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Abstract
Inspired by the universal approximation theorem and the widespread adoption of
artificial neural network techniques in a diversity of scientific fields, this bachelor’s
project investigates feed-forward neural networks as general-purpose trial wave
functions for solving eigenvalue problems of differential and integro-differential
operators. Using system-specific activation functions of either Gaussian, Gaussian
wavelet, or exponential characteristics, this method relies upon the optimisation of
the parameters of the trial wave functions according to the Rayleigh-Ritz variational
principle and an other method as proposed by [9]. Starting off with the Quantum
Harmonic Oscillator (QHO), the ground state and the succeeding two excited states
are solved with exact energies. Subsequently, the perturbed potential of the QHO
— that of the Morse potential — is investigated. The Coulombic problem of the
hydrogen atom is also solved using this scheme. Lastly, by adding one more electron
to the hydrogen atom, this method solves the three-body problem of the negative
hydrogen ion. The method in all the treated cases proves to be in fine agreement
with the theoretical results and it can be concluded that this novel ab initio method
is highly efficient. It is hence a promising tool for tackling problems of higher
complexity and dimensionality.

Resumé
Inspireret af den universelle tilnærmelsessætning samt den voksende anvendelse
af kunstige neurale netværk indenfor diverse videnskabelige felter vil dette bach-
elorprojekt undersøge et såkaldt fremad-propagerende (eng: feed forward) neu-
ralt netværks egenskab som en almen anvendt bølgefunktion til løsning af egen-
værdiproblemer af differential og integrodifferentiale operatorer. Ved anvendelse
af systemspecifikke aktiveringsfunktioner af Gaussisk, Gaussiske små-bølger samt
eksponentiel karakteristik vil metoden optimere parametrene efter Rayleigh-Ritz’
variationsprincip samt en anden metode, som fremvist i [9]. De undersøgte systemer
er den kvantemekaniske harmoniske oscillator (QHO), hvor grundtilstanden og
de to derpå følgende exciterede tilstande løses med de eksakte energier. Derefter
undersøges Morse potentialet, efterfulgt af et Coulombproblem for hydrogenatomet.
Til sidst tilføjes en elektron i problemet, hvorved trelegemeproblemet løses. Den
anvendte metode løser de undersøgte problemer, og det kan konkluderes, at denne
tilgang er effektiv. Neurale netværk ser derfor ud til at være et lovende redskab til
løsningen af komplekse og høj-dimensionelle problemer.
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1 Introduction
Since the development of wave mechanics [16], the Schrödinger equation has led to
an enormously deeper understanding of the attributes and behaviour of quantum
mechanics. In its non-relativistic time-independent spatial form, it is written as

H|Ψ(r)〉= E|Ψ(r)〉, (1.1)

where H is the Hamiltonian operator, E denotes the energies of the system, r
is the spatial coordinate, and the Dirac notation has been used to specify the
state vectors. It is considered to be the fundamental equation of non-relativistic
quantum mechanics and solving it can be regarded as an eigenvalue problem with
the eigenvalues being energy. It is apparent from eq. (1.1) that the spectrum of the
stationary wave functions {Ψi | i∈N} is exactly the eigenstates of the Hamiltonian
operator H. The real-valued eigenvalues Ei are the energies of the i’th state. The
energy is computed by performing an inner product followed by an extraction of
the scalar value E from the inner product. By simply rearranging the norm 〈Ψ| Ψ〉,
one obtains

E =
〈Ψ||H||Ψ〉
〈Ψ| Ψ〉

, (1.2)

which is the expectation value of the Hamiltonian operator. In common nomen-
clature, the state of lowest energy is called the ground state, which is denoted by
|Ψ0(r)〉.

A lot of information in quantum mechanics can be gained from analysing the
closed-form solutions to eq. (1.1). However, exact analytic solutions to eq. (1.1)
with special mathematical functions can only be obtained for a limited number of
physical systems. Most of the realistic systems and their associated Hamiltonians
are too complex and thus a solution to eq. (1.1) is impossible to achieve. The exact
spectra of eigenstates are thus undeterminable by these methods and so the problem
is to find an accurate approximate representation of Ψi. This motivates the use of
numerical methods for simulating the wave function. By postulating a trial wave
function, ΨT(r;β ) — which is a parametrised function of spatial coordinates r
and parameters β — one can try to learn the true parametrisation that reflects the
nature of the quantum system, and thus approximate a solution to eq. (1.1). For now,
learn the true parameters is equivalent to a variational based method, which for
instance minimises the energy of the system. This will be described further in the
next section.

In this report, the methods of artificial neural networks (ANNs) are investigated
with the purpose to construct general-purpose trial wave functions to simulate the
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(a) Visualisation of the multiple-input
single-output neuron in the McCulloch-
Pitts model [4]. The neuron applies a
non-linear activation function, σ to a
linear combination of its inputs.

(b) A visual aid to geometrically under-
stand the simple feed-forward neural net-
work structure of the multilayer percep-
tron with a single hidden layer.

wave function in eq. (1.1). It has been about three quarters of a century since the
first mathematical model of an ANN was presented by McCulloch and Pitts [13].
ANN algorithms belong to the field of machine learning and it is a technique for
information processing, which mimics the human brain. It is composed of a network
of neurons — also called perceptrons, computing units, or just units. A neuron is
a multiple-input multiple-output unit that applies a non-linear activation function
to a linear combination of its inputs. The resultant signal is then send forward.
The activation function resembles whether a neuron is activated (“fired") or not
in the biological neural network. Instead of a simple binary-valued step-function,
often a smooth activation function is chosen, with a gradual range from off to on.
The choice of activation function can be important — especially the non-linearity
will be necessary for the network to solve complex problems. See fig. 1.1a for a
visualisation of the model of a neuron in the McCulloch-Pitts model.

