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Summary
Within the field of few-body physics several atomic, molecular and

nuclear models have been solved to high accuracy using the method

of corrolated gaussians. This is a variational method where the trial

wavefunction is expanded in a basis of wavefunctions that are gaus-

sians in the distance between particles. In this thesis we consider a

related basis, called prefactor ECG’s, that are suitable for describing

complicated angular structure, such as those encountered in angular

momentum eigenstates. We show that the necessary matrix elements

can be derived using the shifted corrolated gaussians as generating

functions. Overlap, kinetic energy, coulomb potential and harmonic

potential matrix elements are calculated. We compare the perform-

ance between prefactor ECG’s and shifted corrolated gaussians in

a numerical calculation of the spectrum of the hydrogen atom, and

demonstrate a substantial improvement. For this case, it is found that

for the non-spherically symmetric states, the size of the basis set can

be reduced by a factor of 2-3 while achieving the same accuracy.
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Resumé
I feltet få-legeme fysik har forskellige atomiske, molekylære og kerne-

modeller blevet løst til høj præcision ved brug af metoden "TheMethod

of Corrolated Gaussians". Dette er en metode der gør brug af vari-

ationsprincippet og bølgefunktionen bliver skrevet som en linear kom-

bination af Gausser i afstanden mellem partikler. I dette projekt betra-

gter vi en relateret basis, kaldet prefaktor ECG’er, der er velegnet til

komplicerede vinkelafhængigheder, såsom dem i egentilstande af im-

pulsmoment. Vi viser at de nødvendige matrix elementer kan regnes

ved brug af skiftede korrolerede Gausser som generende funktioner.

Overlap, kinetisk energy, coulomb potentialet og det harmoniske po-

tentiale matrix elementer beregnes. Vi sammenligner præstationen

af prefaktor ECG’er med skiftede korrolerede Gausser i en numerisk

beregning af hydrogen spectret, og demonstrerer en substantiel for-

bedring. I dette tilfælde finder vi at for de ikke-sfærisk symmetriske

tilstande kan størrelsen af vores basis reduceres med en faktor på 2-3

med præcisionen bibeholdt.
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Chapter 1

Introduction

The field of quantum few-body physics concerns itself with physical

systems consisting of a small number of particles which may be de-

scribed by non-relativistic quantum mechanics. Examples of such

systems are: small atoms, molecules and light nuclei, including the

meson-nucleon interaction. These systems are sufficiently simple so

as to be described by exact two-body interactions. A common method

used to calculate the energies and wavefunctions of few-body systems

is The Method Of Corrolated Gaussians. This is an application of the

variational principle where the wavefunction is expanded in a basis

set of wavefunctions that explicitly correlate the coordinates of the

different particles,

ϕ(r) = exp (−r⊺Ar).

There are many modifcations of this basis used for different problems.

Several spectra and wavefunctions have been calculated in nuclear

[3, 5], atomic and molecular physics [2] using this method. In this

thesis we will consider a modification of the Method Of Correlated

Gaussians using basis functions that may be chosen as angular mo-

mentum eigenstates, and are particularly well suited to describe the

meson-nucleon interaction. These functions are named prefactor

ECG’s (Explicitly Corrolated Gaussians). We will calculate several

important matrix elements: Overlaps, kinetic energy, coulomb inter-

action and the harmonic potential. These results are then applied to

a numerical calculation of the spectrum and wavefunctions of the

hydrogen atom and compared to a similar calculation using another

basis, shifted corrolated gaussians.
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Chapter 2

Background

2.1 Notation
Systems with an arbitrary number of particles can be compactly de-

scribed using the notation from ‘Analytic matrix elements with shifted

correlated Gaussians’ by D.V. Fedorov [6]. We will consider an N

particle system. Normal 3-dimensional vectors will be denoted by a

vector arrow: r⃗, s⃗, a⃗. Capital letters, e.g. A, B and R, will denote

N ×N -matrices. In our N -body system the positions of the particles

is contained in the N -dimensional vector r given by:

r = (r⃗1, r⃗2, . . . , r⃗N)
⊺ .

Generally, N -dimensional vectors containing ordinary 3-d vectors are

denoted by bold font.
1
In this notation, dot-products and products

with matrices are defined by the following:

a⊺b =
N∑
i=1

a⃗i · b⃗i

(Ab)i =
N∑
j=1

Aij b⃗j

a⊺Ab =
N∑

i,j=1

Aij a⃗i · b⃗j.

It should be noted that most results from the algebra of matrices still

apply in this notation, but not all. For example:
2

(r⊺a) (b⊺r) ̸= r⊺ (ab⊺) r.

1: In the case N = 1, we will not distinguish between the matrix/bold-font vector and

its single entry.

2: (ab⊺)ij = a⃗i · b⃗j .

7



Chapter 2 · Background

The generalization of the gradient is:
3

∂

∂r
=

(
∂

∂r⃗1
,
∂

∂r⃗2
, . . . ,

∂

∂r⃗N

)
.

Most rules of derivatives can be straightforwardly verified. For ex-

ample, the chain rule is (f taking real values):

∂

∂r
f(g(r)) = f ′(g(r))

∂g

∂r
.

The derivative of linear function
4
:

∂

∂r⊺
a⊺Ar = A⊺a,

and the derivative of a quadratic function:

∂

∂r⊺
r⊺Ar = (A+ A⊺) r.

Proofs of these identites are presented in Appendix A. The product

rule generalizes in the natural way, which we will use repeatedly in

section 3.2.

2.2 The method of correlated gaussians
In this section we outline the formalism of The Method of Correlated

Gaussians [11]. The starting point of this method is the variational

principle.

The variational principle

The important result of the variational principle is the following state-

ment: For a system with hamiltonian Ĥ , ground state energy E0 and

arbitrary state vector |ψ⟩:

E[ψ] ≡ ⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

≥ E0. (2.1)

3:
∂
∂r⃗ =

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
= ∇ is the normal 3-gradient for r⃗ = (x, y, z)⊺

4:
∂

∂r⊺ =
(

∂
∂r

)⊺

8



Analytic matrix elements of prefactor Gaussians, and their

application to variational calculations

If, in addition, |ψ⟩ is orthogonal to the true ground state of the system,

the variational principle states that E[ψ] is greater than the energy of

the first excited state. This generalizes to any excited state provided

that |ψ⟩ is orthogonal to all lower lying eigenstates of Ĥ [8, 11].

In TheMethod of Correlated Gaussians, the wavefunction |ψ⟩ is ex-
panded in a (non-orthogonal) basis of size Ng , {|ϕi⟩ , i = 1, 2, . . . Ng}:

|ψ⟩ =
Ng∑
i=1

ci |ϕi⟩ . (2.2)

Using the Schrödinger equation,

Ng∑
i=1

ciĤ |ϕi⟩ = E

Ng∑
i=1

ci |ϕi⟩ (2.3)

and multiplying by ⟨ϕj| from the left, the equation takes the form

Hc = EN c, (2.4)

where H and N are Ng ×Ng hermitian matrices:

Hij = ⟨ϕi|Ĥ|ϕj⟩ , Nij = ⟨ϕi|ϕj⟩ ,
c = (c1, c2, . . . , cNg)

⊺.

