meson approximation, with the inclusion of correction from bound
nucleon-meson states.
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10.2 Contribution from higher order
approximations

In Section 10.1 the correction from dressed nucleon states is included into
the deuteron model with the coupling term Eq. (4.14) in the one-meson
approximation. This model is able to describe a deuteron system with
ground state energy and charge radius corresponding to the experimen-
tal findings. In Section 10.1 the model was limited to the one-meson ap-
proximation, hence the contribution from higher order mesons is unex-
plored. In this section the contribution from a higher number of meson
is investigated. Firstly by comparing the ground state energies of the
nucleon-meson system and its higher order counterparts. Secondly by
investigating the radial wave-function in the two-meson approximation
to expand the result in Fig. 10.3.

10.2.1 Comparing the ground state energies of the nucleon
system in higher order approximations

When the ground state energy of systems consisting of a varying number
of mesons and a single nucleon is compared, a approximation of the con-
tribution from higher meson numbers to the full deuteron system is ob-
tained. To ensure comparable results the free parameters in the coupling
term are constant throughout the calculations. The free parameters ap-
plied in this section are the same ones that were calculated in Section 10.1.

In the explicit meson model the nucleon-meson-meson system be-
comes a superposition of a one-body nucleon subsystem, a two-body
nucleon-meson subsystem and a three-body nucleon-meson-meson sub-
system. Hence, the Hamiltonian H in the generalized eigenvalue prob-
lem has dimensionality n(2) + n(3) + 1, where n(2) and n(3) are the num-
bers of Gaussians in the two-body and three-body subsystems respec-
tively. It follows that a nucleon-meson-meson-meson system becomes a
superposition of four subsystems.

Fig. 10.4 shows ground state energies of a nucleon-meson system, a
nucleon-meson-meson system and a nucleon-meson-meson-meson sys-
tem. The absolute value of ground state energy increases with higher
numbers of mesons for all meson masses. The difference between the
system with two and three mesons respectively is relatively small, mak-
ing differentiating between the curves difficult. A local minimum for the
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Figure 10.4: Ground state energy for a nucleon-meson system, Enσ, a
nucleon-meson-meson system, Enσσ, and the nucleon-meson-meson-meson
system,Enσσσ. The energies are calculated using the interaction in Eq. (4.14) and
mass mσ. The free parameters in the coupling term Eq. (4.14) are tuned so the
ground state energy and charge radius of the deuteron in the one-meson ap-
proximation match the experimental findings.

ground state energies is found for a meson mass between 200 MeV and
300 MeV. The reason for the appearance of a local minimum is found
in the coupling term. Since the free parameters are refitted for every
given meson mass, the coupling is not consistent between different me-
son masses. If the coupling operator was held constant, the ground state
energies will decrease as the mass increases, see Fig. B.1.

In the explicit meson model the cost of meson emission is dependent
of the meson mass, hence the contribution from higher order approxima-
tions decrease for high masses. This is illustrated in Fig. 10.5. The figure
shows the relative difference between the ground state energy of the nu-
cleon systems of differing meson numbers. Even for low meson masses
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Figure 10.5: Relative difference in ground state energies between a nucleon-
meson system, with energy Enσ, and a nucleon-meson-meson-meson system,
with energy Enσσσ, and the relative difference between a nucleon-meson sys-
tem, with energy Enσσ, and a nucleon-meson-meson-meson system. The ener-
gies is calculated using the interaction in Eq. (4.14). mσ denote the meson mass.
The free parameters in the coupling term Eq. (4.14) are tuned so the ground
state energy and charge radius of the deuteron in the one-meson approximation
match the experimental findings.

the relative energy difference is below 4 % for the nucleon-meson. Hence,
if a further study of the explicit meson model is incorporating pions the
higher order corrections is only relevant for high precision calculations.
For a meson mass of mσ = 500 MeV the relative error becomes under 2 %
in the two meson system. The relative difference between the two and
three meson system is below 0.3 %.
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Figure 10.6: The radial wave-function for the neutron-proton subsystem of
deuteron calculated in the one-meson and two-meson approximation respec-
tively. The applied coupling operator is given in Eq. (4.14).

