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Preface

This scientific paper will focus on investigating the topic of microscopic black holes

from different perspectives and ultimately use it to asses their consequences to Earth.

The purpose of the paper is to illuminate and convey interesting theory along the

way, still with applicative uses to the overarching objective. As such, the reader is

assumed to be familiar with basic concepts of general relativity and the notation

thereof, as well as quantum theory.

The derivations and notation is heavily inspired by Sean M. Carroll in his book

Spacetime and Geometry: An Introduction to General Relativity [1]. In preparation

for the project I learned general relativity mostly by studying the book and am

therefore inclined to apply the methods thereof.
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Abstract

A lawsuit was filed against CERN due to the suspicion of the LHC potentially

creating microscopic black holes that can endanger all of Earth. In this paper we

investigate this claim through a semiclassical treatment of these singularities. First

we will determine the classical absorption cross section of a Schwarzschild black hole.

This result lets us ascertain how long it takes a microscopic black hole within the

Earth to absorb an electron. Then we will find the quantum mechanical absorp-

tion cross section of the black hole, to determine if the result changes. This yields

timescales of around 1055 years, which is beyond any relevancy for the lifespan of

the Earth.

We will then investigate the properties of charged and rotating black holes, to

find that they give rise to naked singularities, whose existence is questionable by the

weak cosmic censorship hypothesis. From this along with Hawking radiation and

rational argumentation we are lead to the final and overwhelming conclusion that

use of the LHC and the potential creation of microscopic black holes is completely

harmless.
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Resumé

CERN blev sagsøgt under mistanken af at LHC potentielt kunne skabe mikroskopiske

sorte huller, som kunne bringe hele Jorden i fare. I dette papir vil vi undersøge

denne påstand gennem semiklassiske beregninger af disse singulariteter. Først vil

vi bestemme det klassiske absorptionstværsnit af Schwarzschild sorte huller. Med

dette resultat kan vi bestemme tiden, det tager et sort hul i Jorden, for at absorbere

én elektron. Derefter vil vi bestemme det kvantemekaniske absorptionstværsnit for

at se, om resultatet ændrer sig. Dette giver tidsskalaer på omkring 1055 år, hvilket

er langt udover nogen relevans for Jordens levetid.

Vi vil derefter undersøge egenskaberne ved ladede og roterende sorte huller og

finde, at de giver anledning til nøgne singulariter, hvis ekstistens er tvivlsom pr.

weak cosmic censorship hypothesis. Alt dette sammen med Hawking stråling og

rationel argumentation leder os til den endelige konklusion, at brugen af LHC og

den potentielle dannelse af mikroskopiske sorte huller er total ufarlig.
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1 Introduction

In March 2008, a retired nuclear safety officer, Walter Wagner, and a journalist,

Luis Sancho, filed a lawsuit in order to prevent the operation of the Large Hadron

Collider (LHC) in CERN [6]. Their concern was for the well being of the whole

world, as they believed that the LHC would be able to create microscopic black

holes that could have the potential to devour the Earth. The case was dismissed in

the US on the grounds of the USA not having jurisdiction over the operation, but

the judge also ruled that no sufficient evidence for their claim was given.

In this paper we will look further into this dilemma and ascertain whether the

possible creation of microscopic black holes is any cause for concern in the first place.

To this end, we will investigate the theoretical properties of black holes holes mainly

concerning the absorption cross section. This entails the use of general relativity,

where we will adhere to the sign convention (−,+,+,+) throughout the paper. As

for the units we will in all but chapter 3 and 4 set c = 1, as it helps visualise the

scale of relativistic velocities and allows us to treat time and space equally.

We will initially calculate the classical absorption cross section of a Schwarzschild

black hole. This will be used to give a semiclassical estimate of the time it takes a

microscopic black hole oscillating within the earth to absorb an electron. Then we

will derive a quantum mechanical approximation of the non-relativistic absorption

cross section for microscopic black holes.

After the case of the Schwarzschild black hole we will look at the metrics con-

cerning charged or rotating black holes and the properties thereof. Using all this

along with Hawking radiation and rational argumentation we may give a qualified

answer to the dilemma at hand.
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2 Classical absorption cross section

In this chapter we will derive expressions for the absorption cross sections of a black

hole. The derivation is based upon what is known as the Schwarzschild metric. This

metric can be found as the unique solution to Einstein’s equation in vacuum for a

spherically symmetric and static source, and is given by[1]:

ds2 = −dτ 2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 (2.1)

Here dΩ2 is the metric of the unit two-sphere:

dΩ2 = dθ2 + sin2(θ)dϕ2 (2.2)

Notice how the metric does not contain any cross terms, thus only giving non-

zero terms when the indices are identical. Rewriting the metric in terms of what is

known as Eddington-Finkelstein coordinates one can show that the light-cone will

warp in such a way that no future paths can move away from the black hole at

r = 2GM which is known as the Schwarzschild radius, denoted by Rs[1].

To study the absorption cross section we will look at how test particles of vari-

ous speeds move in the space-time described by the metric. These free particles will

move along geodesics, and therefore our initial goal will be to describe the radial

equation of motion of the test-particle on the geodesic. Thus we can find the exact

geodesics from which the particle will not escape.

2.1 Radial equation of motion

An initial thought would be to apply the geodesic equation, where one from sym-

metry arguments of energy and angular momentum can extract an equation purely

dependent on the radial distance. We will however apply another method leaning

on the fact that the following expression is constant[1]:
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ϵ = −gµν
dxµ

dλ

dxν

dλ
, (2.3)

where ϵ is a constant, and λ denotes some affine parameter. This can be seen as

for the case of light, the particle will travel along a null path, so we have ϵ = 0 by

the definition of the metric. For massive particles we may divide by −dτ 2 on both

sides in the expression of the metric (2.1) which yields:

1 = −gµν
dxµ

dτ

dxν

dτ
. (2.4)

This is equivalent to eq. (2.3) if the affine parameter is chosen to be proper

time, λ = τ . This means eq. (2.3) will be valid for both massive and massless

particles, with ϵ = 1 and ϵ = 0 respectively (remembering to use proper time for

the massive particle). Now, observe that the metric has zero derivative in the time-

and azimuthal direction. Using either Killing vectors or the Lagrangian along with

spherical symmetry, one can derive the expressions for the conservation of energy

and angular momentum along the geodesics implied by Noethers theorem. Thereby

we arrive at the final expression[1]:

1

2

(
dr

dλ

)2

+ V (r) =
1

2
E2 (2.5)

Where V (r) denotes the effective potential describing the movement of the par-

ticle given by:

V (r) =
1

2
ϵ− Rs

2r
ϵ+

L2

2r2
− RsL

2

2r3
(2.6)

The quantities E and L refer to energy and angular momentum for massless

particles, and energy and angular momentum per unit mass for massive particles.