At this point minimizing the energy functional in Equation 2.1 wrt. to

c is straight forward. The functional becomes:

E[ψ] =
c†Hc
c†N c

.

From which we get:

∂

∂c
E[ψ] =

1

(c†N c)2

(
c†N c

∂

∂c

(
c†Hc

)
− c†Hc ∂

∂c

(
c†N c

))
=

2

(c†N c)2
(
c†N c · c†H− c†Hc · c†N

)
=

2

c†N c
(Hc− E[ψ]N c)† .

(We used that H and N are hermitian). This is zero exactly if c and

E[ψ] are the eigenvector and eigenvalue of the generalized eigenvalue

9



Chapter 2 · Background

problem Equation 2.4. It has been proven that the n’th lowest eigen-

value to the generalized eigenvalue problem is an upper bound to the

exact n’th lowest eigenvalue of Ĥ [9]. Thus, minimizing the energy

functional E[ψ] wrt. c is equivalent to solving Equation 2.4.

This is a very useful generalization of the variational principle,

provided that H and N can be easily calculated. The generalized

eigenvalue problem is typically solved numerically by one of many

known algorithms.

In general the expansion in Equation 2.2 should contain spinors

multiplied on the basis functions and be appropriately (anti-)symmetrized

according to fermionic or bosonic statistics for identical particles. In

this thesis these effects are neglected as they don’t influence the mat-

rix elements evaluated in chapter 3, nor the application to the simple

hydrogen atom in chapter 4.

Correlated Gaussians

In the method of correlated Gaussians the basis functions |ϕ⟩ are
chosen as gaussians in the distance between particles, known as expli-

citly correlated Gaussians (Henceforth referred to as ’ECG’):

⟨r|ϕ⟩ = ϕ(r) = exp

(
−

N∑
i>j=1

(
r⃗i − r⃗j
bij

)2
)

= exp

(
−

N∑
i,j=1

Aij r⃗i · r⃗j

)
= e−r⊺Ar.

Where the constants bij are variational parameters and the matrix

A can be written in terms of bij if desired. For calculations the ex-

pression in terms of the symmetric positive definite matrix A is more

convenient. The benefit of this choice of basis functions is that the

matrix elements of H and N can be computed analytically in most

important cases. Furthermore, the complexity of these expressions

do not depend on the number of particles. These functions explicitly

correlate the positions of different particles, which allow for high

accuracy calculations for systems with N ≥ 3 [11]. In fact the matrix

elements are known for the more general form of |ϕ⟩ [6]:

10



Analytic matrix elements of prefactor Gaussians, and their

application to variational calculations

ϕ(r) = e−r⊺Ar+s⊺r,

known as shifted ECG’s. Generally the kinetic energy matrix elements

are calculated with the kinetic energy operator in the general form

[6]:

T̂ = − ∂

∂r
Λ
∂

∂r⊺
= −

N∑
i,j=1

Λij
∂

∂r⃗i

∂

∂r⃗j
⊺ ,

where Λ is a symmetric positive definite matrix. The two body inter-

action between the two particles and any external potentials can be

conveniently handled through an N -dimensional vector w, which for

an interaction involving the i’th and j’th particle is given by:

wk = δik − δjk, For two-body force,

wk = δik, For external force.

Then any interaction V depending on r⃗i or r⃗i− r⃗j is represented by the
function V (w⊺r). In chapter 3 we will use the known matrix elements

of the shifted ECG’s to compute corrosponding matrix elements of

N and H for ECG’s with front factors that corrospond to non-zero

angular momentum.

11



Chapter 3

Prefactor Correlated Gaussians

3.1 Properties
We are interested in a generalization of ECG’s to a functional form that

explicitly incorporates the angular structure of angular momentum

eigenstates. The choice is labeled by one of the states: s-wave: |A⟩, p-
wave: |aA⟩ and d-wave: |baA⟩. We refer to these as prefactor ECG’s.

They have the following wavefunctions:

⟨r|A⟩ = e−r⊺Ar,

⟨r|aA⟩ = (a⊺r)e−r⊺Ar,

⟨r|baA⟩ = (b⊺r)(a⊺r)e−r⊺Ar.

This form is partly motivated by the nucleon-nucleon force, which is

mediated by meson exchange. The dominating contribution comes

from the pion, since it is the lightest. When modelling this exchange

the QM operator creating a pion is sometimes be chosen to be [5]:

Ŵ = (τ⃗ · π⃗)(σ⃗ · r⃗)f(r),

where τ⃗ is the isovector of pauli matrices acting on isospin-space, π⃗ is

the isovector of pions, σ⃗ is the vector of pauli matrices, r⃗ is the relative

nucleon pion coordinate and f(r) is phenomenogical short range

form factor. If the form factor is chosen to be a gaussian, applying this

operator to an s-state nucleon creates a pion with a wavefunction like

the p-wave above.

Another primary motivation is the description of states with com-

plicated angular dependence. In fact, denoting the total angular mo-

mentum operator by L⃗tot, it can be easily shown (see Appendix C):

L2
tot
|A⟩ = 0,

L2
tot
|aA⟩ = 2ℏ2 |aA⟩ ,

(3.1)

12
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as we would like. The d-waves, however, are not eigenstates of angular

momentum in general. In section 3.2 it is shown that ⟨A′|abA⟩ ≠ 0 in

general. Thus, careful consideration has to be made if one wishes to

describe pure d-states with this basis. But this is not always a problem.

The deuterons wavefunction, for example, is an admixture of s- and

d-waves, so a pure angular momentum description is not necessarily

desirable [10]. We will label the shifted ECG’s by |As⟩:

⟨r|As⟩ = e−r⊺Ar+s⊺r.

In addition we will need the functional forms of the prefactor ECG’s

multiplied by the factor es
⊺r
, these will be labeled by |As⟩, |aAs⟩

and |baAs⟩. An important property is that the prefactor ECG’s can

be obtained by differentiating (or equivalently series expanding) the

shifted ECG’s:

⟨r|A⟩ = ⟨r|As⟩ |s=0, (3.2)

⟨r|aA⟩ =
(
a⊺ ∂

∂s⊺

)
⟨r|As⟩

∣∣∣∣
s=0

, (3.3)

⟨r|baA⟩ =
(
b⊺ ∂

∂s⊺

)(
a⊺ ∂

∂s⊺

)
⟨r|As⟩

∣∣∣∣
s=0

. (3.4)

Which means that we can compute matrix elements by differentiating

the known matrix elements of shifted ECG’s. Thus the shifted ECG’s

may be used essentially as generating functions for prefactor ECG’s.

