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Abstract

This thesis examines the nature of identical, squeezed two- and three-boson systems, and mass-imbalanced three-boson
systems with a gaussian particle interaction tuned to be at resonance in the relevant sub-systems, and present squeezed
spectra. The energies in question were found by using the stochastic variational method with fully correlated, non-shifted
gaussians as a basis. The mass imbalance was at 1:100 and 1:100:100 in the two- and three-body systems respectively. The
plateaus of squeezing in one, two and three directions on the identical two-body system yielded energies of −0.4651, −1.4170,
and −2.683, in good correspondence to previous measurements, in a unit basis where the gaussian width of the interaction
is unit length, and the mass of the bosons are unit mass. The three-identical-boson ground state yielded −0.2375, and
the imbalanced yielded −0.1810 and −0.0790 for its ground state and first excited state respectively. The monodirectional
squeezing of the imbalanced system yielded a plateau of −8.199 and the identical bosons yielded −2.091, with the first excited
state being pushed down to −0.008 relative to the two-body system.
In total, the calculations are in agreement with the relevant theory, and the method proved useful.
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CHAPTER 2. THEORY

1 Introduction

Quantum physics has been an ever-growing subject of research
since its discovery, and it would seem that it time and time
again surprises us, and defies our intuition. One of the ways
in which it does this, is through the Efimov effect, which pre-
dicts a model-independent, long-range three-body attraction
with infinitely many bound states in three dimensions, when
the ranges of the two-body interactions are zero, and the sub-
systems are exactly at the threshold of binding. It is then of
interest to examine how the lowest lying bound states would
behave, should one insert a more realistic interaction between
the particles in question, and artificially alter its dimensionality
through squeezing, as the conditions of the effect is broken.
This paper examines the binding energies of two-body systems
consisting of both identical and mass-imbalanced bosons, the
latter consisting of one boson with a hundredth of the mass
of the other, with a gaussian interaction initially tuned to be
at zero binding energy in the case when they’re free, and its
behaviour when squeezed with a harmonic potential, along
with the ground state and first excited state of two three-
body systems made up of both identical and mass-imbalanced
bosons, the former is examined when undergoing unidirectional
squeezing.
The method applied is the stochastic variational method, in
which one constructs one’s wavefunction by expanding it in an
appropriate set of basis functions, gaussians in this case, and
selecting the parameters for these randomly from an appropri-
ate distribution.
The specific type of gaussians chosen is the fully correlated,
unshifted gaussians, in which a basis function can be written
exp(

∑
ij ~r

T
ijA~rij), where A is an appropriate 3× 3 matrix, and

~rij is the vector separating particle i and j.
We can thus present points from the spectrum that occurs
when one squeezes two bosons of identical unit mass in one,
two and three directions, along with that from the ground state
of a three-body system of identical bosons, and its first excited
state, when squeezed in a single direction, and the squeezed
ground state of the three-body system of m1 = 100 = m2,
m3 = 1, and the un-squeezed states of some of the above,
along with tests of the code by calculations of states from
Hydrogen and Helium.

2 Theory

It is well known that the dimensionality of a system greatly
affects some of its properties. A hypothetical sound wave in a
single dimension would not dissipate its energy nearly as fast
as a three-dimensional one.
In a more appropriate example for the subject at hand, it
has been shown that the centrifugal barrier in a quantum
mechanical two-body system at zero angular momentum has
the opposite sign than in its three-dimensional counterpart.
This means that particles, in conditions restricting them to
such a dimensionality, will be attracted to one another in
stead of being repulsed, letting them form bound states in two
dimensions that would otherwise be unbound in three. In order
for this to happen, however, one requires a small attraction
beyond the effective potential.[3]

The interaction is somewhat more complicated in the case with
three particles, as other factors than the centrifugal barrier
and the two-body potentials begin to play into the system’s
hamiltonian.

2.1 Efimov states

An interaction, initially discovered by Vitaly Efimov, emerges,
which is only present when there are more than two bodies in
the system. If at least two of the two-body sub-systems are
at resonance, resulting in an infinite scattering length, which
most importantly means that they are at the threshold of being
unbound, and interact at zero range, then a scale-invariant
potential appears, that allows for energy levels that increment
as:

En = E0λ
−2n

Such states are called Efimov states, and correspond to the
interaction being mediated in the system by one or more of
the particles, moving between the others. They are also called
”Borromean states” if all of the sub-systems are unbound,
analogous to the symbol of the Borromean rings, where, if one
removes a single ring, they all fall apart, but as long as all
three rings are there, they stick together. Similarly, should one
remove a particle, the system will disassociate, but until then,
it will maintain a bound ground state.
This, however, has a dimensional requirement. If one only
allows integer dimensions, it only appears in three dimensions.
In fewer dimensions, Borromean states do not exist, although
bound states certainly do, but in stead of there existing an
infinite amount of bound states, the amount is finite.
If one squeezes the system by adding a harmonic oscillator
potential to it, all but the ground state and first excited state
of from the Efimov attraction should be moved up in energy,
while the rest, for large enough oscillator strengths, disappear.
This can be thought of as a lightly bound three-body state
decaying to a bound two-body system and a free particle, and
happens because the two-body energy becomes lower than the
three-body energy.
The ground state and the first excited state, however, should
be pushed down relative to the two-body threshold.[4]

The Efimov potential and scale invariance

In order for the reader to understand this three-body force,
one has to understand the form of the potential.
The potential that Efimov derived comes from calculating the
hamiltonian of three identical bosons that interact at infinitely
short ranges near resonance, i.e. nearly unbound two-particle
subsystems, and then applying appropriate boundary condi-
tions and coordinate transformations, in the end finding a
Schrödinger equation with a wavefunction of two coordinates.
This can be broken down into a spatial part Fn(R), and an
angular part φn(α).
Here R is the so-called hyper-radius, defined such that R2 =
r212 +ρ212,3, where r12 is the norm of the vector between particle
1 and 2, and ρ12,3 is proportional to the norm of the vector
between the center of mass of particle 1 and 2, and particle 3.
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2.1. EFIMOV STATES CHAPTER 2. THEORY

α is the angle between these two vectors.
Much like an effective centrifugal potential appears in the
three-dimensional Schrödinger equation from choosing spheri-
cal coordinates, a potential of the form

Vn =
s2n − 1

4

R2
,

appears.
Worth noting is that the n in the equation is not the primary
quantum number, dictating what energy state one is looking at.
The parameters sn stems from boundary conditions on φn(α).
The appropriate equation for solving sn has one imaginary
root,leading to one attractive potential, and finally to bound
states. The resulting value of λ is then given as λ = eπ/|s0|,
where s0 is the imaginary root of the appropriate equation. [4].