Now a particle moving along a geodesic described by eq. (2.5) will move exactly

as a particle in the potential V (r) with total energy 1
2
E2. This is evident as the

equation is completely analogous to the usual equation for the sum of kinetic and

potential energy.
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In order to determine the absorption cross section of a black hole we assume

some particle to approach the black hole from an infinite distance with speed v∞

and impact parameter b. We want to determine the maximum impact parameter

such that the particle is absorbed denoted by bmax. With this quantity the absorption

cross section is simply given by:

σabs = πb2max (2.7)

Now if the effective energy, 1
2
E2, is higher than the peak of the effective poten-

tial, V (r), the particle will be absorbed, by the black hole. If it is lower, the particle

will be repelled by the potential. At the exact border between the cases there is an

unstable orbit [3].
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Figure 1:
(a) The potential for different values of angular momentum, L. Here one sees that
the effective potential increases for larger values of L corresponding to larger impact
parameters.
(b) The figure depicts the possible trajectories within the potential. These are
absorption and repulsion, where the boundary yields an unstable orbit, which is the
point of interest.
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The impact parameter is proportional to angular momentum. Thereby the max-

imal absorption impact parameter for a given E, is found when the L is as large

as possible, which exactly corresponds to when the effective energy is equal to the

maximal value of the effective potential (see fig. (1)). This happens at a distance

denoted by rc, and can be described by the following equations:

V (rc) =
1

2
E2 =⇒ (E2 − ϵ)r3c + ϵRsr

2
c − L2rc +RsL

2 = 0 (2.8)

V ′(rc) = 0 =⇒ Rsr
2
cϵ− 2L2rc + 3RsL

2 = 0 (2.9)

The quantities E and L are constant along the geodesic, and therefore they may

be specified at an infinite distance, where space-time is flat:

massless particles: E = p and L = bp = bE (2.10)

massive particles: E =
1√

1− v2∞
and L =

bv∞√
1− v2∞

= bv∞E (2.11)

Using these equation we may solve for the absorption cross section analytically

in the limiting cases.

2.2 Cross section for massless and ultra-relativistic particles

For massless particles we have ϵ = 0, which reduces eq. (2.9) to:

rc =
3

2
Rs (2.12)

This expression may be substituted into eq. (2.8) which yields:
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E23
3

23
R3

s − L23

2
Rs + L2Rs = 0 =⇒ b2 =

L2

E2
=

27

4
R2

s (2.13)

Eq. (2.8) and (2.9) ensures that we have the value of L that maximises the

impact parameter given E. From this we can find the absorption cross section:

σ0 = πb2max =
27π

4
R2

s (2.14)

Thereby this is the absorption cross section of a black hole for massless particles.

For particles in the ultra-relativistic regime E and L will diverge while v∞ → 1.

From eq. (2.11) we know that b = L/E in this limit. As we are working with

massive particles, we may set ϵ = 1. We can in eq. (2.8) and (2.9) ignore anything

but the highest order in E and L as they diverge, but this reduces the equations to

the exact equations for the case of massless particles, which we have already solved.

As the impact parameter in this limit is also the same, the computations are exactly

analogous to above, which yields:

σUR = πb2max =
27π

4
R2

s (2.15)

This result is to be expected as for large energies, the contribution of mass to

the total energy becomes negligible, which results in an analogous case to that of

massless particles.

2.3 Cross section for non-relativistic particles

For non-relativistic particles, we have v∞ ≪ 1, E ≈ 1 [3] and ϵ = 1 . The motivation

for E ≈ 1 is that eq. (2.11) reduces to b = L/v∞, which is the classical formula for

angular momentum. Rewriting eq. (2.8) we find:

Rsr
2
c − L2rc +RsL

2 = 0 (2.16)

Now the maximal impact parameter for absorption is found, when the L is as

6



large as possible while still allowing for absorption. This is exactly the point where

the horizontal line corresponding to an effective energy of 1/2 is barely touched by

the graph of the potential, as any higher values of L would correspond to repulsion,

see fig. (1). This is the case where the above equation only has one solution, so we

may find the maximal L by setting the discriminant equal to zero:

L4 − 4R2
sL

2 = 0 =⇒ L = 2Rs =⇒ bmax = 2
Rs

v∞
(2.17)

Thereby the absorption cross section for non-relativistic particles is given by:

σNR = πb2max = 4π
R2

s

v2∞
(2.18)

Intuitively it would make sense for the cross section to diverge as the speed goes

to zero as an almost stationary particle will be absorbed, even for very large impact

parameters. This concludes the regime of analyticity from where we will solve for

the absorption cross section numerically for any given speed.