The single particle system

In 1-dimension, A is just a real positive number. The s-waves have

spherical symmetry, and thus are angular momentum eigenstates with

l = 0. In the case of p-waves, we can use the cartesian representation

of the spherical harmonics (see Arfken And Weber [1]) and can pick

out a such that the wave is proportional to any of the L = 1 spherical

harmonics. For example, with a = (0, 0, 1)⊺:

(a⊺r) = z =

√
4π

3
Y 0
1 r.

For the other projections, and the projections for d-waves, see Table 3.1.

It is impossible to obtain the Y 0
2 projection with a single prefactor

ECG.

13



Chapter 3 · Prefactor Correlated Gaussians

vectors (a,b) function

(1, i, 0)⊺ (a⊺r) = −
√

8π
3
Y 1
1 r

(0, 0, 1)⊺ (a⊺r) =
√

4π
3
Y 0
1 r

(1, i, 0)⊺, (1, i, 0)⊺ (a⊺r)(b⊺r) =
√

32π
15
Y 2
2 r

2

(1, i, 0)⊺, (0, 0, 1)⊺ (a⊺r)(b⊺r) = −
√

8π
15
Y 1
2 r

2

Table 3.1: Choices of vectors that give spherical harmonics for 1-

dimensional ECG’s with explicit angular momentum. The spherical harmon-

ics with negativem can be obtained by conjugating the vectors a and b.

In the case of 1 particle, we can evaluate matrix elements directly.

In the special cases of a = (0, 0, 1)⊺ and b = c = (1, i, 0)⊺ (which are

applied to the hydrogen atom in chapter 4) the matrix elements are:

Overlaps:

⟨A′|A⟩ =
(

π

A+ A′

)3/2

, (3.5)

⟨aA′|aA⟩ = π3/2

2 (A+ A′)5/2
, (3.6)

⟨cbA′|cbA⟩ = 2π3/2

(A+ A′)7/2
. (3.7)

Kinetic Energy:

⟨A′|∇2|A⟩ = −6AA′ π3/2

(A+ A′)5/2
, (3.8)

⟨aA′|∇2|aA⟩ = −5AA′ π3/2

(A+ A′)7/2
, (3.9)

⟨cbA′|∇2|cbA⟩ = −28AA′ π3/2

(A+ A′)9/2
. (3.10)

14
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Coulomb and harmonic potentials:〈
A′
∣∣∣∣1r
∣∣∣∣A〉 =

2π

A+ A′ , (3.11)〈
aA′

∣∣∣∣1r
∣∣∣∣ aA〉 =

2π

3(A+ A′)2
, (3.12)〈

cbA′
∣∣∣∣1r
∣∣∣∣ cbA〉 =

32π

15(A+ A′)3
, (3.13)

〈
A′ ∣∣r2∣∣A〉 = 3π3/2

2(A+ A′)5/2
, (3.14)

〈
aA′ ∣∣r2∣∣ aA〉 = 5π3/2

4(A+ A′)7/2
, (3.15)

〈
cbA′ ∣∣r2∣∣ cbA〉 = 7π3/2

(A+ A′)9/2
. (3.16)

The calculation of these matrix elements is done in Appendix B. In

the next section we’ll generalize these results to an arbitrary number

of particles.

3.2 Matrix elements
In this section we will compute overlaps and matrix elements for kin-

etic energy. We also compute the matrix elements of the coulomb

potential, a very important potential as it appears in all atomic and

most nuclear applications of the Method of Corrolated Gaussians.

These calculations are based on the known results for shifted ECG’s

and are given in the relevant sections. The matrix elements for the har-

monic potential will be calculated in the final section using a slightly

different approach. We will assume that A and A′
are real N × N

matrices and s and s′ are real vectors. The vectors a, b, c and d are

complex in general. All the operators we consider preserve parity,

therefore the matrix elements between s- and p-waves or p- and d-

waves are all zero since they have opposite parity. Central to the

calculations is the following fact we noted earlier: For any operator

K̂ ,

⟨cA′|K̂|aA⟩ =
(
c†

∂

∂s′⊺

)(
a⊺ ∂

∂s⊺

)
⟨A′s′|K̂|As⟩

∣∣∣∣
s=s′=0

, (3.17)

⟨dcA′|K̂|baA⟩ = ∆2 ⟨A′s′|K̂|As⟩
∣∣
s=s′=0

, (3.18)
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Chapter 3 · Prefactor Correlated Gaussians

where,
1

∆2 =

(
d† ∂

∂s′⊺

)(
c†

∂

∂s′⊺

)(
b⊺ ∂

∂s⊺

)(
a⊺ ∂

∂s⊺

)
.

Thus we can in principle calculate any matrix element of prefactor

ECG’s if the same matrix elements is known analytically for shifted

ECG’s.

Overlaps

In this section we compute the overlaps of prefactor ECG’s. The

overlap integral of shifted ECG’s is [6]:

⟨A′s′|As⟩ = e
1
4
v⊺B−1v

(
πN

det(B)

)3/2

= e
1
4
v⊺B−1vM0 ≡M, (3.19)

where: B = A+ A′
, v = s+ s′ andM0 =

(
πN

det(B)

)3/2
.

Carrying out the derivative in Equation 3.17 we get, setting R =

B−1
:

⟨cA′s′|aAs⟩ =
(
c†

∂

∂s′⊺

)(
a⊺ ∂

∂s⊺

)
M

=

(
c†

∂

∂s′⊺

)
1

4
(2a⊺Rv)M

=
(
2c†Ra+ c†Rv · a⊺Rv

)M
4
. (3.20)

Note that we obtained a formula for the single and double derivative

ofM . We can repeat this calculation for d-waves, using the product

rule multiple times:

⟨dcA′s′|baAs⟩ =
(
d† ∂

∂s′⊺

)(
b⊺ ∂

∂s⊺

)(
2c†Ra+ c†Rv · a⊺Rv

)M
4

=
(
2c†Ra+ c†Rv · a⊺Rv

) (
2d†Rb+ d†Rv · b⊺Rv

)M
16

+ (c†Rb · d†Ra+ c†Rd∗ · a⊺Rb)
M

4

+ (c†Rb · a⊺Rv + c†Rv · a⊺Rb)(d†Rv)
M

8

+ (c†Rd∗ · a⊺Rv + c†Rv · d†Ra)(b⊺Rv)
M

8
.

(3.21)

1: For any matrix a, a† = (a∗)⊺.

16



Analytic matrix elements of prefactor Gaussians, and their

application to variational calculations

Equations 3.20 and 3.21 will be useful when calculating the matrix

elements of the harmonic potential. Plugging in s = s′ = 0 into 3.19,

3.20 and 3.21 we obtain the desired overlaps:

⟨A|A′⟩ =M0, (3.22)

⟨cA′|aA⟩ = c†Ra
M0

2
(3.23)

⟨dcA′|baA⟩ = (b⊺Ra · d†Rc∗ + c†Ra · d†Rb

+ c†Rb · d†Ra)
M0

4
. (3.24)

An expression for the overlap between s- and d-waves can be obtained

by noting that the integral is identical to that between p-waves. (up

to a complex conjugate) Thus:

⟨A′|baA⟩ = b⊺Ra
M0

2
. (3.25)

Kinetic energy

In this section we calculate the matrix elements of kinetic energy in

the general form for a symmetric positive definite real matrix Λ:

T̂ = − ∂

∂r
Λ
∂

∂r⊺
.