10.2.2 Radial wave-function for higher order approximations

In Section 10.1 the radial wave-function for the deuteron system in the
one-meson approximation is examined. Fig. 10.3 depicts the found ra-
dial wave-function. The asymptotic behavior of the wave-function does

not match the exponential exp (−κr) with κ =
√

2µ|E0|
h̄2 . To investigate

the asymptotic wave-function for higher order approximations the wave-
function is computed in the two-meson approximation, with the nucleon-
meson-meson correction. Convergence plots for the deuteron in the two-
meson approximation are seen in Figs. B.2 to B.4 in the appendix. Ta-
ble B.1 features an example of the tuned model.

In Fig. 10.6 the radial wave-function for the deuteron system in the
two-meson approximation is depicted with the radial wave-function in
the one-meson approximation. The asymptotic form of radial wave-function
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in the two-meson approximation does not match the exponential exp (−κr).
Hence, the result does not fully match the expectations and the behavior
seen in [1].
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10.3 Inclusion of relativistic kinetic energy

In Chapter 9 and Sections 10.1 and 10.2 a deuteron system was simulated
in the explicit meson model using the classical (nonrelativistic) kinetic
energy.

In this section it is examined if the non-relativistic approximation
is reasonable. The first comparison between the classical and relativis-
tic model is using the coupling operator proposed by D. V. Fedorov, in
Eq. (4.15), since this coupling yields the simplest model. A description of
the relativistic kinetic energy is given in Chapter 7.

The non-analytic matrix element for the relativistic kinetic energy in
Eq. (7.19) depends on the meson mass. For high meson masses the rela-
tivistic kinetic energy is expected to approach the classical value.

To compare the relativistic and classical energies the coupling opera-
tor must remain fixed between the two models. Hence, the free-parameters
in the operator must remain fixed. The tuning of the free model pa-
rameters by minimizing the sum of relative errors is described in Chap-
ter 8. First the free-parameters are tuned using the non-relativistic kinetic
energy for a given meson mass. Then the corresponding ground state
energy and charge radius are calculated in the relativistic model.

It should be noted that the solution of the generalized eigenvalue
problem is sensitive to even small numerical changes. For large matrices
this problem can lead to significant errors. Hence, to avoid errors using a
small number of Gaussians that still describes the system to a satisfying
level of detail, is preferable.

In Fig. 10.7 the ground state energies for the classical and the rela-
tivistic models are shown. The free-parameters in the coupling have been
tuned in the classical model. The difference between the two models de-
creases for high meson masses. The difference in charge radius between
the two models has the same behavior as the ground state energy, see
Fig. B.5. In the simulation the number of Gaussians in the two-body sub-
system is 6 and in the three-body subsystem 50. Fig. 10.8 shows the root
square sum of relative errors given in Eq. (8.4) for the relativistic model.
For a meson with a mass roughly equal to that of the pion mπ ≈ 140 MeV,
the root square sum of relative errors is 0.82. Similarly for a meson mass
of mσ = 500 MeV the root square sum of relative errors is roughly 0.18.
This implies that if the explicit meson model has to incorporate pions,
the model would need to incorporate the relativistic kinetic energy to get
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Figure 10.7: Ground state energy for the deuteron system calculated using the
classical kinetic energy shown with the ground state energy calculated using
the relativistic kinetic energy. The coupling operator applied in the model is
Eq. (4.15). The free-parameters in the coupling operator, Eq. (4.15), are tuned
so the calculated values of the ground state energy and the charge radius of
deuteron with the classical kinetic energy match the experimental findings.

reliable results. In general the relativistic energy must be incorporated to
achieve high precision results.

So far the free-parameters in the coupling term have been tuned in
the classical model to estimate the difference between the classical and
relativistic model. But if further studies are to be computed in a rela-
tivistic model, the tuning of the free-parameters must be archived in the
relativistic model.

For any meson mass between 100 MeV and 1000 MeV the free-parameters
in the coupling can be tuned so that the root square sum of relative errors
becomes less than 0.01, in the relativistic model. Using the relativistic
model with retuned free-parameters the results in previews chapters can
be recreated. In the Appendix the results in Chapter 9 and Section 10.1
are recreated with relativistic kinetic energy, see Appendices B.4 to B.6.
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Figure 10.8: Root square sum of relative errors, see Eq. (8.4), for the ground state
energy and charge radius calculated with relativistic kinetic energy. The free-
parameters in the coupling operator, Eq. (4.15), is fitted with the classical kinetic
energy to minimized the root square sum of relative errors, see Section 8.3.
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Discussion

The explicit meson model has several potential advantages compared
to established few-body nuclear models. One is that the explicit meson
model has a lower number of model parameters. Another is that the ex-
plicit meson model includes few-body forces. The model also includes
meson physics into the nucleon-nucleon interaction. In this thesis the
only allowed meson is the sigma-meson.