There are many different network architectures and to confine the analysis, this
project only treats a subcategory of the feed-forward neural network (FFNN) — that
of the multilayer peceptron (MLP). The MLP is composed, as its name suggests,
of multiple layers of perceptrons — at the very least three layers: an input layer,
a hidden layer, and an output layer. An illustration of the MLP structure can be
found in fig. 1.1b. Except for the nodes of the input layer, each node is a neuron.
The input layer nodes sends an input to the hidden layer. Then each neuron send
their signal to the nodes of the output layer. The output layer nodes are equivalent



to a weighted sum of the given signals. Consequently, information flows from the
input (the coordinate r) to the output layer (value of the trial wave function ΨT(r)).
This illustrates the philosophy of a feed-forward neural network.

Only the most elementary MLP is adopted: one with a single hidden layer and
a single output layer node. The reason for this choice is its simplicity combined
with its property as a universal approximator [6] [7], that is; that a FFNN with a
single hidden layer and a finite number of processing units can approximate any
function to arbitrary accuracy by appropriately increasing the number of units in
the hidden layer.

Considering a FFNN with m hidden neurons to be mathematically equivalent
to a finite weighted sum, we can write

N(x,λ ) =
m

∑
i=1

wiσi(x,β ) = w ·σ , (1.3)

where x is the given input vector, λ contains the parameters of the network, and σ is
the activation function. In this notation, β ,w∈ λ are the parameters of the activation
function and the vector of weights respectively. These will change according to the
learning methods described in the next section. However, the structure will remain
the same. The weights resemble the synapse strenghtening in the biological brain.
In other words, the desired traits will be scaled appropriately. Although there exist
a great variety of options, the activation function in this project is chosen to be
non-linear and smooth (σ ∈C∞). Notably a FFNN is smooth given smooth activa-
tion functions, in accordance to eq. (1.3), and this is also expected of a physical
wave function for a finite potential energy [8]. Therefore it should be possible to
approximate the physical wave function to arbitrary precision by an appropriately
large FFNN.

Since the very first implementation of an ANN, the field of machine learning
has shown rapid advancement and today ANNs are used as essential solutions to
many technological desires such as signal processing or pattern recognition. They
have also been used to solve both ordinary and partial differential equations as well
as the eigenvalue problem. [10] [9]. The first successful applications of ANNs as
trial wave functions for quantum systems in one, two, and three dimensions were
published about 20 years ago [10] [9]. However, the bulk of the work has been
done over the last couple of years, where especially 2017–2019 shows an immense
increase in field research. Most notably is the work of Carleo and Troyer presenting
applications of ANNs in the quantum many-body problem [2].



The majority of the work draws upon the universal approximation property
of the feed forward neural network (FFNN) architecture, relying upon the proof
of Cybenko [3] for sigmoid activation functions and later — but for more general
activation functions — of Hornik [6] [7]. A FFNN with a single hidden layer
containing a finite number of neurons can approximate continuous functions on
compact subsets of Euclidian space under mild assumptions on the activation
function.

This is the magnum opus for the research undertaken in this project. Several
quantum mechanical systems will be considered, each resting on certain cardinal as-
sumptions, namely that they can be described canonically by an integro-differential
operator called the Hamiltonian H of the system. By virtue of the Rayleigh-Ritz
variational principle and a method employing FFNN as trial functions proposed
by Lagaris[9] (see next chapter), the parameters will be optimised to solve the
Schrödinger equation, thus obtaining a numerical approximation for the eigenstates
and eigenvalues of the quantum system. These solutions, Ψ, are wave functions fully
describing the quantum state — be it a single particle or a complex molecule — and
hence of fundamental nature in quantum mechanics. Therefore, it is of fundamental
and practical interest to understand whether an ANN can learn, modify, and adapt
itself to fully describe and analyse any quantum system. This ability would reveal
solutions to many problems in those regimes so far inaccesible to existing numerical
approaches.

In the next chapter, I will give a brief introduction to the different variationel
methods which will be used in this project. Furthermore, I will explain my imple-
mentation in more detail. In Chapter 3, the results of the analysis will be presented
and discussed, and finally, a summary and a discussion of future improvements can
be found in Chapter 4.



2 Implementations
In the following, the reader will be made acquainted with the two methods used
in this project for solving eq. (1.1). In both methods, a cost function is introduced.
This is a mapping of a set of parameters onto a real number, which represents a
loss associated with the parameters. This is then used as a measure for inaccuracy.
By implementing a multidimensional optimisation routine, the cost function will
be minimised. In this project it is the Simplex algorithm of Nelder and Mead that
will be utilised. It considers a hypercube in parameterspace, and then transforms
the corners of the hypercube such that the cost function is minimised. When the
process has converged, the network is said to have learned the parameters for the
approximate wave function.

2.1 Methods for Numerical Approximations

Method 1: Rayleigh-Ritz Variational Principle

To solve for the energy of the ground state in a systematic way, it can be convenient
to take advantage of the Rayleigh-Ritz variational principle,

E0 ≤ ET, (2.1)

where E0 is the true ground state energy, and ET is the energy associated to the trial
wave function. The latter is calculated by

ET =
〈ΨT|H|ΨT〉
〈ΨT| ΨT〉

, (2.2)

where ΨT = Ψ(R;β )T is a parametrised trial wave function of parameters β and
coordinates R. This suggests that if ΨT is optimised to minimise ET by varying β

then ΨT converges to the true wave function corresponding to the true ground state
energy E0. Thus, a natural choice of cost function is the energy:

Cost(β ) = ET. (2.3)

By minimising the energy, one obtains well approximating parameters for the
solution of eq. (1.1). This is an important method popularly used in the litera-
ture (e.g. [2]).
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Method 2: The Residual Approach of Lagaris

Inspired by the technique for solving differential equations proposed by Lagaris [9],
a collocation method is utilised. A discretisation of the domain for the wave function,
D, into a set of points, Ri is required. The domain is further assumed bounded, and
the wave function is assumed smooth to the highest order of derivatives of the
Hamiltonian. The problem of solving the Schrödinger equation is then transformed
into the more straight-forward problem of minimising the following error quantity
with respect to the parameters β .