2.4 Numerical calculation of cross section

To solve for the cross section numerically one may use sympy to solve a system of

two equations consisting of eq. (2.8), (2.9) for rc and b2max with E and L defined by

eq. (2.11). This yields the following:

b2max =
R2

s

8v4∞

(
8v4∞ + 20v2∞ + av2∞(v2∞ + 1/8)1/2 + b(v2∞ + 1/8)1/2 − 1

)
(2.19)

where: a = 16
√
2, b = 2

√
2 (2.20)

The code gave a and b numerically with a precision of up to 15 decimals, but these

can be precisely identified with above exact expressions matching for all the stated

decimals. Using eq. (2.7), inserting the constants, and simplifying then yields:
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σabs =
πR2

s

8v4∞

(
8v4∞ + 20v2∞ + (8v2∞ + 1)3/2 − 1

)
(2.21)

In order to check the legitimacy of this general solution, we can in the limits

compare it to the analytically obtained solutions. For the ultra-relativistic limit we

find:

σabs(v∞ = 1) =
27π

4
R2

s = σUR, (2.22)

as anticipated. For the non-relativistic limit (v∞ ≪ 1) we may first taylor expand

the following expression:

(8v2∞ + 1)3/2 = 1 + 12v2∞ +O(v3∞) (2.23)

Now we may ignore anything but the lowest order of v∞ inside the parentheses of

eq. (2.21). The constant terms cancel leaving second order to be the lowest. Thus

we find:

σabs(v∞ ≪ 1) ≈ πR2
s

8v4∞

(
20v2∞ + 12v2∞

)
= 4π

R2
s

v2∞
= σNR (2.24)

So we have found, that the numerical solution fits the analytical solutions in the

limits, and thereby we have found an expression for the classical absorption cross

section of black holes for any given initial speed.
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Figure 2: The figure depicts the
classical absorption cross section
of a Schwarzschild black hole as a
function of the incident speed at
an infinite distance. The analytic
limiting cases are shown to be in
accordance with the trend of the
total numerical solution.

With this we may now give a semi-classical estimate of the time it would take a

black hole to absorb a singular electron within the Earth.

3 Black hole moving through Earth

In this chapter we will explore what happens if a neutron were to be converted into

a black hole, which would then pass through the earth. Would it absorb anything?

We will work under the assumption that the neutron black hole is dropped from the

surface of the earth and oscillates in the gravitational potential within the earth. To

calculate if the black hole would absorb anything along its path we need the mean

free path, which is given by:

l =
1

nσ
. (3.1)

Here σ is the cross section of the black hole, which we determined earlier and n

is the number density of particles in the earth.
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3.1 Number density, potential, and RMS speed

Let us assume, that the earth has mass M and radius R. Electrons occupy most

of the space within the earth, so we would like to approximate the number density

of the electrons. To find the number of electrons we approximate, that 50% of the

Earth’s mass consists of protons, while the rest would be neutrons. Assuming the

number of protons and electrons to be the same, the number of electrons would be

half of Earths mass divided by the mass of a proton denoted mp. Then we may

divide by the volume of Earth to determine the number density. This is a rather

crude approximation, but it will suffice as we only want suggestive estimates. This

yields a number density of:

n =
N

V
=

M

2mpV
=

3M

8πR3mp

≈ 1.65× 1030
electrons

m3
(3.2)

This value turns out to be almost exactly the same as if we estimated the earth

to consist of electrons with each electron inhabiting their own sphere of Bohr radius,

a0, yielding n = 3/(4πa30) ≈ 1.61× 1030 electrons
m3 .

For the cross section, we will use the average kinetic energy to determine the

root-mean-square speed of the black hole, as it moves through the earth. We then

estimate the black hole to be constantly moving at this speed. First off the total

energy may be written as the sum of the average kinetic energy and average potential

energy:

E = ⟨T ⟩+ ⟨U⟩ (3.3)

The total energy E is just the potential energy at the dropping point U(R).

Thereby, we need an expression for U(r). To do this we will assume the earth to

have a homogeneous distribution of mass. Suppose the black hole has mass m and

is at a distance r from the centre of the Earth. By Gauss’s law of gravity, we may

disregard all mass outside the radius r and treat everything within the radius as a

point mass. Let M̃ denote this mass, which is given the ratio of volumes times the
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total mass, M̃ =Mr3/R3. Then the force on the black hole is given by:

F(r) = −GmM̃
r2

r̂ = −GmM
R3

rr̂ (3.4)

From this we may find the potential energy by integrating over the work. We

set the zero point of the potential to be in the centre of the earth:

U(r) = −
∫ r

0

(F(r′) · r̂) dr′ = GmM

R3

∫ r

0

r′dr′ =
GmMr2

2R3
(3.5)

Now we may determine the average kinetic energy in terms of the average po-

tential energy using the virial theorem:

⟨T ⟩ = 1

2

〈
r
dU

dr

〉
=

1

2

〈
r
GmMr

R3

〉
= ⟨U⟩ (3.6)

This result is expected, as the system is a harmonic oscillator as seen by the

expression of the force. We may now insert this into the equation for the total

energy setting E = U(R) and solve for the root-mean-square speed:

U(R) = 2⟨T ⟩ = mv2rms (3.7)

=⇒ vrms =

√
U(R)

m
=

√
GM

2R
(3.8)

This can be calculated to be vrms = 5593m
s or 1.866× 10−5 in units of c.

3.2 Mean free path and period for absorption

With this approximation we may now determine the mean free path of the black

hole:

l =
1

nσ(vrms)
=

8πR3mp

3Mσ(vrms)
≈ 2.7× 1066m (3.9)
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From this we may approximate the time for the black hole to absorb an electron

by:

t =
l

vrms

≈ 1.5× 1055yr (3.10)

So if the black hole were to oscillate within the earth it would still take 1055

years before it absorbs an electron which is way beyond any measurable time in

our universe. Of course many of the approximations were crude, but the general

timescale is so large, that even large changes to the result would have no impact on

the conclusion. Thus, the time for absorption is way to long to carry any relevance

or concern on our part.

4 Quantum mechanical absorption cross section

The absorption cross section, we derived, is purely classical. As we are working

with microscopic black holes, it begs us to consider the problem using quantum

mechanics. In the last chapter we found vrms = 5593m
s , so we will work in the non-

relativistic regime. This allows us to apply the Schrödinger equation to calculate the

absorption cross section. We will in this chapter follow the derivations of L. Z. Fang

and R. C. Wang in their article, Absorption cross sections of a Schwarzschild black

hole, 1983 [2]. The article is very brief omitting almost all of the calculations and

discussion. Therefore, we will expand upon the derivations, to see how the results

emerge from the theory and the implications thereof.