The next question to ask is then why this particular poten-
tial leads to infinitely many states, and why they’re all scaled
relative to one another.
This becomes apparent when one looks at the scaling relations
of the kinetic energy operator.
Consider the Hamiltonian for a a single particle in one dimen-
sion with a potential V (x):

(− h̄2

2m

∂2

∂x2
+ V (x))ψ1(x) = E1ψ1(x) (1)

If we then attempt a solution with another trial function named
ψ2(x) = ψ1(λx), we obtain:

E2ψ2(x) = (− h̄2

2m

∂2

∂x2
+ V (x))ψ2(x)

= λ2(− h̄2

2m

∂2

∂(λx)2
+ λ−2V (x))ψ1(λx)

If we then have a potential that scales so that V (x) = λ2V (λx)
for a given λ, which is the case for a potential of the form
V (x) ∝ x−2, then the equation would become:

E2ψ2(x) = λ2(− h̄2

2m

∂2

∂(λx)2
+ V (λx))ψ1(λx)

This is, all but for the factor of λ2 in front of the parenthesis
on the right hand side, the Schrödinger equation for ψ1 with
x→ λx, which must therefore have the same eigenvalue.

(− h̄2

2m

∂2

∂(λx)2
+ V (λx))ψ1(λx) = E1ψ1(λx) = E1ψ2(x)

⇒ E2ψ2(x) = λ2E1ψ2(x)

⇒ E2 = λ2E1

One can then repeat the arguments and propose a function
ψn(x) = ψn−1(λx), but the result is already apparent: An
infinite series of energy levels emerge where En+1 = λ2En =
λ2nE0. Of course, if the arbitrarily named E0 is smaller than
zero, one obtains a ground state energy that is not E0, but
E∞, going towards −∞. Naturally, this is simply a naming

convention, and, if a finite, negative ground state exists, the
energies will be ordered in ascending order with n so that

En = E0λ
−2

The physics of the spatial scaling x→ λx for the wavefunc-
tion can be intuitively understood by looking at a gaussian
with width b:
f(x) = exp(−x2/b2). If x→ λx, f → exp(−x2/(b/λ)2), which
is equivalent to the transformation b→ b/λ, effectively narrow-
ing the function. It can also be understood from the physics
of the free particle, where x→ kx in the wavefunction corre-
sponds to a decrease in the wavelength for k > 1. Therefore,
if ψ is a wavefunction and E0 < 0, the wavefunction should,
given the aforementioned scaling conditions of the potential,
collapse onto its center and be infinitely bound.
However, if appropriate boundary conditions are applied to a
wavefunction, a corresponding boundary condition is applied
to the energy as well as to the values that λ is allowed to take,
ensuring a finite ground state, and a discrete scale invariance.
Naturally, we will not observe pure Efimov states, as a gaus-
sian potential has finite range, and this itself sets a boundary
condition for the wavefunction, ensures a finite ground state,
and possibly also creates excited states on its own. However,
if one looks at very large systems, which highly excited states
tend to be, one can expect to see some Efimov-like states, as
one could, for very large systems, treat the gaussian interaction
like a zero-range potential.

Mass dependencies

The Efimov effect does not only appear for bosons of identical
mass, but also for different particles. The equation governing
the solutions for sn is particularly mass-dependent. For two
bosonic particles of mass M, and one bosonic particle of mass
m, the equation of interest for three resonantly interacting
pairs with angular momentum l = 0 is:

(cos(sn
π

2
)− 2

sn

sin(snγ)

sin(2γ)
)cos(sn

π

2
)− 2(

2

sn

sin(snγ
′)

sin(2γ′)
)2 = 0

γ = arcsin(
M

M +m
)

γ′ = arcsin(

√
m

2M +m
)

Some interesting limits and values of the emerging scaling value
are [4]

lim
M/m→0

(λ) = 15.74

lim
M/m→∞

(λ) = 1

for M/m = 1, λ ≈ 22.7

Therefore, if one wishes to calculate many Efimov states, it
is favourable to consider the states where two bosons of high
mass interact with a single boson of low mass.
This dependency on the ratio of the masses can be put in a
classical analogy, in which the lighter particle will move faster
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2.2. THE CORRELATED GAUSSIAN METHOD CHAPTER 2. THEORY

between the other two particles due to its smaller mass.

Understanding the scaling relations of the kinetic energy
operator in respect to the mass of a system also gives rise to
some shortcuts one can take. Since we take interest in the
calculations of the potentials that give rise to resonant two-body
systems, we can utilise a mass-scaling, so that that calculating
a single potential is sufficient to trivially calculate the rest.
The many calculations, that would otherwise be required, can
be circumvented, if one enforces a scaling of the interaction
potential. Say one has calculated a two-body interaction for
a system with reduced mass µ, tuned its ground-state energy
to be near, or exactly zero, and wants to also calculate an
interaction for a different two-particle system of reduced mass
µ′.
One then has a Schrödinger equation without the center of
mass for the ground state function ψ = ψ(r12), if V = V (r12):

(− h̄
2

2µ

∂2

∂r212
+ V )ψ = Eψ

One can then understand the scaling of the mass as a scaling
of the energy, by looking at the primed system:

(− h̄2

2µ′
∂2

∂r212
+ V ′)ψ′ = E′ψ′

=
µ

µ′
(− h̄

2

2µ

∂2

∂r212
+
µ′

µ
V ′)ψ′

The operator within the parenthesis is the hamiltonian for a

mass µ system with a potential µ′

µ
V ′. If we, by construction

of our interaction potential, let V = µ′

µ
V ′, then ψ′ = ψ is

a solution, and since ψ is the ground state solution of the
un-primed system, that particular function will be the ground
state of the primed system. Hence:

µ

µ′
(− h̄

2

2µ

∂2

∂r212
+
µ′

µ
V ′)ψ′

=
µ

µ′
(− h̄

2

2µ

∂2

∂r212
+ V )ψ

=
µ

µ′
Eψ = E′ψ

V ′ =
µ

µ′
V ⇒ E′ =

µ

µ′
E

Thus, to keep the new system near resonance, one only has to
ensure that the reduced masses of the subsystems are similar.
Of course, when E = 0, this has no bearing, and the ground
state of the primed system is kept to be equal to that of the
un-primed system. This, however, also implies that, if the
un-primed sub-system is only near-resonant, a simple rescaling
of the interaction potential at sufficiently large µ/µ′ is not a
valid approach.