The kinetic energy matrix element for shifted ECG’s is [6]:〈
A′s′

∣∣∣T̂ ∣∣∣As〉 = (L+ (s′ − A′Rv)⊺Λ(s− ARv))M, (3.26)

where L = 6Tr(A′ΛAB−1). We will compute the matrix elements

of the kinetic energy in a similar way to the overlaps. To make the

differentiation managable, we first note a bunch of formulae derived

from the product rule. Let F and G be N ×N matrices. The matrix

element for s-waves is simply obtained by putting s = s′ = 0 in

Equation 3.26:

⟨A′|T̂ |A⟩ = LM0. (3.27)
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Chapter 3 · Prefactor Correlated Gaussians

For p-waves and matrix elements between s- and d-states, we need

the 4 following results which are easily verified:
2(

c†
∂

∂s′⊺

)(
a⊺ ∂

∂s⊺

)
s⊺F sM

∣∣
s=s′=0

= 0, (3.28)(
b⊺ ∂

∂s⊺

)(
a⊺ ∂

∂s⊺

)
s⊺F sM

∣∣
s=s′=0

= b⊺ (F + F ⊺) aM0, (3.29)(
c†

∂

∂s′⊺

)(
a⊺ ∂

∂s⊺

)
s′

⊺
F sM

∣∣
s=s′=0

= c†FaM0, (3.30)(
b⊺ ∂

∂s⊺

)(
a⊺ ∂

∂s⊺

)
s′

⊺
F sM

∣∣
s=s′=0

= 0. (3.31)

Applying Equation 3.17 (with K̂ = T̂ ), we see that the first term in

Equation 3.26 just gives the overlap rescaled by L. Using the formulae

3.28 and 3.30, we see that the second term gives 2 contributions from

the terms involving both s and s′:

⟨cA′|T̂ |aA⟩ = L ⟨cA′|aA⟩+ c† ((1−RA′)Λ(1− AR)

+RAΛA′R) aM0. (3.32)

The s-d matrix element results from the terms involving only s:

⟨A′|T̂ |baA⟩ = L ⟨A′|baA⟩+ b⊺ (RA′ΛAR +RAΛA′R

−RAΛ− ΛAR) aM0, (3.33)

for d-waves we can start by writing Equation 3.26 as:〈
A′s′

∣∣∣T̂ ∣∣∣As〉 =LM +
(
s′

⊺
Λs− s′

⊺
ΛARv

−v⊺RA′Λs+ v⊺RA′ΛARv)M (3.34)

Applying Equation 3.18 we obtain many terms to organize, to this end

the following result is useful:

∆2 (s⊺F sM) |s=s′=0 =

(
a⊺ ∂

∂s⊺

)(
b⊺ ∂

∂s⊺

)
s⊺F s

·
(
c†

∂

∂s′⊺

)(
d† ∂

∂s′⊺

)
M |s=s′=0

= (a⊺Fb+ b⊺Fa) ⟨dcA′|A⟩ . (3.35)

2: In 3.29 we use that a⊺Fb = (a⊺Fb)⊺ = b⊺F ⊺a.
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An almost identical calculation gives:

∆2
(
s′

⊺
F sM

)
|s=s′=0 = c†Fa ⟨dA′|bA⟩+ d†Fa ⟨cA′|bA⟩

+c†Fb ⟨dA′|aA⟩+ d†Fb ⟨cA′|aA⟩ , (3.36)

with similar formulae for s and s′ swapped. We can now compute

the d-wave matrix element. From the first term in the parentheses in

Equation 3.34 we get the four terms from Equation 3.36. The next two

terms each contribute 6 terms to the final result. And the last term

contributes with 12 terms. The final result can be written out:

⟨dcA′|T̂ |baA⟩ = L ⟨dcA′|baA⟩+ M0

2

[
c†Rb · d†Λa

+ d†Rb · c†Λa+ c†Ra · d†Λb+ d†Ra · c†Λb
− c†Rb · d†RAΛa− d†Rb · c†RAΛa− c†Ra · d†RAΛb

− d†Ra · c†RAΛb− b⊺Ra · c†RAΛd∗ − b⊺Ra · d†RAΛc∗

− c†Rb · d†RA′Λa− d†Rb · c†RA′Λa− c†Ra · d†RA′Λb

− d†Ra · c†RA′Λb− c†Rd∗ · b⊺RA′Λa− c†Rd∗ · a⊺RA′Λb

+ c†Rb · d†RA′ΛARa+ d†Rb · c†RA′ΛARa

+ c†Ra · d†RA′ΛARb+ d†Ra · c†RA′ΛARb

+ b⊺Ra · d†RAΛA′Rc∗ + b⊺Ra · d†RA′ΛARc∗

+ c†Rb · d†RAΛA′Ra+ d†Rb · c†RAΛA′Ra

+ c†Ra · d†RAΛA′Rb+ d†Ra · c†RAΛA′Rb

+ c†Rd∗ · b⊺RA′ΛARa+ c†Rd∗ · b⊺RAΛA′Ra
]
. (3.37)

This is a rather cumbersome result, but is structured in such a way that

it is relatively easy to implement directly into numerical calculations.

In total the results are the following equations:

⟨A′|T̂ |A⟩ Equation 3.27

⟨cA′|T̂ |aA⟩ Equation 3.32

⟨A′|T̂ |baA⟩ Equation 3.33

⟨dcA′|T̂ |baA⟩ Equation 3.37

The Coulomb Interaction

In this section we compute the matrix element of the coulomb inter-

action VC = |w⊺r|−1
. The matrix element between shifted ECG’s is
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Chapter 3 · Prefactor Correlated Gaussians

given [6]:

⟨A′s′ |VC |As⟩ =
erf(

√
βq)

q
M, (3.38)

with: β = (w⊺B−1w)
−1

and q⃗ = 1
2
w⊺Rv. In anticipation of differenti-

ating and putting s = s′ = 0, we series expand the error function in

Equation 3.38 to fourth order in v, since all higher order terms will

not contribute to the matrix elements.

⟨A′s′ |VC |As⟩ = 2

√
β

π

(
1− β

12
v⊺R̃v +

β2

160

(
v⊺R̃v

)2)
M, (3.39)

where R̃ = Rww⊺R. We can now obtain the result for s-waves:

⟨A′ |VC |A⟩ = 2

√
β

π
M0. (3.40)

As is usual by now, we differentiate to obtain results for p- and d-waves.