4.1 Derivation of effective Schrödinger equation

The idea of the derivation is to write the Klein-Gordon equation in curved space-

time. This is necessary as we need to start from an equation that treats time and

space at an equal footing, such that it is compatible with relativistic theory. Then

by evaluating this in the non-relativistic limit, we recover the Schrödinger equation
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from where we can identify the effective potential. This potential may then be used

to determine the absorption cross section. Throughout the derivation all quantum

states are implicitly taken to be in position space, ψ = ⟨x|ψ⟩. To do the calculations,

we need the Schwarzschild metric in a coordinate system, that is not singular at the

event horizon. Therefore, we define a new time coordinate, t′, by:

ct′ = ct+ (r∗ − r), where r∗ = r +Rs ln

(
r

Rs

− 1

)
=⇒ dr∗

dr
=

(
1− Rs

r

)−1

.

(4.1)

Here r∗ is called the Tortoise coordinate. Changing time to the t′ coordinate

yields the metric in Eddington-Finkelstein coordinates:

ds2 = −
(
1− Rs

r

)
c2dt′2 +

(
1 +

Rs

r

)
dr2 +

Rsc

r
(dt′dr + drdt′) + r2dΩ2 (4.2)

From now on we will for simplicity denote the time coordinate, t′, by t, keeping

the new definition in mind. Note that the spacial coordinates are still the usual

spherical coordinates. To determine gµν one may simply use the gµλgλν = δνµ. Now

we are ready to state the Klein-Gordon equation in curved spacetime:

ℏ2gµν∇µ∇νΨ = m2c2Ψ, (4.3)

where ∇µ denotes the covariant derivative defined on covectors by:

∇µwν = ∂µwν − Γλ
µνwλ, where Γλ

µν =
1

2
gλρ(∂µgνρ + ∂νgρµ − ∂ρgµν). (4.4)

Γλ
µν are known as the Christoffel symbols. With this we may rewrite the Klein-

Gordon equation. Note that the covariant derivative of a scalar function is just the

regular partial derivative, as the function is independent of choice of coordinates.

Thereby we may write:

ℏ2gµν∇µ∇νΨ = ℏ2gµν∇µ∂νΨ = ℏ2gµν(∂µ∂νΨ− Γλ
µν∂λΨ) = m2c2Ψ (4.5)

Now we may use the metric to write out the Klein-Gordon equation. The com-
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putations are simple but extremely tedious. The Christoffel symbols are symmetric

in the lower indices, and we only need the ones where the lower indices correspond

to nonzero metric entries by above equation. This still leaves 20 symbols to be cal-

culated. We will omit these calculations, but one may use, that the metric only has

cross terms in r and t, and the components only depend on r and θ to simplify the

computations. This yields the following expression:

ℏ2
(
−
(
1 +

Rs

r

)
1

c2
∂2t +

2Rs

cr
∂r∂t +

Rs

cr2
∂t −

Rs

r2
∂rr∂r

)
Ψ

+ℏ2
(

1

r2
∂rr

2∂r +
1

r2 sin(θ)
∂θ sin(θ)∂θ +

1

r2 sin2(θ)
∂2ϕ

)
Ψ = m2c2Ψ (4.6)

The second term can be recognised as the Laplacian in spherical coordinates.

Now we have our final expression, from where we may compute it in the non-

relativistic limit. Let us assume Ψ = exp(−iεt/ℏ)ψ to be a stationary solution.

Inserting the stationary solution above allows us to substitute ∂t → −iε/ℏ, from

where we may divide out the time dependent part of the solution. In the non-

relativistic limit we may write ε = mc2 + E, where E is the sum of potential and

kinetic energy. E ≪ mc2, so we will approximate ε2 to be in first order in E,

ε2 ≈ m2c4 + 2mc2E. This yields:

2m

(
E − VN

(
1 + 2

E

mc2

)
− i

(
1 +

E

mc2

)
V2 − V1

)
ψ + ℏ2∇2ψ = 0 (4.7)

where VN = −GMm

r
, V1 =

ℏ2

2m

Rs

r2
∂rr∂r, V2 = Rsℏc(

1

r
∂r +

1

2r2
) (4.8)

Now setting the terms with E/mc2 = 0 as they are negligible compared to 1 and

rewriting finally yields:

− ℏ2

2m
∇2ψ + (VN + V1 + iV2)ψ = Eψ (4.9)
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4.2 Calculation of the absorption cross section

Now we have the Schrödinger equation, and we may identify the effective potential as

VN+V1+iV2. A complex potential allows for absorption of particles which is exactly

what we desire. We will regard V1 + iV2 as perturbations to the classical gravita-

tional potential VN . Note that solutions to the unperturbed Schrödinger equation are

equivalent to the solutions for the Coulomb potential with ze2/4πϵ0 → GMm. Thus,

we will analogously denote the unperturbed solutions as ψnlm = Rnl(r)Y
m
l (θ, ϕ).

To determine the absorption cross section, we will derive an expression for the

change in probability density within the black hole for the total potential. Then we

will use the unperturbed scattering state to determine the first order approximation

of the cross section. Suppose Ψ is a solution of the time dependent Schrödinger

equation of the total potential.

iℏ∂tΨ = − ℏ2

2m
∇2Ψ+ VNΨ+ V1Ψ+ iV2Ψ (4.10)

By taking the complex conjugate of both sides, one finds the equation for Ψ∗:

−iℏ∂tΨ∗ = − ℏ2

2m
∇2Ψ∗ + VNΨ

∗ + V1Ψ
∗ − iV2Ψ

∗ (4.11)

This follows as each operator commutes with complex conjugation. From this

we can find the derivative of the probability density, ρ = |Ψ|2:

∂tρ =
−i
ℏ
iℏ∂t(ΨΨ∗) =

−i
ℏ
((iℏ∂tΨ)Ψ∗ −Ψ(−iℏ∂tΨ∗))

=
−i
ℏ

(
− ℏ2

2m
(∇2Ψ)Ψ∗ +

ℏ2

2m
Ψ(∇2Ψ∗) + VNΨΨ∗ −ΨVNΨ

∗
)

− i

ℏ
((V1Ψ)Ψ∗ −ΨV1Ψ

∗ + i(V2Ψ)Ψ∗ + iΨV2Ψ
∗) (4.12)