2.2 The correlated gaussian method

The main idea of this method, is to expand the wavefunction
as a linear combination of gaussian functions, so that if the

supervector ~r consists of N single particle vectors as such:

~r =


~r1
~r2
.
.
~rN


then the wavefunction in position space can be given as follows:

ψ(~r) =< ~r|ψ >=
∑
j

cj < ~r|gj >

< ~r|gj >= exp(−~r ·Aj~r)
dim(Aj) = dN × dN in d dimensions

The exponent is also often written −rTAjr for brevity of nota-
tion. It is of great importance that the A matrices are positive
definite, as the gaussians, otherwise, may not be quadratically
integrable.
One can then infer that the ket-state |ψ > must be an eigen-
state of the hamiltonian,

Ĥ|ψ >= E|ψ >,

where E is the energy. This leads to a generalised eigenvalue
problem, if we collect the parameters cj as the j’th index of a
vector ~c, and

Hij
.
=< gi|Ĥ|gj >

and

Mij
.
=< gi|gj >

as the ij’th elements of the matrices H and M:

Ĥ|ψ >= E|ψ >= E
∑
j

cj |gj >

< gi|Ĥ|ψ >=
∑
j

< gi|Ĥ|gj > cj = (H~c)i

= E
∑
j

< gi|gj > cj = (EM~c)i

The i indicates that both of these equations are just the i’th
index of the resulting vector of multiplying H on ~c and EM
on ~c respectively.
Naturally, not any gaussians will do. There exists a theo-
rem, stating that the eigenvalue will either be greater than,
or equal to the corresponding energy state. More accurately,
if the eigenvalues of a set of gaussians are ordered such that
Ei+1 > Ei ∀ i, and those that corresponds to physical energies
are sorted such that εi+1 > εi ∀ i, then Ei ≥ εi ∀ i, and the
equality will only hold if < ~r|ψ >=

∑
j cj < ~r|gj >.[2]

Thus, the problem reduces to finding the matrix elements
of relevant potentials, along with a computational problem of
finding the correct gaussians to span the wavefunction.
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2.3. COORDINATES CHAPTER 2. THEORY

2.3 Coordinates

When interested in the internal structure of the system, one
can draw great benefit from choosing one’s coordinates in
such a manner, that the center of mass disconnects from one’s
equations, as this effectively reduces the problem from an
N-particle problem to an (N-1)-particle problem. A set of
coordinates are typically chosen such that the transformed
vector ~x = U~r, where U is a matrix, has, on its first three
entries, the vector from particle 1 to particle 2, then, on its
second three entries, the vector between the center of mass of
particle 1 and 2, to particle 3, and, in general, if we see it as a
supervector:

~xi = (
1∑i
jmj

i∑
n

mn~rn)− ~rn+1

with

~xN =
1∑N
j mj

N∑
n

mn~rn = ~RCM

This, for N=3, leads to the matrix transformation:

U =

 Id −Id 0
m1

m1+m2
Id

m2
m1+m2

Id −Id
m1

m1+m2+m3
Id

m2
m1+m2+m3

Id
m3

m1+m2+m3
Id


Where Id is the unit matrix in d dimensions. The transforma-
tion matrix has an inverse. By explicitly concerning ourselves
with the consequences on the internal system’s energy, we can
understand that an A-matrix in a gaussian basis function can
be manipulated as follows

−rTAr = −rTUT (U−1)TAU−1Ur

= −xT (U−1)TAU−1x,

and, by absorbing the inverse transformation matrix in A and
disposing of the center of mass coordinate, can be treated as
d(N − 1)× d(N − 1) dimensional.

Relative coordinates

Many, if not all, interaction potentials between particles have
a dependency on the distance vector connecting them. It is
therefore also worth noting their expressions in this basis.

Let us denote ~ri − ~rj = ~rij , then we let ~wij and ~Sij be super-
vectors, and define and calculate their connection as follows:

~rij = ~wTij~x = ~STij~r

(~Sij)q
.
= (δi,q − δj,q)Id
~STij~r = ~STijU

−1U~r

= ~STijU
−1~x = ~wTij~x

~STijU
−1 = ~wTij

These prove useful when dealing with interactions, such as the
Coulomb interaction, that only depend on these.
For three identical particles with unit mass, the supervectors
are given as: ~ST12~ST23

~ST13

 =

Id −Id 0
0 Id −Id
Id 0 −Id


~wT12~wT23
~wT13

 =

 Id 0 0
− 1

2
Id Id 0

1
2
Id Id 0

 ,

and it is both apparent and intuitive that the center of mass
does not enter into such calculations, as this would imply that
the distances between the individual particles are inherently
dependent on the position of the system.

Harmonic potentential’s coordinates

If we consider three non-interacting particles in a harmonic
potential of strength a, the potential will have the form:

hz = a(z21 + z22 + z23)

=
∑
j

1

2
mjω

2
j z

2
j

The ground state of a harmonic oscillator will be a gaussian, and
will have a width associated with it, related to the amplitude:

a =
1

2
mjω

2
j =

2h̄2

mjb4j

Thus, whenever one is operating in a coordinate basis where this
operator is diagonal, meaning that it does not mix coordinate
vectors in this basis, one can calculate the width of the system
through this mechanism, and one has:

m
1/4
j bj = m

1/4
i bi

The potential can be rewritten to

hz = arTWzr,

where Wz is a diagonal matrix that picks out the z-components
of the vector r. Further transformations to an x-basis, would
result in the following:

hz = axT (U−1)TWzU
−1x

There are conditions for the matrix between the x-vectors to
be diagonal in the last three rows and columns, allowing us
to separate the center of mass. If we for a moment consider a
spherically symmetric trap, and thus omit the Id from our U-
matrix, we see the conditions appear, since if it is diagonal for
a potential

∑
i z

2
i , it is also diagonal for one of the form

∑
i x

2
i +

y2i + z2i :
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2.4. MATRIX ELEMENTS CHAPTER 2. THEORY

U−1 =

 m2
m1+m2

m3
m1+m2+m3

1
− m1
m1+m2

m3
m1+m2+m3

1

0 − m1+m2
m1+m2+m3

1


(U−1)T =

 m2
m1+m2

− m1
m1+m2

0
m3

m1+m2+m3

m3
m1+m2+m3

− m1+m2
m1+m2+m3

1 1 1


(U−1)TU−1

=


m2

2+m
2
1

(m1+m2)2
m3

m1+m2+m3

m2−m1
m1+m2

m2−m1
m1+m2

m3
m1+m2+m3

m2−m1
m1+m2

2m2
3+(m1+m2)