For p-waves we see that only the first two terms in Equation 3.39

contribute, using Equation 3.28 and 3.30:

⟨cA′ |VC | aA⟩ = 2

√
β

π

[(
c†

∂

∂s′⊺

)(
a⊺ ∂

∂s⊺

)
M

− β

12
M0

(
c†

∂

∂s′⊺

)(
a⊺ ∂

∂s⊺

)
v⊺R̃v

]∣∣∣∣
s=0

= c†
(
R− β

3
R̃

)
a

√
β

π
M0, (3.41)

where we used the p-wave overlap. The s-d matrix element then

follows immediately like the overlap:

⟨A′ |VC |baA⟩ = b⊺

(
R− β

3

)
a

√
β

π
M0. (3.42)

For d-waves all three terms contribute,

⟨dcA′ |VC |baA⟩ =2

√
β

π
⟨dcA′ |baA⟩

− β

6

√
β

π
·∆2

[
v⊺R̃vM

]
|s=s′=0

+M0
β2

80

√
β

π
·∆2

[
v⊺R̃v

]2
|s=s′=0. (3.43)
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The first parentheses contains the term: a⊺R̃b · c†Rd∗/4 and all per-

mutations of a, b, c and d, all derived from Equation 3.35 and 3.36.

Noting that R and R̃ are symmetric, we see there are 6 different

terms each counted 4 times. Similarly, for the last parentheses we

use the product rule repeatedly to obtain three different terms like:

a⊺R̃b · c†R̃d∗
, each counted 8 times (using the symmetry properties

again). The total result is:

⟨dcA′ |VC |baA⟩ = 2

√
β

π
⟨dcA′ |baA⟩ − β3/2M0

6
√
π

×[
c†Rd∗ · a⊺R̃b+ d†Rb · c†R̃a + c†Rb · d†R̃a

+d†Ra · c†R̃b+ c†Ra · d†R̃b+ a⊺Rb · c†R̃d∗
]
+
β5/2M0

10
√
π

×[
a⊺R̃b · c†R̃d∗ + c†R̃a · d†R̃b+ d†R̃a · c†R̃b

]
. (3.44)

The results are the following:

⟨A′|VC |A⟩ Equation 3.40

⟨cA′|VC |aA⟩ Equation 3.41

⟨A′|VC |baA⟩ Equation 3.42

⟨dcA′|VC |baA⟩ Equation 3.44

The Harmonic Potential

In this section we compute the matrix element of the harmonic poten-

tial,

VH(w
⊺r) = r⊺ww⊺r.

This can computed more easily by differentiating the overlap integrals,

for example:

⟨cA′|VH |aA⟩ =
〈
cA′
∣∣∣∣ ∂∂sww⊺ ∂

∂s⊺

∣∣∣∣aAs〉 ∣∣∣∣
s=0

.

We need 2 simple identities to carry out this computation

∂

∂s
F

∂

∂s⊺
(s⊺Bs) = 6Tr (FB),

∂

∂s
F

∂

∂s⊺
(a⊺Bs · b⊺Cs) = a⊺BFCb+ b⊺CFBa.
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For symmetric matrices F , B and C . The second of these is easily

derived using the product rule. The first is less trivial, and is proven

in Appendix A. From this we derive

⟨A′|VH |A⟩ =
∂

∂s
ww⊺ ∂

∂s⊺
⟨A′|As⟩

∣∣
s=0

=
3

2
Tr (ww⊺R)M0

=
3

2
w⊺Rw ·M0. (3.45)

Where we use that Tr (ABC) = Tr (BCA). Similarly:

⟨cA′|VH |aA⟩ =
∂

∂s
ww⊺ ∂

∂s⊺
⟨cA′|aAs⟩

∣∣
s=0

=
1

2
c†Ra

∂

∂s
ww⊺ ∂

∂s⊺
M
∣∣
s=0

+
M0

4

∂

∂s
ww⊺ ∂

∂s⊺
(
c†Rs · a⊺Rs

)
= (3c†Ra · w⊺Rw + 2c†R̃a)

M0

4
, (3.46)

with R̃ = Rww⊺R. We obtain immediately:

⟨A′|VH |baA⟩ = (3b⊺Ra · w⊺Rw + 2c†R̃a)
M0

4
. (3.47)

To calculate the matrix element for d-waves, we can differentiate

Equation 3.21 while noticing that the derivatives onM result in exactly

Equation 3.45. Carrying out the differentiation and collecting like

terms the matrix element is

⟨dcA′|VH |baA⟩ =
∂

∂s
ww⊺ ∂

∂s⊺
⟨dcA′|baAs⟩

∣∣
s=0

=
3

2
w⊺Rw ⟨dcA′|baA⟩+

M0

4
(c†Ra · d†R̃b+ d†Ra · c†R̃b

+ c†Rb · d†R̃a+ d†Rb · c†R̃a
+ c†Rd∗ · a⊺R̃b+ b⊺Ra · d†R̃c∗). (3.48)

If we specialize to N = 1 in these matrix elements and plug in the

correct vectors ((0, 0, 1) for p-waves and (1, i, 0) for d-waves). Every

one of these matrix elements reduce to those listed in section 3.1,

confirming our results.
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The Hydrogen Atom

In this chapter we apply the method of correlated gaussians and the

calculated matrix elements to compute the spectrum and wavefunc-

tions of the hydrogen atom. In this chapter we will exclusively work

in atomic units (described in [7]). In this system the spinless hydrogen

atom has the hamiltonian:

Ĥ = −1

2
∇2 − 1

r
,

approximating the mass of the nucleus as infinite.
1
In our notation this

corresponds to Λ = 1/2 and the coulomb potential as in section 3.2

with w = 1. The solutions of Schrödingers equation, Ĥ |ψ⟩ = E |ψ⟩,
are well known [8]:

En = − 1

2n2
. (4.1)

4.1 Single Gaussian optimization
To check our numerical procedure we minimize the energy functional

Equation 2.1 analytically by hand for a single gaussian. In this case the

problem reduces to a single parameter, A. Using the matrix elements

we derived in section 3.1 and putting A = A′
, the energy functional

1: Instead of using the infinite mass approximation and atomic units, one can change

coordinates r⃗ = a0x⃗ and energy E = α2µc2 · ε. Where a0 is the Bohr radius, α is

the fine structure constant and µ is the reduced mass of the system. In this case the

Schrödinger equation becomes Ĥx⃗ψ(x⃗) = εψ(x⃗) with Ĥ as above, avoiding any

approximations.
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becomes:

Es(A) = −⟨A|∇2|A⟩
2 ⟨A|A⟩

− ⟨A|r−1|A⟩
⟨A|A⟩

=
3

2
A−

√
8A

π
,

Ep(A) = −⟨aA|∇2|aA⟩
2 ⟨aA|aA⟩

− ⟨aA|r−1|aA⟩
⟨aA|aA⟩

=
5

2
A− 4

3

√
2A

π
,

Ed(A) = −⟨cbA|∇2|cbA⟩
2 ⟨cbA|cbA⟩

− ⟨cbA|r−1|cbA⟩
⟨cbA|cbA⟩

=
7

2
A− 16

15

√
2A

π
.