Notice that the terms concerning VN cancel, as VN does not contain derivatives

and thereby commutes with Ψ. Also note that Ψ∗ commutes with V1Ψ. From this
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we may write:

∂tρ =−∇ ·
(
iℏ
2m

(Ψ(∇Ψ∗)− (∇Ψ)Ψ∗)

)
+

1

ℏ
(i(ΨV1Ψ

∗ −Ψ∗V1Ψ) + ΨV2Ψ
∗ +Ψ∗V2Ψ)

=−∇ ·
(
−ℏ
m

Im{Ψ∇Ψ∗}
)
+

2

ℏ
(− Im{ΨV1Ψ∗}+Re{ΨV2Ψ∗})

=−∇ · j + 2

ℏ
(−A+B) (4.13)

where j denotes the probability flux. This expression differs from the one in

the article, where they did not have the factor of i in front of the term concerning

V1. This factor is however necessary in order for the term to be real, which is a

condition for the change in probability density. This implies some mistake of the

equation in the article. This inconsistency does through later derivations prove to

be inconsequential to further results. Another inconsistency is that the sign in front

of (−A+B) is negative in the article as opposed to the positive sign here. This will

result in a change of the total sign of the cross section, as seen later.

Now to find the change in probability density to first order we will insert the un-

perturbed scattering solution in the right hand side of the equation above. Before do-

ing so, note that solutions to the unperturbed Schrödinger equation Rnl(r)Y
m
l (θ, ϕ)

has a radial function exclusively in the real numbers. As the operator V1 only acts

on the radial part, ΨV1Ψ∗ is real, thus having zero imaginary part implying A = 0.

The unperturbed scattering state also has zero divergence in probability flux [9]

by conservation of probability, which means that an unperturbed solution, ψ0 must

yield the following:

∂tρ
(1) =

2

ℏ
B =

1

ℏ
(ψ0V2ψ

∗
0 + ψ∗

0V2ψ0)

With ∂tρ
(1) denoting the first order approximation. Let us denote the space

within the event horizon as U , and the outside of the black hole as the spacial
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complement UC . The absorption cross section is given by the total absorption per

unit time, divided by the velocity of an incoming free particle wave[2] which is kℏ/m.

One motivation for this is that the velocity is proportional to the probability flux of

a free wave, which matches the definition of the cross section as absorbed probability

divided by incoming probability flux. Notice this yields the desired units of area for

the cross section:

σ
(1)
QM =

∫
U
∂tρ

(1)d3r
v

=
−m
kℏ

∫
UC

∂tρ
(1)d3r =

−m
kℏ2

∫
UC

(ψ0V2ψ
∗
0 + ψ∗

0V2ψ0)d
3r, (4.14)

We used that the integral of ∂tρ over U is equal and opposite to the integral over

UC due to conservation of total probability. This is because we view absorption as

an increase in total probability within the black hole, which likewise decrease the to-

tal probability outside of the event horizon. This expression is equivalent to the one

stated in the article with the exception of an opposite sign in front of the integral.

This was anticipated by the inconsistency in signs between the two expressions of

probability density. We will nevertheless use the expression we derived, which will

later turn out to yield the desired answer.

To calculate the absorption cross section we will insert the unperturbed scat-

tering state, ψ0, written in partial fraction expansion. Coulomb scattering is a

well-discussed topic, so we will just state the expression of the state [2]:

ψ0 =
∞∑
l=0

Clr
leikrF (l + 1− i; 2(l + 1);−2ikr)Pl(cos(θ)) =

∞∑
l=0

fl(r)Pl(cos(θ))

where Cl = (2ikr)leαπ/2Γ(l + 1− iα)/2l! (4.15)

Here k = 2mE/ℏ2 and α = Gm2M/ℏ2k. Γ is the gamma function, Pl is the l’th

legendre polynomial and F is the confluent hypergeometric function1. Let us denote
1See Sakurai and Napolitano [9] pp. 203 for a definition and treatment with the coulomb

potential.
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the r dependent part of the sum as fl for simplicity. With this the approximate

absorption cross section is given by:

σ
(1)
QM = − m

kℏ2

∫ 2π

0

dϕ

∞∑
l=0

∞∑
m=0

∫ π

0

Pl(cos(θ))Pm(cos(θ)) sin(θ)dθ

×
∫ ∞

Rs

r2(fl(r)V2f
∗
m(r) + f ∗

m(r)V2fl(r))dr (4.16)

Here we used, that V2 only acts on r and that the Legendre polynomials are real

along with d3r = r2 sin(θ)dϕdθdr. The integral over ϕ trivial and equal to 2π. To

calculate the integral over θ we may use the substitution u = cos(θ) which yields:∫ π

0

Pl(cos(θ))Pm(cos(θ)) sin(θ)dθ =

∫ 1

−1

Pl(u)Pm(u)du =
2

2l + 1
δlm. (4.17)

The last equality stems from a well-known identity of the Legendre polynomials

[4]. The Kronecker delta, δlm, allows us to write the sum only in l, from where the

θ-integral is 2/(2l + 1). All that is left is the integral for r, setting m = l. Here we

may insert the expression for V2, eq. (4.8), from where we can recognise the product

rule, to rewrite it as a single derivative:

Rsℏc
∫ ∞

Rs

rfl(r)(∂rf
∗
l (r)) + r(∂rfl(r))f

∗
l (r) + fl(r)f

∗
l (r)dr

=Rsℏc
∫ ∞

Rs

∂r(rfl(r)f
∗
l (r))dr = −Rsℏc(Rsfl(Rs)f

∗
l (Rs))

=−R2
sℏc |fl(Rs)|2 (4.18)

Here we used that fl should be zero at infinity due to a finite total probability of

the quantum state. Inserting all the integrals yields our approximate cross section:

σ
(1)
QM =

4πmR2
sc

kℏ

∞∑
l=0

|fl(Rs)|2

2l + 1
(4.19)

Here we see, that the sign is correct, which implies, that our initial expression for

the absorption cross section was correct as opposed to the one stated in the article.
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We will now look at the limit of small black holes. In this limit kRs ≪ 1. From the

expression of the unperturbed scattering state, eq. (4.15), one sees that Cl ∝ (kRs)
l.