Previously D. V. Fedorov has examined the explicit meson model in
a deuteron system [1]. D. V. Fedorov used the coupling operator shown
in Eq. (4.15) [1]. The coupling operator only allows meson production
if both nucleons are in close proximity of each other [1]. D. V. Fedorov
was able to fit the free-parameters in the model so the calculated ground
state energy and charge radius matched the experimental expectations.
The wave-function produced by the model has the asymptotic behavior
that corresponds to the theoretical expectation. The calculated results in
Section 9.1 confirm the previous findings. This implies that the model is
successful in describing a deuteron system. The results in Section 9.1 and
[1] have small numerical differences. This is most likely the result of the
two simulations applying different Gaussians.

The explicit meson model has also been tested by Filip Jensen, who
applied a more realistic coupling operator, seen in Eq. (4.14) [6]. The
coupling allows for single nucleons to produce mesons independent of
the position of other nucleons. Filip Jensen found that this coupling was
unable to produce results that matched the experimental findings for the
ground state energy and charge radius of deuteron. The “dressing” of
nucleons from nucleon-meson states was not included in Jensens model.
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In Section 9.2 Jensens simulation was recreated. The recreation confirmed
that the experimental findings could not be obtained. This implies that
the model in this form is unable to describe a deuteron system, without
the inclusion of correction from the nucleon-meson systems introduced
in Section 10.1. Other possible reasons for the unsuccessful results are
that the number of applied Gaussians were unable to describe the system.
It is also possible that the downhill simplex, see Section 8.3 used in the
optimization of the free-parameters in the model got trapped in a local
minimum.

The results in Section 9.2 and in [6], have some differences. A signifi-
cant difference is that the number of applied Gaussians in [6] was signifi-
cantly lower in both the two-body and three-body subsystems, compared
to the results in Section 9.2. In Filip Jensen’s calculations, [6], the ground
state energy converges at a different rate than in Section 9.2. The differ-
ence is especially striking for the number of Guassians in the three-body
subsystem, where the ground state energy seems to converge within 20
Gaussians in Filip Jensens’ calculations as opposed to 360 Gaussians in
Fig. 9.5. A likely explanation for the differences is that the Gaussians in
the two analysis have been constructed differently, and the scale param-
eters were set to have different values. It is surprising that the ground
state energy converges faster for Filip Jensen, since Jensen’s Gaussians
were constructed from a pseudo-random sequence where the Gaussians
in this thesis are constructed using a quasi-random sequence, see Sec-
tion 8.2. This is because the quasi-random sequence is expected to have
faster convergence as compared to the pseudo-random sequence [3]. It
is worth noting that the convergence plot in [6] is limited to 20 Gaus-
sians in the three-body subsystem. Hence, it is possible that the ground
state energy would have fallen further, if the number of Gaussians in the
three-body subsystem had been allowed to surpass 20, offering a better
description of the system.

The difference between the Gaussians in Section 9.2 and [6] is a prob-
able reason for the difference in the root square sum of relative errors. In
[6] the lowest value of the root square sum of relative errors was V =
1.91(2) and in Section 9.2 the best result was V ≈ 1.6. It is possible that
this variation is due to the difference in the number and construction of
the applied Gaussians. In [6] the number of applied Gaussians were 4
in the two-body subsystem and 11 in the three-body subsystem, where
the numbers in Section 9.2 were 20 in the two-body subsystem and 300
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in the three-body subsystem. In [6] the Gaussians have been taken from
a pseudo-random sequence and optimized by replacing single Gaussians
and recalculating the ground state energy, accepting the set of matrices
that yields the lowest energy.