These expressions can be easily minimized. The results are:

Amin,s =
8

9π
≈ 0.283, Es(Amin,s) = − 4

3π
≈ −0.424,

Amin,p =
32

225π
≈ 0.0453, Ep(Amin,p) = − 16

45π
≈ −0.113,

Amin,d =
512

11025π
≈ 0.0148, Ed(Amin,d) = − 256

1575π
≈ −0.0517.

These are exactly the numerical values attained in Table 4.1.

4.2 Numerical procedure
We are now able to calculate the spectrum and wavefunctions of

hydrogen. For ECG’s with explicit angular momentum, we can fix a

and b in accordance with Table 3.1. This will pick out s, p and d-states

which therefore give the ground state and two lowest lying excited

states when the lowest eigenvalue of Equation 2.4 is minimized. We fix

the prefactors such that the angular dependence of the wavefunctions

is Y 0
1 or Y 2

2 for all gaussians of the same type.

For comparison we also compute these energies using shifted

ECG’s. In this case, the 2p and 3d states are computed by minimizing

the second and sixth lowest eigenvalues of the generalized eigenvalue

problem. For the n = 3 states we have to pick the sixth lowest

eigenvalue because, as we know in advance, the n = 2 states are

four-fold degenerate. In addition, this implies that at least 6 shifted

ECG’s are needed to describe the d-states and 2 to describe the p-

states. In a central problem with no analytical solution, we only expect

degeneracy in the m quantum number, therefore we can only hope

any additional (exact or approximate) degeneracy would be revealed

by the calculation itself.
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The non-linear parameters A (and the components of s for the

shifted ECG’s) are optimized deterministically.
2
The initial conditions

for A are chosen as:

Ai = (b · i/Ng)
−2, i = 1, 2, . . . Ng,

where Ng is the number of gaussians and b is parameter chosen to

be 5 for s and p waves and 10 for d-waves. For p-waves the initial

conditions for s are chosen as:

s = (0, 0,
2i/Ng − 1

2b
), i = 0, 1, . . . Ng − 1. (4.2)

To describe the n = 3 states we paramaterize s in spherical coordin-

ates:

s = s · (sin θ · cosϕ, sin θ · sinϕ, cos θ)⊺ (4.3)

With initial conditions:

θ = π/2

ϕi = 2π · i/Ng for i = 0, 1, . . . Ng − 1.

s = 1/b

We can exploit some of our knowledge of the states in the calculations

using shifted ECG’s. For instance we only optimize the z-component

of s when calculating the p-wave energies. We can do this since

we already know that the p-states with m = 0 have nonspherical

components that only depend on the z-coordinate. Similarly s = 0 is

chosen for the s-state.

The linear parameters c are optimized by solving the generalized

eigenvalue problem,

Hc = EN c,

as described in section 2.2. This problem was solved numerically using

the QR-algorithm which is O(N3
g ) [4].

2: This problem is simple enough to be solvable with most numerical optimization

algorithms. The Nelder-Mead method was used for this optimization.
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4.3 Energies
The numerically calculated energies can be seen in Table 4.1. Energy

convergence plots can be seen in Figure 4.1. We can consistently and

easily attain 4 digits of precision. At Ng ≥ 10 the calculation of the

n = 3 energies with shifted ECG’s begin increasing. This suggests

that the numerical calculation becomes unstable as N may become

approximately singular, and therefore the values are not usable.

We also see that the prefactor ECG’s attain almost 2 orders of

magnitude better precision with fewer Gaussians than shifted ECG’s,

for the states with non-zero angular momentum. It should be noted

that the accuracy is best for the d-waves.

Prefactor ECG’s

n = 1 n = 2 n = 3
Ng E % Error Ng E % Error Ng E % Error

1 −0.4244 15 1 −0.11318 9.5 1 −0.05174 6.9
2 −0.4858 2.8 2 −0.12329 1.4 2 −0.05508 0.86
3 −0.4970 0.60 3 −0.12473 0.22 3 −0.05549 0.11
4 −0.4993 0.14 4 −0.12495 0.039 4 −0.05554 0.016
5 −0.4998 0.038 5 −0.12499 0.008 5 −0.05555 0.003

Shifted ECG’s

n = 1 n = 2 n = 3
Ng E % Error Ng E % Error Ng E % Error

1 −0.4244 15 2 −0.1168 6.5 6 −0.0519 6.6
2 −0.4858 2.8 3 −0.1237 1.0 7 −0.0550 1.0
3 −0.4970 0.60 4 −0.1246 0.30 8 −0.0553 0.48
4 −0.4993 0.14 5 −0.1246 0.30 9 −0.0554 0.22
5 −0.4998 0.038 6 −0.1248 0.17

Table 4.1: Energies calculated numerically as described in section 4.2. The

size of the basis set is denoted by Ng . Convergence plots using these results

are given Figure 4.1.

4.4 Radial wavefunctions
we can examine the radial wavefunctions resulting from the variational

calculations. Calculating the radial wavefunctions from the ECG’s

with explicit angular momentum is very easy. Indeed we simply

remove the Y m
l from the wavefunctions. For example, given that a
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Figure 4.1: Energy convergence the variational calculation using both

ECG’s with explicit angular momentum and shifted ECG’s. For explicit

angular momentum states, a and b are fixed according to the second and

third entry of Table 3.1 for p- and d-states respectively. The red lines are the

analytic energies and Ng is the number of gaussians in the calculation. The

numerical value of the energies can be seen in Table 4.1.

and b are fixed for each gaussian:

Rd(r) =

√
32π

15

Ng∑
i=1

cir
2e−Air

2

,

with only normalization to be determined. We normalize according to∫∞
0
r2R2dr = 1. This is equivalent to normalizing c according to

c†N c = 1.

These wavefunctions are plotted along with the exact wavefunctions

in Figure 4.2 for the choices described in section 4.2.
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Figure 4.2: Approximate radial wavefunctions for s, p and d-states calcu-

lated using prefactor ECG’s. These are plotted along with the exact radial

wavefunctions. Ng denotes the number of ECG’s in the variational calcula-

tion. The wavefunctions are normalized according to

∫∞
0 |u(r)|2dr = 1.

It is clear that once energy convergence has been achieved (3-4

gaussians), the main deviation from the exact wavefunction stems

from the incorrect asymptotic behaviour. The ECG’s have a gaussian

asymptotic dependence, whereas the coulomb potential gives rise to

exponential asymptotic behaviour.
3
But note that, like with the energy

convergence, this deviation is significantly smaller for the higher l

states than for the s-state.

3: For this reason exponential basis functions were sometimes preferred in the past,

see Mitroy et al. [11].
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5.1 Discussion
The matrix elements we calculated in section 3.2 were clearly analytic

from the beginning. However, the results in Equation 3.37 and 3.44

show that these expressions quickly blow up in the number of terms.

They are nevertheless managable, and their derivations straightfor-

ward if time consuming. This is a disadvantage that prefactor ECG’s

relative to shifted ECG’s whose matrix elements are comparatively

simple. For larger N these terms likely become way less managable

numerically as their computation time is significantly higher than for

shifted ECG’s.