2

(m1+m2+m3)2
2m3−m1−m2
m1+m2+m3

m2−m1
m1+m2

2m3−m1−m2
m1+m2+m3

3


Diagonality is only achieved when m1 = m2 = m3. This is
highly problematic, as the center of mass coordinates cannot be
directly removed in such calculations, and will greatly increase
the time for each calculation. However, if one has different
potential strengths for different particles, one gains:

hz =
∑
j

ajz
2
j = rT aWzr

a =

a1Id 0 0
0 a2Id 0
0 0 a3Id



Due to the symmetry of the U-matrix, we can, for a qualitative
look at when the resulting matrix (U−1)T aWrU

−1 is diagonal,
omit Id:

(U−1)T aU−1

= (U−1)T

 a1
m2
m12

a1
m3
m123

a1
−a2 m1

m12
a2

m3
m123

a2
0 −a3m1+m2

m123
a3

 =


a1m

2
2+a2m

2
1

m12

m3
m123

a1m2−a2m1
m12

a1m2−a2m1
m123

m3
m123

a1m2−a2m1
m12

(a1+a2)m
2
3+a3(m12)

2

(m123)2
(a1+a2)m3−a3(m12)

m123
a1m2−a2m1

m12

(a1+a2)m3−a3(m12)
m123

a1 + a2 + a3


Some items have been constracted so that m12..j = m1 +m2 +
... + mj . The conditions for diagonality become apparent,
and are where ai/mi = aj/mj∀ i, j in the system, which is
equivalent to having the kinds of systems where each particle
has the same oscillating frequency, such that the potential
becomes

hz =
1

2
ω2
∑
j

mjz
2
j

By no longer keeping the potential strength, a, invariant across
different particles, but in stead maintaining a/m, the relation
between different widths of the trap on different particles, is
rewritten to

√
mjbj =

√
mibi

2.4 Matrix elements

Once appropriate coordinates have been decided upon, one
must analytically calculate the matrix elements of the hamilto-
nian H, and the overlap M.

The overlap

If we denote |g >= exp(−xTAx), and A+A′ = B for simplicity,
then we have:

< g|g′ >=

∫
RD(N−1)

e−x
TBxdD(N−1)x

.
=

∫
e−x

TBxdx (notation convention for D dimensions)

Suppose, then, that B was diagonal. Then our problem reduces
to a product of one-dimensional single coordinate integrals:

< g|g′ >=

D(N−1)∏
i

∫
e−x

2
iBiidxi =

D(N−1)∏
i

√
π

Bii

=

√
πD(N−1)

det(B)

Since the determinant of a matrix is independent of its basis
vectors, the result must remain unchanged, should B not be
diagonal. Hence, the overlap reduces to:

Mij =< gi|gj >=

√
πD(N−1)

det(Ai +Aj)
.

It is also worth noticing the symmetry Ai +Aj = Aj +Ai ⇒
Mij = Mji ∀ i, j. In fact, all matrices whose elements depend
take from the gaussians only the matrix Ai + Aj must, of
course, hold this symmetry.
As a final note on this element, should one consider the case of
spherically symmetric gaussians, in which one has one element
in the A-matrices per three coordinates, it naturally follows
that one should replace the determinant with itself to the power
of three.

The kinetic energy operator

The first thing of interest, after having calculated the overlap,
is to separate the kinetic energy of the whole system from that
of the subsystems. Hence, we follow the approach of Varga and
Suzuki [1]. We denote the momentum in the single particle
basis as ~pi for particle i, and in x-basis as ~πi, for the i’th vector
in x, and operate in a set of units where h̄ = 1.
Then, in the case with spherical gaussians, where one has a

7
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coordinate per vector ~r:

p =

~p1~p2
~p3

 = UT

~π1

~π2

~π3


= UTπ

KCM =
π2
N

2
∑
imi

N∑
i

1

2mi
~p2i −KCM =

1

2

N∑
i

N∑
j

(
1

mi
δij −

1∑N
k mk

)~pi · ~pj

=

N−1∑
i

N−1∑
j

Λij~πi · ~πj

Λij =
1

2

N∑
k

Uik
1

mk
Ujk,

where i and j range from 1 to N-1. In the fully correlated case,
where we have a parameter for each coordinate of each particle
vector, every parameter of the U-matrix has been multiplied
with Id, and thus must every component of Λ as expressed here.
Hence, if we denote a diagonal matrix L of dimension D*N in D
dimensions, with entries Lkk = 1/mq, where q = k/D rounded
up to the nearest integer, on the diagonal, then Λ is all but
the last three rows and columns of the matrix 1

2
ULUT , and it

contains, in our chosen coordinates, the reduced masses of the
subsystems on its diagonal, and zeroes on every other entry.
We can then, after removing the center of mass coordinate
from our x-vector, rewrite our kinetic energy operator as

K̂ = − ∂

∂~x
Λ

∂

∂~xT
.

It is solved in the following way.[2]

< g|K̂|g′ >=

∫
e−x

TAx(− ∂

∂~x
Λ

∂

∂~xT
)e−x

TA′xdx

If we integrate by parts, we obtain:

< gi|K̂|gi >=

∫
(
∂

∂~x
e−x

TAix)Λ(
∂

∂~xT
e−x

TAjx)dx

=

∫
(4xTAiΛAjx)e−x

T (Ai+Aj)xdx

This can with great benefit be written as

< gi|xTFx|gj >

as solving this general case also solves the harmonic oscilla-
tor. Suppose, initially, that the sum of the A-matrices, B, is
diagonal, and that F is a general matrix with the appropriate
dimensions. Then:

xTFx =
∑
i,j

Fijxixj

is an uneven function of a given xi for i 6= j. Since we integrate
over all space in our inner product, and since gaussians are

even functions, every off-diagonal term of F vanishes, leaving
us with:

< gi|xTFx|gj >=

∫
e−

∑
k x

2
kBkk

∑
q

Fqqx
2
qdx

=
∑
q

∏
k 6=q

∫
e−x

2
kBkkdxk

∫
e−x

2
qBqqFqqx

2
qdxq

Let us look at a single integral of the type:

kq =

∫
e−x

2
qBqqFqqx

2
qdxq =

∫
e−y

2bfy2dy (for brevity)

kq =
−f
2b

∫
y(−2

b
ye−y

2b)dy

=
−f
2b

∫
y
∂

∂y
e−y

2bdy

=
−f
2b

(ye−y
2b|∞−∞ −

∫
e−y

2bdy)

=
f

2b

∫
e−y

2bdy

=
Fqq

2Bqq

∫
e−x

2
qBqqdxq

Combining this with the rest yields:

< gi|xTFx|gj >=
∑
q

∏
k

∫
e−x

2
kBkkdxk

Fqq
2Bqq

=
∏
k

∫
e−x

2
kBkkdxk(

∑
q

Fqq
2Bqq

)

We readily recognise the product as the overlap, and since B
is diagonal in the chosen basis, we can write

< gi|xTFx|gj >=< gi|gj >
1

2
trace(B−1F )

= Mij
1

2
trace(B−1F )

Since the trace, just like the determinant, is independent of
the basis chosen, this holds true for non-diagonal B-matrices.
With the kinetic energy operator, we had

F = 4AiΛAj

⇒ Kij
.
=< gi|K̂|gj >= 2trace(AiΛAj(Ai +Aj)

−1) ∗Mij

Note that the trace has a cyclical property so that trace(ABCD) =
trace(DABC) = ....
Building up the A-matrices to be symmetric, so that AT =
A ∀ A, then (B−1)T = ((Ai +Aj)

−1)T = B−1, meaning that
A matrices, B matrices, and a B−1 matrices communte with
each other, and we can adjust the operator to:

trace(AiΛAjB
−1) = trace(ΛAjB

−1Ai)

= trace(ΛB−1AjAi) = trace(ΛB−1AiAj)

= trace(ΛAiB
−1Aj) = trace(AjΛAiB

−1)

8
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And therefore, as the overlap satisfies Mij = Mji,

Kij = 2trace(AiΛAjB
−1)Mij = 2trace(AjΛAiB

−1)Mji

= Kji

Harmonic oscillator

Revisiting our coordinate-calculations, we substitute F as all
but the last three rows and columns of the chosen matrix

Fij =
1

2
mω2((U−1)TWU−1)ij

(i, j = 1, ..N − 3)

⇒ hij
.
=< gi|ĥ|gj >= trace(F (Ai +Aj)

−1) ∗Mij

It’s trivial that the matrix is symmetric, so that hij = hji.

Gaussian interactions

With a gaussian interaction of the sort

V̂ = exp(−xTCx)

the matrix element is calculated in the same way as the overlap:

Vij =< gi|V̂ |gj >=

∫
e−x

T (Ai+Aj+C)xdx

=

√
πD(N−1)

det(Ai +Aj + C)
.

The symmetry Vij = Vji is apparent from this calculation.

2.5 The method in practice

The relevant A-matrices can be constructed in a plethora
of ways. One way of doing it is to have them constructed
by defining their diagonal elements as Aij = δij

1
b2i

, where

each bi in a given matrix can be chosen from an exponential
distribution with a relevant mean, b, and then scrambling them
by multiplying with a Q-matrix from a QR decomposition of
a random matrix, and then make the transformation A →
(U−1)TAU−1, and cutting off the last three rows and columns.
This leads to a full correlation matrix, but is slow and tedious.
Another, is to build one’s matrix from the relative coordinates,
so that

< ~r|g >= exp(−
∑
i,j

(~ri − ~rj)Tαij(~ri − ~rj) +
∑
k

~rTk αk~rk)

where αij and αk are D ×D matrices, then scrambling them
and making a transformation to the x-basis, effectively con-
structing the A-matrices from the ~wij vectors mentioned in
the section about relative coordinates. The effectiveness of the
code, and thus the likelihood of having the best result after
some amount of trials, is dependent on both the coordinates
chosen and the parameter b from the exponential distribution.
In the case of N=2, one automatically builds one’s matrix from
these by separating the center of mass coordinate.

The code that solves the eigenvalue problem works by having a
set of A-matrices initially randomly collected, after which each
underwent a number R of trials, calculating the corresponding
rows in the H and M matrices each time, and keeping the
one which gave the lowest eigenvalue, before moving on to the
next. Once each A-matrix had undergone its trials, the process
started over, and repeated the process Z times, totalling a R*Z
trials for each function. Then the basis was expanded with
some amount, and the procedure started over.
The parameters in the matrices must necessarily be chosen at
random, as many other approaches, such as starting from the
smallest value of b and moving forwards, would likely reach a
local minimum in a situation where one is looking for a global
one.

Matlab was used for solving the eigenvalue problem through
Cholesky decomposition. In essence it dissolves the overlap
matrix M into LLT , where L is a lower triangular matrix, such
that

H~c = EM~c = ELLT~c

L−1H(L−1)TLT~c = ELT~c

⇒ L−1H(L−1)T~c = E~c

This procedure, however, requires that M is a positive definite
matrix [3]. An exception to its positive definiteness, is when
one has several identical gaussians. Ideally, this should not be
the case, as our basis should be linearly independent, but due
to the randomness of the selection process, it can become very
close. Suppose one puts into the system < ~r|g1 >=< ~r|g2 >,
with a basis set of two gaussians.
Then one has the matrix:

M ∝
(

1 1
1 1

)
,

which is singular. Having a similar matrix for H would give
Matlab major difficulties with calculating physical eigenvalues.
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3 Hydrogen

Every number compared with here, and in the chapter of he-
lium represents a citation from [6] and [5] combined.
As we are interested in both two-body and three-body systems,
it is vital that we can test the code written to calculate this,
by using a known system, and therefore hydrogen is chosen.
In order to simulate this, however, one needs to calculate the
matrix element for the coulomb interaction.
This is not trivial.

In order to solve the problem, the potential is expanded
into gaussians, such that

a0
r
≈
∑
j

cjexp(−bjr2)

15 gaussians were used in this case. The approximation is
easily done through the method of least squares, in which one
minimises the function

χ2 =

n∑
i

(
F (ri)− y(ri)

∆y
)2.

This begs for clarification. We approximate the function y =
a0
r

, by first separating it into several bits, yi = a0/ri. This
approximation is done with the function F (r) =

∑m
k ckfk(r),

where fk(r) = exp(−bkr2), with the uncertainty ∆y = 1.
This is equivalent to solving the problem

A~c = y

where c is a column vector that on its k’th entry has ck, and
A is a matrix, such that Ai,k = exp(−bkr2i ), and y is a column
vector, whose i’th entry is a0/ri.
The best solution for the parameters, ck, is, thankfully, easily
found in Matlab, by calculating c = A\y.
The parameters are collected from a logarithmic distribution,
and fifteen gaussians were chosen, to be compared on 5000
points, and run through an optization loop to minimise the
parameter χ2. Small widths were preffered to large widths,
as the potential diverges at r = 0, and a shortcoming in
fitting the potential at small r, is therefore a greater problem
in calculation compared to a shortcoming at large r [3]. To
test the approximation of the potential, the hydrogen atom is
calculated, as the matrix element for two particles is analytical
if the gaussian is spherically symmetric. In the case of two-
particle systems, the transformation matrix becomes