In Section 10.1 the correction from nucleon-meson state is included
into the model applied in Section 9.2. For a given meson mass within
a reasonable range the model achieves results close to the experimen-
tal findings. Compared with the result without the nucleon-meson cor-
rection, in Section 9.2, the ground state energy converges significantly
faster for the number of Gaussians in the three-body subsystem. The
convergence for Gaussians in the two-body subsystem was a bit slower,
see Figs. 10.1 and 10.2. The reason that the ground state energy conver-
gences at a slower rate for the Gaussians in the two-body subsystem, is
likely due to the complexity added by the inclusion of the nucleon-meson
states, since these systems also are described by the two-body Guassians.
The three-body Gaussians converge faster, since some complexity from
the nucleon-meson system has been removed. The total number of Gaus-
sians was significant lower leading to a smaller computational load.

In Fig. 10.3 the radial wave-function is compared for the calculated
models in Section 10.1 and Section 9.1. The wave-function calculated
with Filip Jensen’s coupling has a slightly different form compared to
the wave-function calculated using D. V. Fedorov’s coupling. This dif-
ference also gives the wave-function calculated with Jensen’s coupling a
different asymptotic behavior. The asymptotic form of the wave-function
calculated with Jensen’s coupling is different from the expected.

A possible explanation for why the wave-function computed with
Filip Jensen’s coupling does not appear to match expectations, is that
the model is unable to describe the asymptotic behavior without the in-
clusion of higher meson numbers. In Fig. 10.6 the corresponding ra-
dial wave-function in the two-meson approximation is shown. The fig-
ure shows that the wave-function for the two-meson approximation is
slightly different from one-meson approximation. The asymptotic be-
havior of the wave-function in the two-meson approximation does not
match expectation. It is possible that still higher order approximations
must be included to yield the expected form of the radial wave-function.
Another possibility is that the model does not consider some interactions
of the real system.

In Chapter 9 and Section 10.1 a deuteron system was simulated in the
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one-meson approximation, where the nucleons is prohibited from pro-
ducing more than one-meson. Due to meson states being under a poten-
tial barrier equal to the total mass of the emitted mesons, the contribu-
tion from higher meson numbers is expected to be small. The contribu-
tion from higher order approximations must be depending on the meson
mass. In Section 10.2.1 the ground state energy of a system consisting
of one nucleon with one to three mesons is calculated for varying me-
son masses. The energies are compared for different meson numbers in
Figs. 10.4 and 10.5. For the approximate mass of pions, 140 MeV, the rela-
tive difference between the one-meson and three-meson systems is under
4 %, and the difference between the two-meson and three-meson systems
is under 0.3 %. This result gives an estimate for the contribution from
higher order approximations.

In [11] the dressing of protons by pions is investigated. In [11] Øster-
lund made an analysis of the contribution from the two-meson approxi-
mation to the pion dressing and how the strength and range parameters
in the coupling term effect this contribution. These results are outside the
scope of this thesis.

Due to the added complexity of the implementation and required
computational load, future studies of the explicit meson model must eval-
uate the desired accuracy, and choose the practical number of allowed
mesons. In systems of larger complexity it is possible that some proper-
ties of the system require a certain number of mesons to accurately sim-
ulate the systems.

In Section 10.3 the difference between the classical and the relativistic
kinetic energy is investigated. Figs. 10.7 and 10.8 show that even for re-
lative high meson masses the difference between the relativistic and clas-
sical energies is significant. Hence, the relativistic kinetic energy should,
if possible, be used instead of the classical to achieve precise results. By
refitting the free-parameters in the model the result in Chapter 9 and Sec-
tions 10.1 and 10.2 can be recreated using the relativistic kinetic energy.
Since the matrix element for the relativistic kinetic energy is non-analytic,
see Chapter 7, the calculations take a larger computational load com-
pared to the classical energy.

The solution of the generalized eigenvalue problem is sensitive to
even small changes in the matrix elements. But the fitting of the model
parameters gives a small error in matrix elements of the coupling, and the
numerical integration also leads to small errors in the matrix elements for
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the kinetic energy. All the small errors can accumulate over large matri-
ces leading to unreasonable results. To circumvent this problem a relative
small number of Gaussians was applied to the system.