The energy calculation of the hydrogen reveals that much greater

accuracy are achieved significantly faster when describing non-zero

angular momentum states using prefactor ECG’s instead of shifted

ECG’s. The greatest benefit is accrued with the 3d-state. In this case in

Table 4.1 we see that 9 shifted ECG’s barely reach similar accuracy to 3

prefactor ECG’s. Similarly, 6 shifted ECG’s are needed to describe the

2p state to the same accuracy as 3 prefactor ECG’s. This corresponds to

2-3 factor reduction in Ng , and since matrix diagonalization is O(N3
g ),

this is a factor of 8-27 times faster just in the matrix diagonalization.

A rather significant improvement.

Another area of improvement is the reduced search space in the

nonlinear parameters. If the angular structure of the studied system

can be guessed beforehand, the prefactors can be fixed (as we did in

the hydrogen atom), reducing the amount of nonlinear parameters to

only the terms in the A-matrix. This is in contrast to shifted ECG’s

where the search space includes the shifts s, which can be hard to

optimize.

As noted in section 4.4, the main error in the wavefunction stems

from the incorrect asymptotic behaviour of the basis functions as
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r → ∞. It is clear however, that this is not a significant hinderance

when calculating energies. It may cause problems when evaluating

expectation values which depend on arbitrarily large r, such as the

dipole operator.

These prefactor ECG’s can only describe states with angular mo-

mentum l ≤ 2. One approach to generalize to higher l is discussed in

the next section.

5.2 More Prefactors
The form we have of prefactor ECG’s naturally raise the question if

we can generalize to a more general wavefunction with an arbitrary

number of prefactors. One way to generalize is to consider a number,

l, of vectors ai, and the wavefunction:

⟨r|ϕ⟩ = e−r⊺Ar

l∏
i=1

(a⊺
i r) . (5.1)

Ideally this would effectively describe more complicated angular struc-

ture, and maybe even fixed angular momentum eigenstates. Equa-

tion 5.1 may seem complicated to do analytic computations on, how-

ever, from Equation 3.24, Equation 3.37 and their derivations, we can

geuss their the overlap and kinetic energy matrix elements. By |ϕ′⟩
we denote another prefactor ECG with same parity as |ϕ⟩. |ϕ′⟩ has
matrixA′

and l′ prefactors bi. With this, we can generalize the overlap

integral:

⟨ϕ′|ϕ⟩ = M0

2l+l′( l+l′

2
)!

∑
σ

(l+l′)/2∏
i=1

c⊺σ(i)Rcσ(i+ l+l′
2 ),

where:

ci =

{
ai if 0 < i ≤ l

b∗
i−l if l < i ≤ l + l′

.

The sum is over all permutations σ of the set {1, 2, . . . l + l′}. Using
the symmetry of R, we see that the number of terms in the overlap

integral is (l + l′ − 1)!!.

Similar expressions can be geussed for the kinetic energy and

the potentials, although it is harder to derive the front factors of the
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various sums. We haven’t proven this expression, however it is clear

that the method in section 3.2 will provide analytic expressions for

anyN and l, and so the matrix elements can be calculated analytically.

However, the number of terms in these matrix elements quickly blow

up, thus their utility for calculations are restrained by computational

limitations.

We saw earlier that the precision of the variational calculation

seems to increase with L. If this trend continues, it may allieviate

the complexity of the matrix elements by reducing the number of

ECG’s necessary to achieve convergence in the energy. However, this

increase in precision is quite miniscule relative to the sheer number

of terms in these matrix elements.

This choice of basis functions may still be an improvement over

shifted ECG’s, whose only advantage is the simpler matrix elements.

This is almost certainly the case if the prefactors in Equation 5.1 are

fixed in such a way that many of the terms in the matrix elements

vanish. If this is not possible, other choices of ECG’s may be preferred

such as shifted ECG’s or one of several known alternatives such as

the global vector representation [12].
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Conclusion

In this thesis we considered an extension of the method of correlated

gaussians appropriate for complicated angular dependecies. We have

calculated the overlap integrals, kinetic energy, coulomb potential and

harmonic potential matrix elements between prefactor ECG’s using

shifted ECG’s as generating functions. We have seen that the resulting

matrix elements are significantly more complicated for the prefactor

ECG’s corresponding to larger angular momentum than for shifted

ECG’s. We applied these basis functions to a numerical calculation

of the hydrogen atom, reaching 0.1% precision with less than five

ECG’s, which is significantly better than shifted ECG’s for the 2p and

3d states. This lead to a reduction of the necessary number of basis

functions by a factor of 2-3 relative to shifted ECG’s.

We argued that although most matrix elements are analytic in this

basis and that this basis is better suited than shifted ECG’s for non-

zero angular momentum, the analytic complexity and computational

load of these matrix elements may grow too fast to be generalizable

to large angular momenta, in the most straightforward approach.
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Appendix A Derivative identities
We denote the i’th component of a bold font vector, a, by the notation

(a)i. With this, we derive the identities in section 2.1 component-

wise. The chain rule can be derived using the normal chain rule for

gradients:(
∂

∂r
f(g(r))

)
i

=
∂

∂r⃗i
f(g(r⃗1, r⃗2, . . . r⃗N))

= f ′(g(r⃗1, r⃗2, . . . r⃗N))
∂g

∂r⃗i
(r⃗1, r⃗2, . . . r⃗N)

=

(
f ′(g(r))

∂g

∂r
(r)

)
i

.

The linear derivative can be derived similarly:(
∂

∂r⊺
a⊺Ar

)
i

=
∑
jk

∂

∂r⃗i
⊺Ajka⃗j · r⃗k

=
∑
jk

Ajka⃗jδik

=
∑
j

Ajia⃗j

= (A⊺a)i .

For the quadratic function we use the product rule for ordinary gradi-

ents. (
∂

∂r⊺
r⊺Ar

)
i

=
∑
jk

∂

∂r⃗i
⊺Ajkr⃗j · r⃗k

=
∑
jk

Ajk (δikr⃗j + δij r⃗k)

=
∑
j

Ajir⃗j +
∑
k

Aikr⃗k

= (A⊺r+ Ar)i .
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A similar approach gives:

∂

∂s
F

∂

∂s⊺
(s⊺Bs) =

∑
ijkl

FijBkl
∂

∂r⃗i
· ∂

∂r⃗j
⊺ (r⃗k · r⃗l)

=
∑
ijkl

FijBkl
∂

∂r⃗i
· (δjkr⃗l + δjlr⃗k)

=
∑
ijkl

FijBkl · 3 (δjkδil + δjlδik)

= 3
∑
ij

FijBji + FijBij

= 6Tr (FB).

Where we used that Bij = Bji. In the same way the product rule

follows from the product rule for ordinary gradients:

a⊺ ∂

∂r⊺
f(r) · g(r) =

∑
i

a⃗i ·
∂

∂r⃗i
⊺f(r)g(r)

=
∑
i

g(r)⃗ai ·
∂f

∂r⃗i
⊺ + f(r)⃗ai ·

∂g

∂r⃗i
⊺

= g(r)a⊺ ∂f

∂r⊺
+ f(r)a⊺ ∂g

∂r⊺
.