Cost(β ) = ∑
Ri∈D

(HΨt−EΨt)
2

〈ΨT| ΨT〉
(2.4)

where again, ΨT = ΨT(Ri;β ) is the parametrised trial wave function. If the obtained
minimum has a value close to zero, an approximate solution can be considered
found.

In contrast to the first method, the energy calculated in eq. (1.2) using the trial
wave functions obtained by the second method will not be an upper limit to the
natural energy of the system.

Implementation in C

As the trial wave functions ΨT are functions of N particles in D-dimensional
space, computing the inner products in the Hilbert space (L2) requires integrating
over a (D ·N)-dimensional space resulting in solving high-dimensional integrals.
In this project, the integrals will be operated by the QUADPACK routines for
low-dimensional problems as well as the Monte Carlo algorithms for both low-
and high-dimensional problems. The Monte Carlo method is utilised with the
adaptive algorithm of Lepage named VEGAS, which is based on the combination
of importance sampling and stratified sampling. This was chosen for its favorable
scaling with dimensionality. Each method will be assigned separate integration
routines; the Variational Principle in which the energy is minimised will adopt
the Monte Carlo algorithm, while the Residual Method of Lagaris, in which the
difference between sides of equalty of the Schrödinger equation is minimised, will
have assigned to it the Adaptive Quadratrues from the QUADPACK routines. Then,
to optimise the parameters of the trial wave function, it is common in the litterature
to resort to a gradient-based stochastic optimisation algorithm, such as the Newton
or steepest descent method. In this thesis however, the Simplex algorithm of Nelder
and Mead is applied. All of the above described methods are as defined in the GSL



— GNU Scientific Library. Evenmore, all programs are written in the language of C.
Examples of code snippets can be found in the appendix.

Choice of Activation Functions

Among the benefits of neural networks is the flexibility to change the activation
function. Each system considered in this thesis will be tested for different activation
functions and compared.

In this project, a triplet of activation functions has been found convenient for
testing. That is the Gaussian, Gaussian wavelet and exponential activation functions.
They can each be written in the form of eq. (1.3) for the one-dimensional cases,

NGaussian(x,a,b,w) =

m

∑
i

wi exp

(
−
(

x−ai

bi

)2
)
, (2.5)

for the Gaussian,

Nwavelet(x,a,b,w) =

m

∑
i

xwi exp

(
−
(

x−ai

bi

)2
)

= xNGaussian(x,a,b,w), (2.6)

for the Gaussian wavelet, and

Nexponential(x,a,b,w) =

m

∑
i

wi exp
(
−
(

x−ai

bi

))
, (2.7)

for the exponential function. For the quantum three-body problem, the Gaussian is
rewritten:

N(r1,r2,α,β ,γ,w) =

n

∑
i

wi exp
(
−αr1

2−β r2
2− γ(r1− r2)

2) , (2.8)

where r1 and r2 is two spatial coordinate vectors with respect to the third particle.

By introducing a single input vector r̂ =
[

r1
r2

]
, and the positive definite matrix

A =

[
α +β −γ

−γ β + γ

]
, (2.9)

one can rewrite the exponent as

αr1
2 +β r2

2 + γ(r1− r2)
2 = (α + γ)r1

2 +(β + γ)r2
2−2γ(r1 · r2)

= r̂†Ar̂. (2.10)



2.2 Solving the Excited States

When the ground state is solved for, it is natural to look for methods to solve for
excited states. To do so, one can take advantage of the Gram-Schmitt process to
extract from the trial wave function the previously computed levels, thus obtaining
a trial wave function φi orthogonal to φj for any j 6= i. This is as required for an
operator with a discrete spectrum. The proof for this requirement can be found in
the appendix. For instance, let φ0(r) denote a normalised ground state, then the trial
wave function of the first excited level would be [9]

φt(r) = φ̂t(r)− φ̂0(r)〈φ0(r)| φ̂t(r)〉 (2.11)

where φ̂t(r) is parametrised in the same way as before and r is the spatial coordinate
vector. Now φt(r) is orthogonal to φ0(r) by construction.1 This process is easily
extended recursively to obtain higher excited states.

1To give a geometrical intuition for this result, the projection component of the state
onto φ0(r) has been removed. This is just as any ordinary vector space. However, as the inner
product space is a Hilbert space (L2), this is computed as an overlap integral. It is also readily
verified by the defn. of orthogonality, if one takes the inner product of φt with φ0.



3 Results
Now that the methods have been described, we start off with a toy model: the
one-dimensional quantum harmonic oscillator (QHO).

3.1 Quantum Harmonic Oscillator

A QHO is among the most important model systems in quantum mechanics as
any arbitrary potential can be approximated in the vicinity of a stable equilibrium
point as a harmonic potential. Many problems are then transformed into a local
one akin the approximation of a Taylor series to its second-order term. The QHO
is described in any introductory book on quantum mechanics (i.e. [5]), and in
the following context it is only considered as a simple boundary value differential
equation with eigenvalues. Firstly, consider the simple scaling of units to the systems
natural length and energy scales, easily achieved by requiring non-dimensionality
of units. This is achieved by letting the mass, m, and angular frequence ω be set
to one, m = ω = 1. Then the governing differential equation — the Schrödinger
equation — is canonically described by the Hamiltonian given by

H=−1
2

∇
2 +

1
2

x2, (3.1)

where ∇2 is the Laplacian operator and x is the spatial coordinate. This differential
equation has boundary conditions ψ(±∞) = 0. Since one cannot integrate numer-
ically to infinity, a smart workabout is to do a substitution of a reasonably large
number L, much larger than the typical size of the oscillator, but still manageable
for the numerical integrator. The boundary conditions is then transformed into
ψ(±L) = 0.1 The energy levels are known analytically and are given in natural
energy scales by

En =

(
n+

1
2

)
. (3.2)

Using a FFNN with one hidden layer and m hidden units of Gaussian activation
functions; the two cost function, as described in eq. (2.1) and eq. (2.4), are minimised
to obtain a set of two parameter vectors, λ 1 and λ 2, each corresponding to an
approximate solution. For both methods, the energy eigenvalue for the ground state
is calculated by eq. (1.2). Inspired by [9], the excited states are solved as well. This
was done specifically for the residual approach of Lagaris.