U =

(
Id −Id

m1
m1+m2

Id
m2

m1+m2
Id

)
,

and the full A-matrices become of dimension d× d when the
center of mass is disposed.
As a test of the rest of the code without the approximated
potential, a set of spherical gaussians - that is, those with
A = aId, where a is a scalar, are chosen, as the expectation
value can then be rewritten in spherical coordinates in three

dimensions:

< gi|
1

r12
|gj >

=

∫
R3

exp(−(ai + aj)(r
2
12x + r212y + r212z)

1

r12
dr12xdr12ydr12z

=
4π

−2(ai + aj)

∫ ∞
0

∂

∂r12
exp(−(ai + aj)r

2
12)r12dr12

=
2π

(ai + aj)

With this potential, the ground state is found for spherical
gaussians, although the evidence thereof is not relevant to show
here, as it is essentially a preliminary test of a framework for
a test of an approximation for a test of the final code.

3.1 Results

Once the preliminary tests were concluded, and the potential
found, the code was set to work on the ground state and the first
two excited states. The excited states were found by adding
more gaussians to the already minimised basis containing the
previous states, holding those not added constant, and only
altering the added gaussians, such that the basis of gaussians
of the second excited state contains both the gaussians for the
first excited state and the ground state.

Figure 1: Convergence of the three lowest-lying hydrogen
states.

In figure 1, one can see the energy levels. For a closer look,
see the appendix. The convergence of the first state leads to
an eigenvalue of −0.4996 Ha, which is in good correspondence
with the expected value of −0.5 Ha, so our approximation can,
at the very least replicate a ground state.
The second state at −0.1248 Ha is in fair correspondence with

10
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the 2s state at −0.1252 Ha, and the third state at −0.054 Ha
corresponds well to the 3s state at −0.056 Ha. The reason no
p-states are considered, is that they deviate on about 10−7 Ha,
and that the gaussians do not allow for uneven parity, which
those states have.

3.2 Partial conclusion

From all of this, we conclude that we have an adequate approx-
imation of the coulomb-potential, and that two-body problems
can readily be solved by the code.

4 Two-body interactions

What we take interest in here, is the emergence of a bound
state from a transition to a quasi-2D system, of a two-body
system of identical bosons of mass 1, that is otherwise at zero
energy, with a gaussian interaction. This has been done before,
and from [3], we acquire the interaction potential:

V (r) = −S exp(−(r/bint)
2)

S = 2.684

bint
.
= 1

where the width of this gaussian is the unit in relations to
which we will compare every other length unit. The unit of
energy is not denoted, it is an arbitrary energy unit that de-
pends on what one chooses the length scale and the mass scale
to be, as both the mass and length is unitless and arbitrary, so
must it be. By having such a potential, the center of mass only
goes into the kinetic energy operator, and separates trivially
in Jacobi-coordinates, and is therefore readily disposed of.

4.1 The free case of mass-imbalance

In order to confirm that this system is indeed near resonance,
the problem was solved with spherical gaussians, as the problem
in the two-particle system then reduces to a spherical one.
However, this has already been done in [?], and therefore
another extreme case of interest was examined: The mass-
imbalanced system. A system where one particle had the mass
m1 = 100, and the other had m2 = 1, was looked upon, and
therefore, as per the mass-scaling relations, the strength of the
interaction was transformed to S′ = ( 1

2
)/(1/(1/100 + 1) ∗ S =

1.35542.

Figure 2: Convergence to the ground state for a mass-
imbalanced system of two bosons with a gaussian interaction.

The result of the calculation is shown in figure 2, and is
obviously very small, of a magnitude 10−4, if the convergence
is to be believed, and therefore the system is near resonance
when free.

4.2 The squeezed identical case

In understanding the interplay between the two-body systems
and the three-body system, we must calculate the squeezed
spectrum of the two bosons, by applying an oscillator term to
our Hamiltonian. Simply plotting the eigenvalue as a function
of the width of the trap is insufficient, as actually squeezing a
quantum state necessarily gives it more energy, so one might
expect more sophisticated methods to be needed. Fortunately,
one would be mistaken, and we can simply subtract the ground
state of the harmonic oscillator from the system [4]. This
ground state energy is, if one ensures that each particle has
the same associated frequency, equal to the amount of par-
ticles,N, multiplied with the amount of directions in which
one squeezes, multiplied with 1

4π
hω, where ω is the associated

(angular) frequency, and h is Planck’s constant. Of course,
when one changes to appropriate coordinates, one can dispose
of the center of mass, and in stead of subtracting N ground
states, one only subtracts N-1, which, in the two-particle case,
corresponds to only one ground state per direction.
The calculations were obtained by making a set of fully cor-
related gaussians with widths chosen to be around 2, and at
bosc = 1 and lower, selecting the affected diagonal components
of the A-matrix from a distribution with mean bosc, and keeping
off-diagonal elements of the corresponding rows and columns
to be equal to zero, thus effectively enforcing that the selection
process would restrict particle motion in the corresponding
direction. It is worth noting, that the smaller the oscillator
width, the more difficult convergence becomes to obtain.

11
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Figure 3: Ground state energies for squeezing in one, two and
three directions for two identical bosons as a function of the
width of the oscillator.

This is depicted in figure 3, and the first convergence to a
minimum, by squeezing in a single direction, seems to be in
fair correspondence with that produced by [3].
The plateaued energies are−0.4651 for the first plateau, −1.4170
for the second plateau, and −2.683 for the final plateau.
Of purely physical interest, however, are the following observa-
tions.
The first point is that they all converge to something very
small for large widths, which is expected, as the particles are
then effectively free.
The second point is that at a width of about 0.1 bint, there
appears to be the beginning of a plateau, and the system, ap-
parently, no longer responds to changes of the trap’s width. It
would seem that a change to a different dimension is effectively
obtained fully around this width.
The third is that, the more we confine a directional freedom,
the more bound a system becomes.
The fourth point is that this system, when confined to a single
point, seems to have an energy that is very close to its poten-
tial’s strength.
The final point is that this figure is easily convertible to systems
of other reduced masses if the center of mass separates.
Due to the harmonic oscillator’s amplitude and frequency being
written as

1

2
µω2 =

2h̄2

µb4osc

ω =
2h̄

µb2osc

the potential, for a constant oscillator-width, satisfies the scal-
ing relations of the mass that were previously mentioned, and
therefore E′gs = 1

2µ′Egs for a different system. Similarly, the

ground state of the oscillator, which we subtract from Egs
to get the figure, also have a 1/µ dependency for a constant

width, and scales accordingly, meaning that if one finds an-
other two-body system where the center of mass disconnects
in the harmonic oscillator, or wants to scale the masses of the
particles with some number, one simply has to divide these
energies with twice that number to reproduce the squeezing
spectra.