The classical kinetic energy is an approximation of the relativistic ki-
netic energy in the low velocity limit. Since the two energies give such
different results when applied in the explicit meson model, it is worth
considering why the classical kinetic energy still yields the results in Sec-
tions 9.1, 10.1 and 10.2 that imply that the model works as intended. The
likely explanation for the results in Sections 9.1, 10.1 and 10.2 is that two
free-parameters are fitted to two experimental values. Fitting two free
parameters to two data points is expected to be achievable for any some-
what reasonable model. Hence, the model can produce results that match
the experimental expectations even if there is a error in the calculation of
some of the matrix elements.

In [8] Mikkelsen investigated the relativistic correction for a proton
dressed with pions in the one-pion approximation. It was found that the
relativistic correction was small for most values of the coupling operator.
This is in contrast to the results found in Section 10.2. The dressed pro-
ton analyzed in [8] is a different system than the deuteron analyzed in
this thesis, hence the results are not directly comparable. But given the
analysis in [8] are correct, the result in [8] can still indicate an error in
Section 10.2. This is especially relevant since the pion included in [8] is
the lightest meson, hence pion systems are expected to have the largest
relativistic correction.

11.1 Future studies

The examination of the explicit meson model so far leaves a number of
possibilities for further examinations of the model. As mentioned in [5]
the findings in [5] might indicate that the two-pion effect is not negligible.
Hence, future studies can investigate photoproduction of neutral pions
off protons in the two-pion approximation. In an investigation of this
subject the results in [11] can be applied.

Another subject more directly linked to this thesis is the analysis of
the deuteron with explicit pions. This subject can be expanded to in-
clude photoproduction off the deuteron. If the same coupling term is
able to produce a reasonable ground state energy and charge radius for
the deuteron and a cross section for pion photoproduction that repro-
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duces the experimental findings, it will be a great success for the explicit
meson model.

The explicit meson model can also be tested on more complex nuclei
than the deuteron, examining the broader application of the model. The
explicit meson model has not yet been computed with a high number
of mesons included into the explicit meson model. This can potentially
reveal further insight into the explicit meson model’s strengths and limi-
tations.

Existing studies of the explicit meson model [6], [1], [5], [8], [11] and
this thesis use a simple phenomenological coupling operator. Future
studies can investigate if this is the correct form of the coupling.
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Conclusion

In this thesis the explicit meson model, as described by Fedorov and
Jensen in [1][6], has been investigated by applying it to the deuteron in
the simple one sigma-meson version of the model.

The explicit meson model has several potential advantages compared
to established few-body nuclear models. One is that the explicit meson
model has a lower number of model parameters. Another is that the
explicit meson model includes few-body forces. The model also includes
meson physics into the nucleon-nucleon interaction.

In [1], the explicit meson model in the one sigma-meson incarnation
was applied to deuteron, with the coupling operator in Eq. (4.15). The
model was able to produce a bound deuteron state with ground state
energy and charge radius very close to the experimental expectations.
This result was successfully recreated in this thesis.

In [6] the same model is examined, the only difference being the cou-
pling operator taking the form in Eq. (4.14). In [6] the explicit meson
model was able to produce a bound deuteron state. But the explicit me-
son model was unable to produce a state with ground state energy and
charge radius satisfyingly close to the expectations. These results were
also successfully recreated.

The interaction in Eq. (4.14) allows for the formation of bound nucleon-
meson states. By including these states into the explicit meson model in
[6], the model produces bound deuteron states with ground state energy
and charge radius close to the experimental expectations. Hence, con-
firming the validity of the explicit meson model with the realistic cou-
pling in Eq. (4.14). This has not previously been published.
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The ground state energy for systems consisting of a single nucleon
and given number of mesons, can give an estimate of the contribution
from higher order approximations. This is shown in Figs. 10.4 and 10.5.
For a meson with a mass roughly equal to the pion the second order con-
tribution becomes lower than 4 %, and lower than 0.3 % for the third or-
der contribution.

The explicit meson model has been applied using classical kinetic
energy. Computing a deuteron system with relativistic kinetic energy
allow the relativistic ground state energies to be compared to their clas-
sical counterpart. It turns out that the deuteron ground state energy
and charge radius have significant different values for the relativistic
kinetic energy compared to the classical. Hence, the relativistic kinetic
energy should be used in further studies. The previously discussed result
can be recreated with the relativistic kinetic energy by tuning the free-
parameters in the coupling operator. A comparison between the classical
and relativistic energy in the explicit meson model for the deuteron has
not been published previously.
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Permutations of particles

Permutation symmetries play an import role in physics with identical
particles [12]. The introduction of permutations also allows for the sim-
plification of the calculation of the matrix element for the relativistic ki-
netic energy in Chapter 7. This section follows from [13].