1In practice, the value chosen was L = 10 in the units of natural lengths.
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Figure 3.1: Testing a feed-forward neural network for its convergence values
as it approximates the quantum harmonic oscillator energies with varying
number of computing units in the hidden layer.

Afterwards, the two ground state energies for each method are compared. The
results can be found in table 3.1. The two methods are found to be similar, but
the integration routines are very different. The Variational Monte Carlo is often
found in the literature to be more approachable for higher dimensional integrals
due to the so-called curse of dimensionality — a phenomena coined by Richard E.
Bellman [1], which refers to the problems when the dimensionality increases and
the volume of the space increases so fast that the available data become sparse. This
is a problem for any method that requires statistical significance as the amount of
data needed to support the result often grows exponentially with the dimensionality.

Test of Convergence

Test 1: A Naive Method

Before a precise result is sought, the convergence for different network sizes is
tested, in order to obtain an optimised value of m. The test is written in a simple
BASH script with the purpose to run the program with a variable number of hidden



Test of Convergence
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Figure 3.2: An optimised test of a feed-forward neural network for its
convergence values as it approximates the quantum harmonic oscillator with
varying number of computing units in the hidden layer. The three plots is for
each of the ground state (lower), first (mid) and second (top) excited states.

computing units.2 The results for the second method can be seen on fig. 3.1. It
is found that the ground state is well approximated by m = 1 hidden computing
units. This reveals a truth in the nature of the system. The exact solution to the
ground state is a Gaussian function, whereas the excited states amount to Hermite
polynomials[5]. Thus it is expected that the excited states need more than a single
neuron. Both states need m = 4 hidden neurons, as seen on fig. 3.1.

As the reader might have noticed on fig. 3.1, the energies of the two excited
states are both lower than the real solution for m = 3. This is not in violation of any
principle as the method does not involve the Rayleigh-Ritz variational principle.
The energy of the latter method is not an upper bound for the real energy and is
allowed to exceed the natural energy.

Test 2: An Optimised Method

A way to optimise this test is to use the last solution for m neurons as an initial guess
for the next size of m+1 neurons. The result is shown on fig. 3.2. Furthermore, a
different number of hidden neurons for each state was tried, (say n, l,m ∈ N). This

2An example of this BASH script can be found in the appendix



Monte Carlo Adaptive Quadrature
Ground state Ground state 1st excited state 2nd excited state

Energy 0.50000000(3) 0.5000000000000(1) 1.50000000034993(5) 2.50000043864(7)
# Iterations 241 3637 3168 8461

Table 3.1: Comparison of energy eigenvalues and number of iterations for
the quantum harmonic oscillator using a Gaussian activation function for
each of the applied methods.

way each state was solved seperately. The number, n, is the size of the network
as an approximation to the ground state, which after finding an optimised value is
held fixed. Then, l, is the number of neurons used for calulating the first excited
state, and is fed the previously optimised ground state representation for the inner
products of eq. (2.11). When l is solved for, both n and l are held fixed. This method
can then be repeated as necessary. As seen on fig. 3.2, each state is solved with an
almost exact accuracy and for fewer neurons. However, the second excited state
was off the chart for m = 1 and removed for visualisation purposes. To explain this
deviation, it is known that the real solution for the second excited state has two
nodes, which would correspond to two Gaussians. Evenmore, the error propagates,
and as seen on fig. 3.2, the first excited state is imprecise for l = 1. This is as far as
the analysis goes. For the second method, using the variational principle, only the
ground state was solved. As in fig. 3.2 a single unit was enough.

Now, a simple comparison between the two methods and their solved energy
eigenvalues is tabulated in table 3.1 along with the number of iterations it took the
process to converge. Both methods converge to the analytical ground state energy
rapidly.

It is worth mentioning that for the Monte Carlo method, the domain integrated
over was [−10,10] and the number of sampling points — which amounts to a
number of random number generator function calls —was chosen for two distinct
values. First test was 2000 calls. This resulted in an energy of 0.500024(2). Then the
number generator was called 100.000 times, thus obtaining a change of resolution
of grid from 0.01 to 0.0002. The energy can be seen in table 3.1. The obtained
energy for the ground state was E = 0.5, which is in perfect agreement with the
exact value from eq. (3.2). The computed wave functions are shown in fig. 3.3 along
with the analytical solutions and their residuals.



FFNN solution to the QHO
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Figure 3.3: The solutions of the lowest three energy states of the quantum
harmonic oscillator (upper) and their residuals with respect to the exact state
(lower).



3.2 Hydrogen Atom

Now that the QHO has been solved, we move on to the more realistic and complex
system; that of the hydrogen atom.