Thereby, we may ignore all terms excepts the contribution from the s-wave, as it

dominates in this limit. This yields the final expression for the cross section[2]:

σ
(1)
QM ≈ 4πmR2

sc

kℏ
|f0(Rs)|2 =

8π2R2
smcα

ℏk[1− exp(−2πα)]
(4.20)

Thereby, we have found an approximation of the quantum mechanical absorption

cross section of microscopic black holes in the non-relativistic limit. We may compare

this result with the clasiccal non-relativitsic result obtained in chapter 2, eq. (2.18).

Note that the quantum cross section is not proportional to the inverse of k, as α

also depends on k. For the case of a microscopic black hole with an electron, α is

extremely small, ∝ 10−40, so expanding the exponential to the first order in α is

justified. Then we may also rewrite using v = kℏ/m as to compare with the classical

cross section. In this estimate, the cross section is given by:

σ
(1)
QM ≈ 8π2R2

smcα

ℏk2πα
=

4πR2
s

(v/c)
(4.21)

This result looks a lot like the classical result found in the non-relativisic regime

eq. (2.18) (Note c = 1 in this equation). One would imagine the classical limit

to be reached for such a small black hole as the angular momentum of the elec-

tron would have to be extremely small to compare. The peculiar thing is, that

the quantum mechanical cross section is proportional to the inverse speed, while

the classical cross section is proportional to the inverse squared. This may imply

some fundamental error in the quantum mechanical calculations, which could be at-

tributed to how quantum mechanics and general relativity are for now incompatible.

Another idea could be the way in which the absorption cross section is defined,

or the way we made the first order approximation of the cross section. Nevertheless

this is our result which is the same as in the article, and the more general result

from eq. (4.19) is applicable and instructive for many other cases. If we propagate
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our new absorption cross section through the calculations of chapter 3 one finds the

time for absorption of a single electron to be t ≈ 8× 1059 years, which is an even

longer timescale. Thereby, the earlier conclusion from using the classical results still

stands, but we have now verified it using quantum theory.

Now we have done a theoretical treatment of Schwarzschild black holes both

using classical and quantum mechanics. One would imagine it possible that the

LHC may also create charged or rotating black holes. If a proton were to become a

black hole, there should be conservation of charge and angular momentum, carrying

over as properties of the black hole. Therefore, we will in the next chapters discuss

these cases and the implications thereof.

5 Charged black holes

So far all physical considerations have been made with respect to a Schwarzschild

black hole, which entails neither charge nor spin. Therefore, we will in this chapter

expand upon the theory by considering a charged black hole. The corresponding

metric known as the Reissner–Nordström metric, is given by [7]:

ds2 = −dτ 2 = −∆dt2 +∆−1dr2 + r2dΩ2 (5.1)

where,

∆ = 1− Rs

r
+
R2

Q

r2
with Rs = 2MG and R2

Q =
Q2G

4πϵ0
. (5.2)

Here M is as usual the mass of the black hole, Q denotes the charge. dΩ2 is

the metric of the unit two-sphere as before. The metric is a solution to Einsteins

equation given by[1]:

Gµν = 8πGTµν (5.3)

Here Gµν is the Einstein tensor describing the curvature of spacetime, and Tµν
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is the energy momentum tensor. Now this metric is no longer a vacuum solution

to Einsteins equation as we have a nonzero energy-momentum density around the

black hole due to the electromagnetic field. Inserting the metric into the equation

allows us to express the electromagnetic potential, which turns out to be[7]:

Aα =

(
− Q

4πϵ0r
, 0, 0, 0

)
=

(
−Q̃
r
, 0, 0, 0

)
= −Q̃

r
δtα (5.4)

Where Q̃ = Q/4πϵ0. Now we will describe the motion of a test particle with

charge q moving in this system. We assume the particle to have no influence on the

gravitational and electromagnetic fields. This is a strong assumption for the case

of interest, as the electron has equal and opposite charge compared to the proton

black hole. Nevertheless, this greatly simplifies the calculations, so we will stick to

this assumption. The test particle will no longer move along geodesics. Instead the

motion of the particle is described through the Lorentz force.

5.1 Radial equation of motion

Now instead of employing a Newtonian approach we will follow the method of the

paper The Reissner-Nordström metric by Jonatan Nordebo [7] which applies the

Lagrange formalism to derive the radial equation of motion. First off, if we divide

the expression for the metric, (5.1), by dτ 2 and multiply by ∆ we obtain the following

expression:

ṙ2 −∆2ṫ2 +∆+∆r2θ̇2 +∆r2 sin2(θ)ϕ̇2 = 0. (5.5)

Here the dot represents the derivative with respect to proper time. We want

an expression purely dependent on r. To achieve an expression for the conserved

quantities we will as stated employ the Lagrange formalism. The Lagrangian of the

system is given by [7]:

L =
1

2
gµν ẋ

µẋν + qAαẋ
α (5.6)
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Notice that the Lagrangian is independent of t and ϕ. Thereby, it is invariant

under time translation and rotation which by Noether’s theorem implies conservation

of energy and the component of angular momentum along the z-axis. By spherical

symmetry of the metric, the total angular momentum is then conserved as rotating

the system yields conservation of the other components. Thus we may without loss

of generality assume the particle to move in the plane normal to the z-axis defined

by θ = π/2. Inserting the expression for gµν and Aα, as well as setting θ = π/2

yields:

L = −1

2
∆ṫ2 +

1

2
∆−1ṙ2 +

1

2
r2ϕ̇2 − qQ̃

r
ṫ (5.7)

Now we can use the Euler-Lagrange equation given by:

d

dτ

∂L
∂ẋα

=
∂L
∂xα

(5.8)

The derivatives with respect to t and ϕ are zero. By the above equation this im-

plies the derivative with respect to ṫ and ϕ̇ to be constant, thus yielding expressions

for our conserved quantities. These are given by:

∆ṫ+
qQ̃

r
= E (5.9)

r2ϕ̇ = L (5.10)

Now we may substitute the expressions for E and L into our equation of motion,

(5.5):

ṙ2 −

(
E − qQ̃

r

)2

+∆

(
1 +

L2

r2

)
= ṙ2 + V (r) = 0. (5.11)

We may again view this expression as analogous to the sum of kinetic energy

and potential energy set equal to zero. This time we cannot separate E from r, so

the potential will also have dependence on E. This means that the this is not an

actual potential and does not obey the same rules as a physical potential. As an
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example V (r → ∞) = 1 − E2 which does not have to equal zero, which it must

if the potential was physical. Nevertheless we will refer to it as a potential, as it

still dictates the movement of the particle in accordance with above equation. If we

set Q = 0 we recover eq (2.5), as expected, as the case should reduce to that of a

Schwarzschild black hole.