In a system of N particles there is N! possible permutations. For a

given permutation P =

(
1 2 · · · N
p1 p2 · · · pN

)
the corresponding permu-

tation operator P transforms the single particle coordinates as r⃗i → r⃗pi .
The matrix form of the permutation operator is given by:

(PP )ij = δj pi for i, j = 1, 2, . . . , N, (A.1)

where δij is the Kronecker delta.
For a system there is 3! = 6 possible permutations given by the ma-

trices:
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Appendix A. Permutations of particles

P( 123
123

) =
1 0 0

0 1 0
0 0 1

 , P( 123
213

) =
0 1 0

1 0 0
0 0 1

 ,

P( 123
321

) =
0 0 1

0 1 0
1 0 0

 , P( 123
132

) =
1 0 0

0 0 1
0 1 0

 ,

P( 123
123

) =
1 0 0

0 1 0
0 0 1

 , P( 123
213

) =
0 1 0

1 0 0
0 0 1

 . (A.2)

In the three-particle system the cyclic permutations are P( 123
231

), P( 123
312

)
and P( 123

123

).

Note that if the particles do not share the same masses, the permuta-
tion operator should also be applied to the mass vector.

A.1 Permutation of the center of mass coordinates

In Chapter 3 a coordinate transformation is described, r → x = Jr. Let
r(k) be coordinates under a cyclic permutation:

Jr(k) ≡ J(k)r ≡ x(k). (A.3)

A permutation operator can be constructed in the center of mass co-
ordinates as:

x(k) = P(k)x, P(k) = J(k) J−1. (A.4)

As an example relevant for the calculations in Chapter 7, for a three-
particle system the cyclic permutation of the coordinates yields the cor-
responding transformations:
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J(1) =

 0 1 −1
−1 m2

m2+m3

m3
m2+m3m1

m1+m2+m3

m2
m1+m2+m3

m3
m1+m2+m3

 ,

J(2) =

 −1 0 1
m1

m1+m3
−1 m3

m1+m3m1
m1+m2+m3

m2
m1+m2+m3

m3
m1+m2+m3

 ,

J(3) = J. (A.5)

In Chapter 7 the application of the cyclic permutation operator is ap-
plied to calculate the matrix element for the relativistic kinetic energy.
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B

Supplementary figures and tables

This chapter will feature a number of supplementary figures and tables
to the main thesis. The data will be presented mostly without comments.
The relevant information will be presented in form of notes. This will
hopefully make it easy for the reader to find and interpretate the desired
information.

B.1 Supplementary figures: Section 10.2.1

In Fig. B.1 the figure in Fig. 10.4 is recreated with constant coupling oper-
ator, as opposed to the mass dependent coupling in Fig. 10.4.

B.2 Supplementary figures: Section 10.2.2

This section features supplementary figures and tables to Section 10.2.2.
The convergence is shown in Figs. B.2 to B.4. In Table B.1 an example of
the tuned model is shown.

B.3 Supplementary figures to Section 10.3

This section features Fig. B.5 which depict the charge radius component
of Fig. 10.7.
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Figure B.1: Ground state energy of nucleon with constant coupling. Systems:
nucleon-meson (with energy Enσ), nucleon-meson-meson (with energy Enσσ)
and nucleon-meson-meson-meson (with energy Enσσσ ). Meson mass: mσ. Cou-
pling: Eq. (4.14). Number of allowed mesons: one to three. Strength parameter:
g = 77.5 MeV. Range parameter: γ = 2.09 fm. Number of two-body Gaussians:
n(2) = 14. Number of three-body Gaussians: n(3) = 80. Number of four-body
Gaussians: n(4) = 100. Kinetic energy: classical.