Appendix B Matrix elements for N = 1
We set a = (0, 0, 1)⊺ and b = c = (1, i, 0)⊺ and use the results in

Table 3.1. Using the well-known gaussian integrals:∫ ∞

0

x2ne−Ax2

dx =
(2n)!

n! · 22n+1 · An

√
π

A
,∫ ∞

0

x2n+1e−Ax2

dx =
n!

2An+1
.
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The overlaps are calculated:

⟨A′|A⟩ = 4π

∫ ∞

0

r2e−(A′+A)r2dr =

(
π

A+ A′

)3/2

, (B.1)

⟨aA′|aA⟩ = 4π

3

∫
R3

|Y 0
1 |2 · r2e−(A′+A)r2d3r⃗

=
4π

3

∫ ∞

0

r4e−(A′+A)r2dr =
π3/2

2 (A+ A′)5/2
, (B.2)

⟨cbA′|cbA⟩ = 32π

15

∫
R3

|Y 2
2 |2 · r4e−(A′+A)r2d3r⃗

=
32π

15

∫ ∞

0

r6e−(A′+A)r2dr =
2π3/2

(A+ A′)7/2
, (B.3)

where we have used the normalization of the Y m
l . To compute the kin-

etic energy matrix element, we use the following form of the laplacian

[8]:

∇2 =
1

r2

(
∂

∂r

(
r2
∂

∂r

)
− L2

ℏ2

)
,

and the result:

∂

∂r

(
r2
∂

∂r
rne−Ar2

)
=
(
n(n+ 1)− 2A(2n+ 3)r2 + 4A2r4

)
rne−Ar2 .

Using this we can compute the matrix elements:

⟨A′|∇2|A⟩ = 4π

∫ ∞

0

(4A2r4 − 6Ar2)e−(A+A′)r2dr

= π3/2

(
6A2

(A+ A′)5/2
− 6A

(A+ A′)3/2

)
= −6AA′ π3/2

(A+ A′)5/2
. (B.4)

For the p-waves the first term in the radial derivative cancels with the

L2
contribution, such that:

⟨aA′|∇2|aA⟩ = 4π

3

∫ ∞

0

(4A2r6 − 10Ar4)e−(A+A′)r2dr

= π3/2

(
5A2

(A+ A′)7/2
− 5A

(A+ A′)5/2

)
= −5AA′ π3/2

(A+ A′)7/2
. (B.5)
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The calculation for d-waves is similar:

⟨cbA′|∇2|cbA⟩ = 32π

15

∫ ∞

0

(4A2r8 − 14Ar6)e−(A+A′)r2dr

= π3/2

(
28A2

(A+ A′)9/2
− 28A

(A+ A′)7/2

)
= −28AA′ π3/2

(A+ A′)9/2
. (B.6)

The kinetic matrix element is then obtained by multiplying these

expressions by −ℏ2/2m.

To finish off, we calculate the matrix element of the coulomb

potential V = r−1
and the harmonic potential, which is the same

integrals as in equations B.1, B.2 and B.3 with integrands multiplied

by r−1
or r2:

The Coulomb potential:〈
A′
∣∣∣∣1r
∣∣∣∣A〉 = 4π

∫ ∞

0

re−(A′+A)r2dr =
2π

A+ A′ , (B.7)〈
aA′

∣∣∣∣1r
∣∣∣∣ aA〉 =

4π

3

∫ ∞

0

r3e−(A′+A)r2dr =
2π

3(A+ A′)2
, (B.8)〈

cbA′
∣∣∣∣1r
∣∣∣∣ cbA〉 =

32π

15

∫ ∞

0

r5e−(A′+A)r2dr =
32π

15(A+ A′)3
. (B.9)

The Harmonic potential:〈
A′ ∣∣r2∣∣A〉 = 4π

∫ ∞

0

r4e−(A′+A)r2dr =
3π3/2

2(A+ A′)5/2
, (B.10)

〈
aA′ ∣∣r2∣∣ aA〉 = 4π

3

∫ ∞

0

r6e−(A′+A)r2dr =
5π3/2

4(A+ A′)7/2
, (B.11)

〈
cbA′ ∣∣r2∣∣ cbA〉 = 32π

15

∫ ∞

0

r8e−(A′+A)r2dr =
7π3/2

(A+ A′)9/2
. (B.12)

Appendix C Proof of Equation 3.1
Let

∇i =

(
∂

∂r⊺

)
i

,

L⃗tot = −iℏ
N∑
i=1

r⃗i ×∇i.
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We start by showing that

L⃗tote
−r⊺Ar = 0. (C.1)

From this, it follows immediately that

L2
tot
|A⟩ = 0. (C.2)

By noting that A is symmetric, the derivative is easy,

r⃗i ×∇ie
−r⊺Ar = −r⃗i ×

(∑
j,k

Ajk (δij r⃗k + δikr⃗j)

)
e−r⊺Ar

= −2

(∑
j

Aij r⃗i × r⃗j

)
e−r⊺Ar. (C.3)

And thus,

L⃗tote
−r⊺Ar = 2iℏ

(∑
ij

Aij r⃗i × r⃗j

)
e−r⊺Ar = 0. (C.4)

The sum is zero becauseAij is symmetric, and r⃗i× r⃗j is antisymmetric,

such that each term cancels pairwise with the term that has i and j

interchanged. using this result, we conlude:

L2
tot
(a⊺r) e−r⊺Ar = e−r⊺ArL2

tot
(a⊺r) . (C.5)

Now let rik denote the k’th component of r⃗i, ∇ik the k’th component

of∇i and so on. It is clear that∇i (a
⊺r) = a⃗i. The cross product can

be written with the Levi-Civita symbol εijk:

(⃗a× b⃗)i =
3∑

j,k=1

εijkajbk. (C.6)
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Thus:

L2
tot
(a⊺r) = −ℏ2

N∑
i,j=1

(r⃗j ×∇j) · (r⃗i ×∇i) (a
⊺r)

= −ℏ2
N∑

i,j=1

(r⃗j ×∇j) · (r⃗i × a⃗i)

= −ℏ2
N∑

i,j=1

3∑
m,l,k,p,q=1

εmlkεmpqrjl∇jkripaiq

= −ℏ2
N∑

i,j=1

3∑
l,k,p,q=1

rjlaiqδjiδkp

(
3∑

m=1

εmlkεmpq

)

= −ℏ2
N∑
i=1

3∑
l,k,p,q=1

rilaiqδkp (δlpδkq − δlqδkp)

= −ℏ2
N∑
i=1

3∑
l,p,q=1

rilaiq (δlpδpq − δlq)

= ℏ2
N∑
i=1

(
3∑

l,p=1

rilail −
3∑

l=1

rilail

)

= 2ℏ2
N∑
i=1

r⃗i · a⃗i = 2ℏ2 (a⊺r) (C.7)

Combining this result with Equation C.5 the result in Equation 3.1 is

obtained.
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