5.2 Analysis of the potential and event horizon

In order to understand the movement of the particle, it would be instructive to

analyse the properties of the potential. Writing it out and collecting the terms

yields:

V (r) = (1− E2)− Rs − 2EqQ̃

r
+
R2

Q + L2 − q2Q̃2

r2
− RsL

2

r3
+
R2

QL
2

r4
(5.12)

The first thing to notice is that the coefficient of the last term is positive. As

this term dominates for small values of r the potential will then diverge towards

positive infinity. As the term does not contain q, this barrier will be present even

for geodesic particle movement (q = 0). This can seem indicative, that the potential

barrier never allows for absorption of the electron when it moves according to the

Lorentz force or along geodesics. The saving grace could be if this barrier lies within

the event horizon such that the electron will still be absorbed as no time-like path

can return from beyond this horizon. Therefore it is of interest to calculate the

possible positions of the event horizon.

The event horizon can be described as a null hypersurface[1]. This is a 3 dimen-

sional hypersurface in our 4 dimensional space-time manifold that is generated by

a collection of null geodesics. These are geodesics along which the proper time is

zero. Thereby, the event horizon is a hypersurface, where all tangent vectors are null

vectors. The necessity of this property follows from the definition that no timelike

path can escape to infinity from beyond the event horizon. One may think of it
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as the boundary of the set of all timelike paths that can ever reach infinity. If the

corresponding normal vectors of a hypersurface are null, then the hypersurface itself

is null[1].

Often one needs a smart choice of coordinates to find such hypersurface. In our

case, the metric is particularly elegant as it is stationary, spherically symmetric and

asymptotically flat. As we are looking for spherical event horizons our current polar

coordinates are sufficient. Consider the hypersurface described by r = const with

the corresponding normal vector ∂µr [1]. We can then determine the event horizon

by setting the norm of the normal vector to zero:

0 = gµν(∂µr)(∂νr) = grr = (grr)
−1 = ∆ = 1− Rs

r
+
R2

Q

r2
(5.13)

The expression of grr follows directly from gµλg
λν = δνµ and the fact that the met-

ric is diagonal. The position of the event horizon is the solution to above equation,

and rewriting it yields:

r2 −Rsr +R2
Q = 0 (5.14)

=⇒ r± =
Rs ±

√
R2

s − 4R2
Q

2
(5.15)

From here we can see that the number of event horizons is determined by the

discriminant. The point where the number of solutions changes is when Rs = 2RQ.

Calculating these quantities for the case of a proton yields in SI-units:

Rs = 2.484× 10−54 m and RQ = 1.381× 10−36 m (5.16)

Here Rs is much smaller than 2RQ, which means that the "proton black hole" is

a naked singularity which is a singularity without an event horizon. Even under the

assumption that such physical structures exist, the singularity will not absorb the

electron, as motion in accordance with the Lorentz force will be subject to an infinite
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potential barrier. Without the event horizon, all particles will then be repulsed be it

geodesic or Lorentz motion. This does not exclude the possibility for other timelike

paths reaching the singularity, but this is not relevant for our case.

Now one may also argue whether the creation of naked singularities is even phys-

ically possible. Many believe in the Weak Cosmic Censorship Hypothesis formulated

by Roger Penrose in 1969 [8]. It states that all singularities must be hidden from

an observer at infinity via an event horizon, thus neglecting the existence of naked

singularities.

6 Rotating black holes

As we have now considered charged black holes, we will address the case of rotating

black holes. For generality, we will look at black holes, that are both charged and

rotating. These are described using the Kerr-Newman metric which is given by[5]:

ds2 = −dτ 2 =ρ
2

Λ
dr2 + ρ2dθ2 − Λ

ρ2
(a sin2(θ)dϕ− dt)2 +

sin2(θ)

ρ2
((r2 + a2)dϕ− adt)2

(6.1)

The coordinates (r, θ, ϕ) are no longer polar coordinates but Boyer–Lindquist

coordinates, which relate to the usual spacial Cartesian coordinates by:

x =
√
r2 + a2 sin(θ) cos(ϕ), y =

√
r2 + a2 sin(θ) sin(ϕ), z = r cos(θ). (6.2)

The quantities a, ρ2 and Λ are given by:

a =
J

Mc
, ρ2 = r2 + a2 cos2(θ), Λ = r2 −Rsr + a2 +R2

Q, (6.3)

where J is the angular momentum of the black hole. The corresponding electro-
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magnetic potential is potential is:

Aµ =

(
−rRQ

ρ2
, 0, 0,

arRQ sin2(θ)

ρ2

)
(6.4)

We see if J = 0 then a = 0, where our coordinates become the usual polar coor-

dinates and the metric and potential become that of case of the Reissner–Nordström

metric as expected.

When we previously derived the radial equation of motion, we always capitalised

on the fact that the metric was spherically symmetric, and that we had a conserved

current through independence of the variable ϕ. This allowed us to restrict the

motion of the particle to a plane by setting θ = π/2. For this case, we still have

a conserved current in ϕ, but there is no spherical symmetry. Thereby, we cannot

restrict ourselves to a singular plane, and the equations of motion are dependent on

the orientation of the test particle with respect to the black hole.