The spatial Schrödinger equation for the three-dimensional hydrogen atom
can be solved exactly (see for instance [5]). Using the spherical symmetry of
the Coulomb potential, the problem obtains three sets of ordinary second-order
differential equations, which can be solved analytically. A typical analysis of the
hydrogen atom determines the spherical harmonic functions as solutions to the
azimuthal and polar angular equations. Due to the spherical symmetry of the system,
only the radial equation is investigated. The radial Schrödinger equation for the
hydrogen atom with no external magnetic field is described by the Hamiltonian

H=−1
2

∂ 2

∂ρ2 −
1
ρ
+

l(l +1)
2ρ2 , ρ ∈ R+, (3.3)

in dimensionless variables with boundary conditions ψ(0) = 0 = ψ(+∞). Here ρ

is the radial coordinate. In the following, only the s-state is solved, corresponding
to l = 0. In contrast to the previously solved systems, this system is better described
by a Gaussian wavelet than of the Gaussian. This is due to the fall-off rate, where
the Gaussian wavelet has a longer tail in contrast to the Gaussian, which falls
more quickly. A short proof can be found in the appendix. Also the Gaussian
wavelet already solves the boundary conditions of the system. Thus, a change of
activation function is in order. The network is then described by the sum of eq. (2.6).
Even further, the exact solution is known to be exponentially decaying and of
the form Ψ ∝ ρ exp(−ρ) [5]. For this reason, the system will be tested against a
set of exponential activation functions. This will show how integrating physical
insight into the network can help the convergence of the method. This type of bias
is typically introduced in other numerical methods as well such as the Quantum
Variational Monte Carlo to cleverly choose a set of trial wave functions [8].

Notice that the hydrogen atom has ρ ∈ [0,∞], whereas x ∈ (−∞,∞) for the
harmonic oscillator. This is essential to the generator of random positions for
any sampling methods used in the Monte Carlo integrations. Also, the activation
functions are distinct in nature and an initialisation of the first guess should reflect
this. For the exponential, the domain was chosen strictly positive, whereas the
Gaussian wavelet was preferred symmetrically about the origin. This was chosen to
favor the positive pulse of the wavelet, which is similar to the wave function found
analytically.



Test of Convergence

As before — to obtain a good size for the hidden layer — a test of convergence
for different number of hidden computing units is performed. The results for the
residual method of Lagaris can be seen on fig. 3.4. It is found that the ground state
is well approximated by m = 1 (a single hidden computing unit) for the exponential
function, whereas the Gaussian wavelet activation function varies more distinctly.
A choice of m = 3 is best for the latter. This demonstrates yet again that the natural
function is much better than a general purpose trial function just as expected.

Final results

Now, a simple comparison of the solved ground state energy eigenvalues for each
method is tabulated in table 3.2. It is seen that both methods converge within an
adequate tolerance to the exact ground state energy. It is worth mentioning that for
the Variational Monte Carlo method, the domain was chosen as [0,10] with 5000
sampling points. The resulting resolution is 0.02.
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Figure 3.4: Testing of a feed-forward neural network for its convergence
values as it approximates the radial wave function for the hydrogen atom
with varying number of computing units in the hidden layer.



Monte Carlo QUADPACK
Exponential Wavelet Exponential Wavelet

Energy −0.49997(3) −0.500003(6) −0.50000000000(3) −0.49998651431(9)
Iterations 1 727 1114 1

Table 3.2: A comparison of energies for the hydrogen atom, as calculated
by a feed-forward neural network with two different activation functions as
well as distinctive cost functions.

FFNN solution to the Hydrogen atom
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3.3 The Hydrogen Anion

Moving on to a new Coulomb potential problem, the next step is the three-body
problem. There are many ways to add another particle to the already-considered
Coulombian problem3 To mention a few, there is the hydrogen molecular ion con-
taining two protons and one electron. Another is the helium atom, which although
it consists of two protons and two electrons can be described under the Born-
Oppenheimer approximation as a fixed centre with two elecrons. Not to mention
all of the more exotic systems such as the muonic atoms. However, the simplest
three-body system coming to mind is adding an electron to the hydrogen atom,
creating the negatively charged hydrogen ion also called the hydrogen anion.

Now solving the electronic spatial wave functions of this system demands a
new setup as described by eq. (2.8). The Hamiltonian for the hydrogen ion is

H=−1
2
(∇1

2 +∇2
2)−

(
1
r1

+
1
r2
− 1

r12

)
=H1 +H2 +

1
r12

, (3.4)

in dimensionless variables, where r1 and r2 are the spatial coordinates of each
electron with respect to the proton, and r12 is the internal distance between the two
electrons. It is easily recognised that if the distance between the two electrons is
large, the 1

r12
can be neglected and the resulting Hamiltonian becomes a sum of two

Hamiltonians of the same form as found in the hydrogenic problem eq. (3.3).
Unlike the previously solved systems, the exact ground state of the hydrogen

anion is not known. Here a reference energy of E =−0.5227715 is used based on
the energy computed in [11].

The energy as computed by this method is −0.52(3), which results in a relative
error of 0.41%. An analysis of the convergence of the network with a variable
hidden computing units is shown on fig. 3.6.

3Coulombian: of or relating to the discoveries or laws of C.A. de Coulomb.
https://www.merriam-webster.com/dictionary/coulombian

https://www.merriam-webster.com/dictionary/coulombian
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4 Discussion
Four quantum systems have been solved with a feed-forward neural network by
applying up to three different system-specific activation functions and adopting
two numerical integrational routines. In the following section, the results will be
discussed and the shortcomings of the method will be listed.

QHO The quantum harmonic oscillator seemed best solved by the Adaptive
Quadrature routines in comparison to a Monte Carlo integration. However, the
difference was miniscule. The ground state was optimised for the number of hidden
computing neurons, and this number was determined to be one. This was of no
surprise as the exact wave function is of Gaussian form. The two excited states were
solved by the residual approach of Lagaris and best approximated by two hidden
neurons. Chaining the previously solved parameter vector for n−1 neurons to the
parameter vector of size n with last four parameters set to the default values seemed
to reduce the number of neurons necessary. All energies were determined with a
close to exact accuracy to the values as given:

E0 = 0.50000000000000(1)

E1 = 1.50000000034993(5)

E2 = 2.50000043864(7)

for the Adaptive Quadrature and E0 = 0.50000000(3) for the Monte Carlo inte-
gration routine. These energies were however for a fixed precision of both the
integration and optimisation routine and can be considered solved satisfactory.