5 Helium

In order to test the code’s capabilities with three particles,
the helium atom’s ground state and first excited state was
calculated. This was done with fully correlated gaussians, by
selecting the diagonal widths of the A-matrices pre-scramble
from a distribution with average width of 3 a0, setting the unit
of mass equal to that of the electron, and choosing the nucleus
mass of 4He. By utilising the coulomb potential’s expansion
in gaussians, as found earlier, some deviation from the actual
values were expected, but not by a lot. What matters the most,
of course, is the ground state’s value, as the precision of excited
state relies somewhat on its minimisation, as calculating power
is a limited commodity, and as the object is to test the method’s
and the code’s capabilities. The excited state was built on the
first 115 gaussians of the ground state.
The results can be seen on figure 4. For an individual look at
the figures, see the appendix.

Figure 4: Convergence of the two lowest states in helium
against gaussians in the basis.

The ground state converged slowly, but eventually reached
−2.8963 Ha, having dropped 0.001 over the last 15 gaussians,
which is fairly close to the expected result of the 1s1s-state’s
energy of −2.9034 Ha, and gives us an adequate precision.
Similarly, although only four datapoints had been taken on
the excited state before time demanded we moved on, it
reached −2.1535 Ha, with the final drop over ten gaussians
was 0.013 Ha, which is also fairly close to the expected value
of −2.1750 Ha of the 1s2s, and these combined thus stand as a
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proof that the code, and method, can calculate the eigenvalues
of relevant quantum systems of an acceptable precision.
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6 Three-boson interactions

After having made a convenient set of tests for the program in
the form of calculating helium states, the matter of interest is at
hand - the three-body interactions. At first, the ground states
of the free three-body systems were calculated in a similar
fashion to the helium atom, by building the matrices from the
wij vectors. The identical particles seemed to converge faster,
when its diagonal was chosen with a mean of 3 bint, while the
mass-imbalanced system of m1 = 1, m2 = m3 = 100 preferred
widths of 2 bint on average. The steps taken in the amount of
gaussians are not always consistent, and are certainly not one
by one, as this would amount to a massive computation time,
as these calculations were run at 2000 rounds per gaussian over
7 sweeps before each increment of the basis. No excited bound
state could be found for the identical bosons, but several were
visible when calculating the mass-imbalanced system. This is
suspected to be a remnant of the efimov effect, as the value of
|s0| is about equal to 4.061 for M/m = 100, giving a scale factor
of about λ2 ≈ 4.69, rather than λ2 ≈ 515.29 for the identical
bosons. The amplitude of the interaction potential was also
re-scaled per the mass-scaling relations obtained earlier, to
ensure the resonance of the sub-systems in three dimensions.

6.1 No squeezing

Figure 5: Convergence of the ground state of identical particles
to an eigenvalue of −0.2375.

On figure 5, the convergence towards the ground state for the
identical, un-squeezed bosons is plotted against the amount
of gaussians in the basis. The ground state was found to be
−0.2375, changing with 10−4 over the last 10 gaussians.

The convergence towards the ground state can be seen on
figure 6, and amounts to a value of −0.1810, which, surprisingly,
is less tightly bound than the identical bosons, changing with

4 ∗ 10−5 over the last 15 gaussians.
These are very accurate results, and are thus stated confidently.

Figure 6: Convergence of the ground state of mass-imbalanced
bosons to an eigenvalue of −0.1810.

First excited state of mass-imbalanced system

The excited states, however, are more time consuming, and
usually more difficult to obtain good convergence for. An ar-
gument is that one should build atop the already minimised
gaussians for the ground state, as the lowest eigenvalue sets
a hard barrier for the second lowest, since it must necessarily
be smaller, and sure enough, unsuccessful attempts were made
towards convergence of an excited state from nothing. A step-
ping stone is without a doubt needed. Therefore, this approach
was chosen, in which a basis was built upon 90 gaussians, and
then supplied with further 15, and then went in steps of 10
gaussians to 195.
The results can be seen on figures 7.
It has converged to a final value of −0.0790 while varying with
10−4 over the last 10 gaussians, so the accuracy seems to be
satisfactory. We note that this excited state could hypothet-
ically be dictated solely from the properties of the potential,
but still has a ratio relative to the ground state, corresponding
to a scaling factor of λ = 1.58.

Again, we can with a fair certainty express a confidence in the
results, based on the final deviations.
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Figure 7: Convergence of the first excited state of mass-
imbalanced bosons, built on top of the entire ground state,
converging to an eigenvalue of −0.0790.

6.2 Squeezed mass-imbalanced three-body
states

Having found the ground states, the first excited state of the
mass-imbalanced system, and their associated widths in three
dimensions, it is interesting to replicate a three-body equivalent
to the two-body squeezing presented earlier. However, due
to restrictions in time, only squeezing in a single direction
has been an option. Inferring that the center of mass must
disconnect when squeezing the mass-imbalanced system by
enforcing a mass-specific harmonic trap, there has been created
a corresponding spectrum for the ground state of the mass-
imbalanced system, shown in figure 8 as a function of the
oscillator width for the distance between particle 1 and 2. We
remind the reader that not every vector feels the same width
in this case, but the same frequency. Similarly to the two-body
case, each datapoint below 0.5 had its A-matrices confined
in the direction of the trap, and each above it had permitted
motion. Initially, each was calculated with 75 gaussians in a
for-loop, after which convergence was checked to make sure
they were usable, and further gaussians were added where
needed. The range of bosc/bintspans from 0.04 to 30, and has
end-point values of −8.199 and −0.1820 respectively.

Figure 8: Squeezing of the mass-imbalanced three-body system
to a pancake with a 2D value of −8.1990, and a value at
bosc = 30 bint at −0.1820.

It appears from the figure that the system plateaus rather
abruptly, but this may be an artefact of the amount of data-
points.