Calculating these trajectories are outside of the scope of this paper. We may

however as before analyse the possible positions of event horizons. Analogous to

before, we will consider the hypersurface given by r = const, and set the norm of

the normal vector ∂µr equal to zero:

0 = gµν(∂µr)(∂νr) = grr = (grr)
−1 =

Λ

ρ2
(6.5)

The expression for grr follows as there are no cross terms for r in the metric.

ρ2 > 0, everywhere but at the singularity, which reduces the equation to Λ = 0.

Solving this yields:

r± =
Rs ±

√
R2

s − 4(a2 +R2
Q)

2
. (6.6)

To find the number of event horizons, we have to check the sign of the expression

within the square-root. Considering the proton singularity with J = 1
2
ℏ we will in
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SI-units find:

Rs = 2.484×10−54 m, RQ = 1.381×10−36 m and a = 1.0501×10−16 m. (6.7)

From this we can see, that the discriminant is negative even if RQ = 0. Thereby

the singularities that are both rotating and charged or just rotating will not have

any event horizons. Thus we are dealing with a naked singularities once again. This

is the same situation as the charged black hole, and by the weak cosmic censorship

hypothesis their existence is questionable.

7 Hawking Radiation

As we are treating microscopic black holes, it is of interest to consider the effect

of Hawking radiation. This effect dictates that the black holes will evaporate over

time, which only serves to strengthen our earlier results.

Hawking radiation is a consequence of the Unruh Effect which states that an

observer moving with a uniform acceleration through the Minkowski vacuum will

observe a thermal spectrum of particles given by the equation [1]:

T =
a

2π
, (7.1)

where a =
√
aµaµ is the magnitude of acceleration. Suppose we are dealing

with a metric giving rise to a static and asymptotically flat spacetime with an event

horizon. As the metric is static we have the Killing vector given by Kµ = (∂t)
µ = δµt .

For a static observer whose four-velocity is proportional to Kµ, the acceleration is

given by [1]:

aµ = ∇µ ln(V ), where Kµ = V Uµ. (7.2)

V is called the redshift factor. For the Schwarzschild metric these quantities can
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be found to be [1]:

a =
GM

r2
√

1− 2GM
r

, and V =

√
1− 2GM

r
(7.3)

The hawking radiation can be found by applying the Unruh effect to a black

hole near an event horizon and using the redshift factor to account for an observer

at infinity. For an asymptotically flat spacetime this yields [1]:

TH = lim
r→2GM

V a

2π
=

κ

2π
=

1

8πGM
, (7.4)

Where κ = 1/4GM is the surface gravity by the event horizon. Thereby a

Schwarzschild black hole evaporates. This yields a lifetime of order (M/M⊙)
3×1071

sec, which for the neutron black hole means a lifetime of order 10−101 sec. This only

works for singularities with event horizons, so we cannot apply it to the charged or

rotating black hole.

8 Discussion

So far we have uncovered a variety of topics concerning microscopic black holes.

First we assumed the particles to be approximated by a Schwarzschild black hole.

A semiclassical treatment showed that a microscopic black hole moving through

Earth would not even absorb a single electron in any time span relevant for the

duration of our universe. This was further reinforced using the quantum mechanical

cross section. Through hawking radiation we found them to have an extremely short

lifespan, which further discredits the idea of microscopic black holes being dangerous.

Then we showed that classically, microscopic charged black holes will repel all

test particles moving in accordance with both geodesic and Lorentz motion. For both

rotating and charged black holes we showed them to be naked singularities whose

existence is questionable by the Weak Cosmic Censorship Hypothesis. Thereby we
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may assume Schwarzshild black holes to be the only kind created i the LHC, which

by the previous arguments are harmless.

Now, one may argue that our theoretical treatment has insufficient credibility

due to the fact, that the employed quantum theory is not a well enough description

of the physical mechanisms. This is a legitimate counterargument, and we may not

rule out the idea that a future theory of quantum gravity may yield new results

for our cases. Nevertheless, the sheer scale our our quantitative results are so over-

whelmingly large, that even big changes to the theory are unlikely to change the

conclusion. It would need to change our result by more than a factor of 1050 years

to actually cause any concern. Thus, a refined theory should not change the final

interpretation of the calculations.

So far we have only been working with the topic on a theoretical and approxi-

mate level. Luckily, there is a naturally occurring experiment, that further enforces

our already solid conclusion. The LHC creates high energy particle collisions, but

cosmic radiation hitting the atmosphere of the earth results in collisions with much

higher energy. This has been going on for billions of years. If we assume that these

collisions do create dangerous black holes, then it would be unreasonable that the

Earth still exists to this day. This yields a contradiction in our primary assumption

which is that microscopic black holes are dangerous, or even that they can be cre-

ated by particle collision.

An interesting extension to this discussion is to consider whether it is possible

to observe the presence of a microscopic black hole. If the proton within hydrogen

were to collapse into a singularity, one would observe a change in the spectrum of

the corresponding electron. This is due to the fact that the proton have some finite

size, while the singularity is a point in space time (or a ring for the case of rotating

black holes). Thereby, one may use this method to search for microscopic charged

black holes, if their existence is possible.
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9 Conclusion

Throughout the paper we applied a number of methods to determine the conse-

quences of creating microscopic black holes. Using a numerical solution to the

radial equation of motion with imposed conditions we found the classical absorption

cross section of a Schwarzschild black hole. From this we considered the case of a

Schwarzschild black hole oscillating in the earth yielding a time of 1055 years, be-

fore it absorbs even a single electron. We then calculated the quantum mechanical

absorption cross section which further reinforced this. To improve upon the point,

hawking radiation showed the lifespan of such singularities to be of order 10−101

seconds.

Thereby we conclude, that the creation of Schwarzschild black holes would be

harmless due to the timescales of absorption and their short lifespan. The size of the

scales meant even large corrections to the theory would be likely to have no influence

on this conclusion. Through a classical treatment of charged or rotating black holes,

we found that both cases showed to be naked singularities for such scales. By the

weak cosmic censorship hypothesis we may thereby disregard these cases all together.

This conclusion is further reinforced by the existence of cosmic radiation, that

at no point yielded deadly singularities. To conclude, black holes created from the

LHC will never be any cause for concern.
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