Hydrogen atom The hydrogen atom was solved with both Adaptive Quadra-
tures and Monte Carlo integration. Furthermore, activation functions of both the
Gaussian wavelet and the exponential characteristics were applied. It was found to
be best described using the exponential activation function. This was anticipated as
the exponential activation function matches the analytical description.

The energy was solved satisfactorily. For Gaussian activation function the en-
ergy was determined to be−0.49998651431(9) and−0.500003(6) for the Adaptive
Quadrature and Monte Carlo routines respectively. This deviates from the exact
energy by 0.00269714% and 0.0006%. This however is adjustable by varying the
condition of convergence for the optimisation routine and is therefore considered an
accurate approximate solution. For the exponential activation function the energies
were found to be almost exact.
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Hydrogen anion The hydrogen anion was the only case with no full analytical
description, and with its six spatial dimensions, it was only solvable using a multi-
dimensional integration method. The chosen routine was that of the Monte Carlo
using the adaptive algorithm of Lepage named VEGAS, based on the combination
of importance sampling and stratified sampling. The energy was determined to
be −0.52(3) which deviates from the reference energy by an error of 0.41%. By
testing the networks capability with a varying number of hidden computing units,
the system seemed best solved by 3 neurons.



5 Conclusion
A method for solving quantum mechanical systems using FFNN-based trial wave
functions in continuous space has been presented. This has then been employed to
approximate the ground states of the quantum harmonic oscillator (QHO), Morse
potential, hydrogen atom, and hydrogen anion. The accuracy of the numerical
solutions were checked by comparing to analytically known results whenever
possible and tabulated reference energies otherwise.

It was shown that by introducing knowledge for the respective quantum system
in form of a cleverly chosen activation function, the neural network solved the eigen-
value problem with uncanny precision. Using a more general purpose activation
function, the network could for some systems show undesirable features. However,
this was only seen when testing for robustness and efficiency. This suggests that
the method — as implemented — is not as robust as envisioned. The reason is
anticipated by the author to lie in the multi-dimensional optimisation routine. It
seemed to be a sensitive module with respect to initial guess, step size, and criterion
for convergence.

For each system, comparisons of both cost functions and integration routines
were performed. Adopting both the popular Variational Monte Carlo and a less
pubslished method as proposed by [9], each system was solved. In doing so, both
Adopted Quadratures and Monte Carlo were used. For the QHO, the method
proceeded to solve for the excited states. In all cases the energies were approximated
with adequate precision.

In conclusion, it has been demonstrated that a FFNN can very well represent
a flexible trial wave function that can be applied to a variety of Hamiltonians,
without many requirements. The structure defined in this work was only a simple
architecture with only a single layer. Despite the lack of complexity, it can be
considered a well approximator for all systems investigated within this project.

Future Prospects In this thesis, ANNs have been investigated as an approxi-
mator to the Schrödinger equation. However, there is still room for improvements,
which the author would have liked to improve upon.

1) For future research, it would be a natural step to extend the network with
a gradient-based multidimensional optimisation method, such as the newton or
steepest descent method. This could then be compared with the used Simplex
algorithm by Nelder and Mead. Based on previous work done in the field, it is
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expected to be more reliable in finding the correct global minima and quicker in its
speed of convergence.

2) Moreover, it is expected for the proposed method to be efficiently implemented
on parallel architectures.

3) Furthermore, a linear regression — before the training algorithm has begun —
can find a decent initial guess. This would optimise the speed of convergence, and
more safely find the correct minima in the high-dimensional parameter space, as the
distance to be traveled is shorter, and the number of local minima in the way is less.

When above-mentioned improvements have been achieved, another prospect would
be to look further upon the molecular hydrogen ion and more complex systems such
as the helium atom. This would be a gateway into quantum molecular dynamics —
an excessively investigated field of research, which is still built upon today.
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6 Appendix
6.1 Morse Potential

The Morse potential is a convenient interatomic interaction model for the potential
energy of a diatomic molecule. It is more successful in approximating the vibrational
structure of the molecule than the quantum harmonic oscillator is. However, a review
of Morse potential problems is outside the scope of this project, and the importance
of the subject for both theory and applications in quantum mechanics may be found
in the literature. For the Morse potential, we consider the Hamiltonian in atomic
units

H=− 1
2µ

∇
2 +V (x), (6.1)

where V (x) = D(exp(−2αx)− 2exp(−αx) + 1). Now as calculated in [9], we
choose the I2 molecule with D = 0.0224, α = 0.9374 and µ = 119406. The energy
levels are known analytically to be given as

En =

(
n+

1
2

)(
1− n+1/2

ζ

)
ξ (6.2)

with ζ = 156.047612535 and ξ = 5.741837286 ·10−4. The ground state energy is
E0 = 0.28617979 ·10−3. Testing the FFNN with n = 2, the ground state energy ob-
tained is 0,28617981 ·10−3. This deviates from the analytical energy with an error
of 0.00007985%. The normalised unit-free wave function with the corresponding
unit-free potential is shown in a fig. 6.1.

Discussion

Morse potential The Morse potential was only solved with the adoptive quadra-
ture integration. It was best approximated by 2 hidden neurons and took a number
of 1182 iterations to converge. The energy was solved with a relative error of
0.00007975%. This is considered a satisfactory result. The system was considered,
only to compare with [9] and was therefore not investigated comprehensively.
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Figure 6.1: The unit-free wave function—as approximated by the imple-
mented feed-forward neural network of this project—in the unit-free Morse
potential.