n(2) n(3) n(4) g γ V Rc E0

9 50 100 62.9 MeV 2.41 fm 0.0017 2.13 fm −2.23 MeV

Table B.1: Tuned model in the two-meson approximation. Systems: deuteron
with dressed nucleons. Meson mass: mσ = 500 MeV. Coupling: Eq. (4.14).
Number of allowed mesons: two. Strength parameter: g. Range parameter: γ.
Number of two-body Gaussians: n(2). Number of three-body Gaussians: n(3).
Number of four-body Gaussians: n(4). Kinetic energy: classical. Root square
sum of relative errors: V.
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Figure B.2: Convergence plot for two-body Gaussians. Systems: deuteron with
dressed nucleons. Meson mass: mσ = 500 MeV. Coupling: Eq. (4.14). Number
of allowed mesons: two. Strength parameter: g = 62.9 MeV. Range parameter:
γ = 2.41 fm. Number of two-body Gaussians: n(2). Number of three-body
Gaussians: n(3) = 50. Number of four-body Gaussians: n(4) = 100. Kinetic
energy: classical.

B.4 Recreation of results from Section 9.1 with
relativistic energy

In this section the results in Section 9.1 are recreated using relativistic
kinetic energy.

In Table B.2 an example of the tuned model is shown. Figs. B.6 to B.8
are the recreation of Figs. 9.1 to 9.3 respectively with relativistic kinetic
energy.
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Figure B.3: Convergence plot for three-body Gaussians. Systems: deuteron with
dressed nucleons. Meson mass: mσ = 500 MeV. Coupling: Eq. (4.14). Number
of allowed mesons: two. Strength parameter: g = 62.9 MeV. Range parameter:
γ = 2.41 fm. Number of two-body Gaussians: n(2). Number of three-body
Gaussians: n(3). Number of four-body Gaussians: n(4) = 100. Kinetic energy:
classical.

n(2) n(3) Sσ bσ V Rc E0

10 50 17.3 MeV 3.19 fm 4.47 × 10−6 2.13 fm −2.22 MeV

Table B.2: Recreation of results from Section 9.1 with relativistic energy. Sys-
tems: deuteron. Meson mass: mσ = 500 MeV. Coupling: Eq. (4.15). Number of
allowed mesons: one. Strength parameter: Sσ. Range parameter: bσ. Number
of two-body Gaussians: n(2). Number of three-body Gaussians: n(3). Kinetic
energy: relativistic. Root square sum of relative errors: V.
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Figure B.4: Convergence plot for four-body Gaussians. Systems: deuteron with
dressed nucleons. Meson mass: mσ = 500 MeV. Coupling: Eq. (4.14). Number
of allowed mesons: two. Strength parameter: g = 62.9 MeV. Range parameter:
γ = 2.41 fm. Number of two-body Gaussians: n(2) = 9. Number of three-body
Gaussians: n(3) = 50. Number of four-body Gaussians: n(4). Kinetic energy:
classical.

B.5 Recreation of results from Section 9.2 with
relativistic energy

In this section the results in Section 9.2 are recreated using relativistic
kinetic energy.

In Table B.3 an example of the tuned model is shown. Figs. B.9 and B.10
are the recreation of Figs. 9.4 and 9.5 respectively with relativistic kinetic
energy.
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Figure B.5: Deuteron charge radius with relativistic kinetic energy. Systems:
deuteron. Meson mass: mσ. Coupling: Eq. (4.15). Number of allowed mesons:
one. Strength parameter: variable. Range parameter: variable. Number of two-
body Gaussians: n(2) = 6. Number of three-body Gaussians: n(3) = 52.

n(2) n(3) g γ V Rc E0

10 50 37.8 MeV 2.09 fm 0.942 4.03 fm −2.88 MeV

Table B.3: Recreation of results from Section 9.2 with relativistic energy. Sys-
tems: deuteron. Meson mass: mσ = 500 MeV. Coupling: Eq. (4.14). Number
of allowed mesons: one. Strength parameter: g. Range parameter: γ. Number
of two-body Gaussians: n(2). Number of three-body Gaussians: n(3). Kinetic
energy: relativistic. Root square sum of relative errors: V.
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Figure B.6: Convergence plot for two-body Gaussians. Recreation of Fig. 9.1
with relativistic energy. Systems: deuteron. Meson mass: mσ = 500 MeV.
Coupling: Eq. (4.15). Number of allowed mesons: one. Strength parameter:
Sσ = 17.3 MeV. Range parameter: bσ = 3.19 fm. Number of two-body Gaus-
sians: n(2). Number of three-body Gaussians: n(3) = 50. Kinetic energy: rela-
tivistic.