Discussion of sub-systematic impacts

What is of high interest in this case, is that there are two kinds
of two-body systems being squeezed here. Around 0.04, the
two identical particles of mass 1 have an energy of −0.4651. If
one swiftly considers that one could just as easily have chosen
another coordinate system, in which one’s Jacobi-coordinates
had the distance vector between particle 2 and 3 on its first
entry, we also understand that this system would necessarily
have the same associated frequency, as it, as shown, separates
as a front factor to the corresponding matrix in the calculation
of the matrix element, and the system would then satisfy the
aforementioned relation:

b23 =
√
µ12/µ23b12

=

√
2/100

1/100 + 1
0.04 bint

≈ 0.006 bint

The 100-100-subsystem has already plateaued at this point,
in fact, it did so around b12 = 0.7. However, we also un-
derstand that this goes unnoticed, as the energy it ends on
satisfies the mass-scaling relations, and is quite small E23 =
1

100
Eidentical, whereas the different-mass system plateaus at

E12 = 0.505Eidentical.
This is also reflected in the place that the curve reaches its
minimum. Had the heavy systems of equal mass been the
source of a lowering of the binding energy, its plateau would
come far further to the right.
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6.3 Squeezed identical three-body system

Although not satisfying any scaling relations that do not affect
all the masses equally, the squeezed spectrum for three identical
bosons of unit mass is still a fairly interesting figure to present.
As with the mass-imbalanced system, a for-loop was initiated
for each datapoint, calculating 75 fully correlated, un-shifted
gaussians, and adjusting and adding in gaussians where nec-
essary. However, of further interest was the behaviour of the
excited states near the crossing of the two-body threshold.
The squeezed ground state of the three- and two-body systems
of identical particles are plotted against the width of the trap
as experienced by the two-body sub-systems, along with a few
points of the first excited state, which became visibly bound
during the squeezing, at figure 9. The excited datapoints were
calculated one by one by building on top of the ground states,
as this, in the previous section, seemed to allow for a higher
precision, in spite of taking a lot of time.

The final result is seen on figure 9, and the spectrum relative
to the two-body spectrum is plotted at figure 10.

Figure 9: The ground state and first excited state of the
squeezed identical mass three-body system along with the
two-body spectrum against the width of the trap

Figure 10: The ground and first excited state of the squeezed
three-body system with the two-body spectrum subtracted,
against the width of the trap.

As is apparent from figure 8 and, in part, 9, the three-
body states unsurprisingly converge to their three-dimensional
equivalents for large bosc. The convergence for identical bosons
reached a minimum of −1.628.

6.4 Discussion of the squeezed states

The precision of the datapoints of the first excited state is
varying, and varied with as much as −0.0064 on the last 30
gaussians from 205 to 235 gaussians on the datapoint at 0.1,
and as little as 10−4 for the last 7 ∗ 10−4 over the last 20 from
185 to 205 gaussians on the point at 0.9 for the excited state,
but nonetheless, it seems it is as precise as it is going to get
within reasonable computational hours.
The theory has mentioned that the ground state and the first
excited state of the efimov spectrum would both be pushed
down relative to the two-body system when squeezed to such
a quasi-2D configuration [4], and the same appears to be true
for these states as well, although the first excited state is very
close to the threshold, lying about 0.008 below the threshold at
best. Interestingly enough, the mass-imbalanced system starts
out at a higher energy, but ends up at a lower energy than the
identical boson system.
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7 In conclusion

We have presented the reader with a theory about few-body
states, their behaviour when squeezed, and a method to solve
this. The method, when compared to other methods, for in-
stance calculating with only spherical gaussians, allows the ba-
sis functions a high enough degree of malleability to adequately
approximate both hydrogen and helium states, although the
results in those sections may as well be due to an imperfection
in the approximation of the potential as it could be due to an
adequacy of the code.
Nonetheless, we have shown you the first three even parity
states of hydrogen, approximated to −0.4996 Ha, −0.1248 Ha,
and −0.054 Ha, which are all within reasonable parameters,
we have shown you the ground state of the mass-imbalanced
system, along with a squeezed spectrum in every direction
for the identical boson system, the monodirectional squeez-
ing being in reasonable correspondence with earlier presented
values [3], at the plateaued energies −0.4651, −1.4170 and
−2.683 for one-, two- and three-directional squeezing, we have
shown you the two lowest helium states of even parity, approx-
imated to −2.8936 Ha and −2.1535 Ha, against the expected
−2.9034 Ha and −2.1750 Ha, leaving the ground state in
good correspondence with the expectations, and finally we
have shown you three-body systems of mass-imbalanced and
identical bosons with their sub-systems initially at resonance.
The ground state of the identical bosons fell to −0.2375 with
a deviation of 10−4 over the last 10 gaussians in a set of 100
gaussians, and the ground state of the mass-imbalanced system
fell to a groun state of −0.1810, deviating with 4 ∗ 10−5 over
the last 15 gaussians in a set of 90. Some might remark on
the surprise that the latter is more weakly bound than the
former, but it is unsurprising as two of the three interaction
stengths are approximately unchanged, while the last is re-
duced by quite a deal as per the mass-scaling relations, in order
to keep the sub-systems at resonance, so this result is also in
favour of us having found an accurate ground state. The first
excited bound state of the identical boson system could not
be found, but that from the mass-imbalanced system was. Its
convergence reached −0.0790, deviating with 10−4 over the last
10 gaussians, having been built on top of 95 gaussians. The
squeezed three-body spectra yielded expected results in terms
of convergence to their three-dimensional counterparts in the
case of wide traps, although a very wide trap is necessary to
prove it in the case of the mass-imbalanced system, as one sub-
system experiences a width that is 0.141 times the size of the
other two. For that of the identical bosons, we can technically
present no data on the convergence, as the calculations were
deemed to not have reached their minimal eigenvalues, and
focus was placed on the excited state in stead. The identical
squeezed spectrum seemed to reach minimum at −2.091, while
the mass-imbalanced system reached one at −8.1990, being
significantly more tightly bound than the identical system.
When compared to the two-body threshold, above which lies a
continuum of states for a set of bound two-body systems plus
a single free particle, the three-body spectrum’s ground state
does not seem to change its form, while the first excite state
is heavily affected, but both are still pushed down relative to
the two-body threshold, even if it’s just by −0.008, which is in
correspondence to the expected result from [4].

Knowing that articles are being written about using shifted
gaussians in stead of fully correlated gaussians, one must com-
ment on the usefulness of the method. For now, fully correlated
gaussians seem to be functional in solving various three-body
problems.
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8 Appendix: Hydrogen

We here present the convergence for the first three even parity
states of hydrogen.

Figure 11: Convergence of the lowest lying hydrogen state, the
1s

Figure 12: Convergence of the first excited state, corresponding
to a 2s

Figure 13: Convergence of the second excited state, correspond-
ing to a 3s
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9 Appendix: Helium

We here present the convergence for the first two even parity
states of Helium.

Figure 14: Convergence of the ground state of Helium

Figure 15: Convergence of the first excited state of Helium
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