6.2 Orthogonality of Stationary States of the
Hermitian Discrete Operator

Let H be a Hermitian operator, and |Ψi〉 be a set of states such that H|Ψi〉= λi|Ψi〉.
Then for λi 6= λ j it follows that 〈Ψi| Ψ j〉= 0.

Proof: As Ψi and Ψ j are eigenstates of the hermitian operator it follows that
H|Ψ j〉= λ j|Ψ j〉 and 〈Ψi|H= λi〈Ψi|. Thus the expectation value of H is both

〈Ψi|H|Ψ j〉= λ j〈Ψi| Ψ j〉 (6.3)

= λi〈Ψi| Ψ j〉 (6.4)

and as λi 6= λ j, the equality is possible if and only if 〈Ψi| Ψ j〉= 0.



6.3 Fall-off Rates

This section was written, to show the difference of fall-off rates between the used
activation functions. A visualisation of the results can be seen on fig. 6.2.

Tail compared of Gaussian and Exponential

To compare the tails of the Gaussian with the exponential function, a ratio between
the two values is written.

exp(−x)
exp(−x2)

= exp(−x(1− x)) = exp(x2), x >> 1,

it is readily seen that exp(x2) > 1, as the exponent is strictly positive and larger
than one. Therefore, the ratio is strictly larger than one, so the conclusion is that
exp(−x)> exp(−x2) for large x.

Tail comparison of Gaussian and Exponential

Following a similar path as before, it is seen that

exp(−x)
xexp(−x2)

=
1
x

exp(x2), x >> 1. (6.5)

Writing the well-known series for the exponential function, one can see

1
x

exp(x2) =
1
x

∞

∑
i=0

x2k

k!
=

∞

∑
i=0

x2k−1

k!
=

(
1
x
+ x+

x3

2!
+

x5

3!
+ . . .

)
, (6.6)

where for large x the first term vanishes in contrast to the rest, which will diverge to
plus infinity. Therefore, it has been well established that for large x,

exp(−x)
xexp(−x2)

> 1. (6.7)

In conclusion, the tail of the Gaussian wavelet is shorter than the exponential. That
is, the Gaussian wavelet converges faster to zero than the exponential.

Tail Comparison of Gaussian and Gaussian Wavelet

The exact same procedure is followed, and only shown here for completion:

xexp(−x2)

exp(−x2)
= x >> 1 (6.8)

where the last inequality is trivial for large x. Therefore xexp(−x2)>> exp(−x2)

for large x, so the Gaussian wavelet has a longer tail.
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6.4 Code Snippets

In this section, a few snippets of code is documented. This is only for completion.
In doing so, I hope to help or inspire someone, who pertains the thought of imple-
menting an artificial neural network. Feel free to contact me for more information
or collaboration.

Program for hydrogen anion

Listing 1: Example on a main.c program. This is for the hydrogen anion.

// Preamble
#include <getopt.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>

#include <gsl/gsl_vector.h>

#include "ann.h"
#include "system.h"
#include "hion.h"

int
main (int argc, char **argv)
{

// Unpack parameters (old method)
//assert (argc == 3);
//int n = atoi(argv[1]);
//int pts = atoi(argv[2]);
int n = 1, t = 0;
double pts = 1000;
double mystep = 1e-2, eps = 1e-2;

while (1)
{

int opt = getopt (argc, argv, "n:p:s:e:t:x:");
if (opt == -1) break;
switch (opt)
{

case 'n': n = atoi (optarg); break;
case 'p': pts = atof (optarg); break;



case 's': mystep = atof (optarg); break;
case 'e': eps = atof (optarg); break;
case 't': t = atoi (optarg); break;
default:
fprintf (stderr,

"Usage: %s [-n neurons] [-p points monte carlo] [-s start step]\↪→

[-e minimise epsilon] [-t toggle activation function]\n",
argv[0]);

exit (EXIT_FAILURE);
}

}

double (*f)(double, double, double, double, double, double)
= NULL;↪→

double (*df2)(double, double, double, double, double,
double) = NULL;↪→

if ((t==0))
{

f = &gaussian_f;
df2 = &gaussian_df2;

}
else if ((t==1))
{

f = &exponential_f;
df2 = &exponential_df2;

}

ann* network = ann_alloc (n, pts, f, df2);
init_parameters_network (network);

// Using previous solved state as guess
FILE* vector_in;
FILE* vector_out;

// Exchanging files (n=1, n=2, n=3, n=4...)
if (n < 2)
{

vector_out = fopen ("stream_out", "w");
vector_in = fopen ("stream_in", "w");

}
else{



if (n % 2 == 1)
{

vector_in = fopen ("stream_in" , "r");
vector_out = fopen ("stream_out", "w");

}
if (n % 2 == 0)
{

vector_in = fopen ("stream_out", "r");
vector_out = fopen ("stream_in", "w");

}
}

if (n>1)
{

gsl_vector* w = gsl_vector_alloc (4*(n-1));
gsl_vector_fscanf (vector_in, w);
for (int i=0; i<4*(n-1); i++)
{

gsl_vector_set (network->data, i, gsl_vector_get(w, i));
}
gsl_vector_free (w);

}

gsl_vector* p = gsl_vector_alloc (4*n);
gsl_vector_memcpy (p, network->data);

// This is for optimization purposes
ann_train_nmsimplex2 (p, network, &cost, mystep, eps);
gsl_vector_memcpy (network->data, p);
gsl_vector_fprintf (vector_out, p, "%lg");
gsl_vector_fprintf (stdout, p, "%lg");

double E_num, E_err;
E_hion (network, &E_num, &E_err);
printf("n\tE_val\n");
printf("%i\t%lg\n", n, E_num);

double E_tab = -0.5277159;
double percent_err = 100.*fabs(E_num - E_tab) / fabs(E_tab);
printf("The energy of this method gives:\t% .8f\n", E_num);
printf("The known energy is:\t% .8f\n", E_tab);
printf("This gives a percentage error of:\t% .8f\n",

percent_err);↪→



FILE* gp = NULL;
if ((t == 0)) { gp = fopen ("neurons0.data", "a"); }
if ((t == 1)) { gp = fopen ("neurons1.data", "a"); }
fprintf(gp, "%i\t% .8g\t%lg\t%lg\\n", n, E_num, E_err,

E_tab);↪→

fclose(gp);
fclose(vector_in);
fclose(vector_out);
ann_free (network);
gsl_vector_free(p);
return 0;

}



Header definition for Neural Network

Listing 2: Example on the header definitions written for the artificial neural
network. This is for the hydrogen anion.