B.6 Recreation of results from Section 10.1 with
relativistic energy

In this section the results in Section 10.1 are recreated using relativistic
kinetic energy.

In Table B.4 an example of the tuned model is shown. Figs. B.11
to B.13 are the recreation of Figs. 10.1 to 10.3 respectively with relativistic
kinetic energy.
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Figure B.7: Convergence plot for three-body Gaussians. Recreation of Fig. 9.2
with relativistic energy. Systems: deuteron. Meson mass: mσ = 500 MeV.
Coupling: Eq. (4.15). Number of allowed mesons: one. Strength parameter:
Sσ = 17.3 MeV. Range parameter: bσ = 3.19 fm. Number of two-body Gaus-
sians: n(2) = 10. Number of three-body Gaussians: n(3). Kinetic energy: rela-
tivistic.

n(2) n(3) g γ V Rc E0

10 50 62.5 MeV 2.40 fm 2.67 × 10−6 2.13 fm −2.23 MeV

Table B.4: Recreation of results from Section 10.1 with relativistic energy. Sys-
tems: deuteron with dressed nucleons. Meson mass: mσ = 500 MeV. Coupling:
Eq. (4.14). Number of allowed mesons: one. Strength parameter: g. Range
parameter: γ. Number of two-body Gaussians: n(2). Number of three-body
Gaussians: n(3). Kinetic energy: relativistic. Root square sum of relative errors:
V.
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Figure B.8: Deuteron wave-function. Recreation of Fig. 9.3 with relativistic
energy. Systems: deuteron. Meson mass: mσ = 500 MeV. Coupling: Eq. (4.15).
Number of allowed mesons: one. Strength parameter: Sσ = 17.3 MeV. Range
parameter: bσ = 3.19 fm. Number of two-body Gaussians: n(2) = 10. Number
of three-body Gaussians: n(3) = 50. Kinetic energy: relativistic.
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Figure B.9: Convergence plot for two-body Gaussians. Recreattion of Fig. 9.4
with relativistic energy. Systems: deuteron. Meson mass: mσ = 500 MeV.
Coupling: Eq. (4.14). Number of allowed mesons: one. Strength parameter:
g = 37.8 MeV. Range parameter: γ = 2.09 fm. Number of two-body Gaussians:
n(2). Number of three-body Gaussians: n(3) = 50. Kinetic energy: relativistic.
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Figure B.10: Convergence plot for three-body Gaussians. Recreation of Fig. 9.5
with relativistic energy. Systems: deuteron. Meson mass: mσ = 500 MeV.
Coupling: Eq. (4.14). Number of allowed mesons: one. Strength parameter:
g = 37.8 MeV. Range parameter: γ = 2.09 fm. Number of two-body Gaussians:
n(2) = 10. Number of three-body Gaussians: n(3). Kinetic energy: relativistic.
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Figure B.11: Convergence plot for two-body Gaussians. Recreation of Fig. 10.1
with relativistic energy. Systems: deuteron with dressed nucleons. Meson mass:
mσ = 500 MeV. Coupling: Eq. (4.14). Number of allowed mesons: one. Strength
parameter: g = 62.5 MeV. Range parameter: γ = 2.40 fm. Number of two-body
Gaussians: n(2). Number of three-body Gaussians: n(3) = 50. Kinetic energy:
relativistic.
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Figure B.12: Convergence plot for three-body Gaussians. Recreation of Fig. 10.2
with relativistic energy. Systems: deuteron with dressed nucleons. Meson mass:
mσ = 500 MeV. Coupling: Eq. (4.14). Number of allowed mesons: one. Strength
parameter: g = 62.5 MeV. Range parameter: γ = 2.40 fm. Number of two-body
Gaussians: n(2). Number of three-body Gaussians: n(3) = 50. Kinetic energy:
relativistic.
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Figure B.13: Deuteron wave-function. Recreation of Fig. 10.3 with relativistic
energy. Systems: deuteron with dressed nucleons. Meson mass: mσ = 500 MeV.
Coupling: Eq. (4.14). Number of allowed mesons: one. Strength parameter:
g = 62.5 MeV. Range parameter: γ = 2.40 fm. Number of two-body Gaus-
sians: n(2) = 10. Number of three-body Gaussians: n(3) = 50. Kinetic energy:
relativistic.
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