#include <stdio.h>

#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_multimin.h>

#include "ann.h"
#include "system.c"

ann*
ann_alloc (int n, int pts,

double(*f)(double, double, double, double, double,
double),↪→

double(*df2)(double, double, double, double, double,
double)↪→

)
{

ann* network = malloc (sizeof(ann));
network -> n = n; // Neurons
network -> pts = pts; // Points for

monte carlo↪→

network -> data = gsl_vector_alloc (4*n);//+1); //
Parameters (a,b,c,w)↪→

network -> r = gsl_vector_alloc (6); // Coordinates of
electrons↪→

network -> f = f;
network -> df2 = df2;
return network;

}

void
init_parameters_network (ann* network)
{

gsl_vector_set_all (network->data, 1);
}

void



ann_free (ann* network)
{

gsl_vector_free (network -> data);
gsl_vector_free (network -> r);
free(network);

}

double
ann_feed_forward (ann* network)
{

gsl_vector* p = network -> data;
int n = network -> n;

double r1, r2;
calc_norms_of_r1_r2 (network, &r1, &r2);

// Parameters
double sum = 0, a, b, c, w;
for (int i=0; i<n; i++)
{

a = gsl_vector_get (p, 4*i+0);
b = gsl_vector_get (p, 4*i+1);
c = gsl_vector_get (p, 4*i+2);
w = gsl_vector_get (p, 4*i+3);

// Definite Positive Problem
a *= a;
b *= b;
c *= c;
//sum += w*exp(-(a+c)*r1*r1 - (b+c)*r2*r2 + 2*c*r1*r2);
sum += (network->f)(r1, r2, a, b, c, w);

}
return sum;

}

int
ann_train_nmsimplex2 (gsl_vector* p, ann* network, double

(*cost)(const gsl_vector*, void*), double step, double
eps)

↪→

↪→

{
// Dimension of parameterspace
int n = p->size;

int status, iter = 0;



// Multimin function setup
gsl_multimin_function my_func;
my_func.n = n;
my_func.f = cost;
my_func.params = (void*) network;

/* Starting point */
gsl_vector* my_guess = gsl_vector_alloc (n);
gsl_vector_memcpy (my_guess, p);

/* First Step Size */
gsl_vector* step_size = gsl_vector_alloc (n);
gsl_vector_set_all (step_size, step);

const gsl_multimin_fminimizer_type *T;
gsl_multimin_fminimizer * s;

T = gsl_multimin_fminimizer_nmsimplex2;
s = gsl_multimin_fminimizer_alloc (T, n);

gsl_multimin_fminimizer_set (s, &my_func, my_guess,
step_size);↪→

do
{

iter++;
status = gsl_multimin_fminimizer_iterate (s);

if (status) break;
double size = gsl_multimin_fminimizer_size (s);
status = gsl_multimin_test_size (size, eps);

if (status == GSL_SUCCESS)
{

printf ("converged to minimum!\n");
gsl_vector_memcpy(p, s->x);

}
}
while (status == GSL_CONTINUE && iter < 10000000);
printf("Max Iter:%i\n", iter);

gsl_vector_memcpy(p, s->x);
gsl_multimin_fminimizer_free (s);
gsl_vector_free (my_guess);



gsl_vector_free (step_size);

return GSL_SUCCESS;
}



Costfunction

Listing 3: Example on a program to calculate the costfunction. This is for
the hydrogen

// Preamble
#include <stdio.h>
#include <math.h>
#include <assert.h>

#include "ann.h"
#include "system.h"

#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_monte.h>
#include <gsl/gsl_monte_vegas.h>
/*

............................................................↪→

* Functionals for minimization of energy
* <psi|H|psi> = integral(psi*H*psi), where we evaluated for

SHO↪→

* <psi|psi> = integral(psi*psi)
*
* the hamiltonian (differential operator):
* H = (-1/2)*grad^2 + (1/2)*x*x
*
* on paper with psi as given:
* (Ground state:)
* psi = sum_{i} (w_i * exp( ( (x-a_i)/b_i )^2 ))
* (Excited states:)
* psi_n = f(x) - psi_(n-1) <psi|f(x)>
*
* where f(x) is the activation function
*
* ............................................................

*/↪→

// Calculate H|psi>
double
Hpsi (ann* network, double psi)
{



double grad2r1, grad2r2, r1, r2, r12;
calc_norms_of_r1_r2_r12 (network, &r1, &r2, &r12);
smartgrad (network, &grad2r1, &grad2r2);

assert (r1 != 0 && r2 != 0 && r12 != 0);
double Hpsi = (-1./2.)*(grad2r1 + grad2r2) - (1./r1 + 1./r2

- 1./r12)*psi;↪→

// If we neglect r12 (compare to solutions of H)
//double Hpsi = (-1./2.)*(grad2r1 + grad2r2) - (1./r1 +

1./r2)*psi;↪→

return Hpsi;
}

// Integrands
double
psiHpsi (double x[], size_t dim, void* params)
{

// Unpack parameters
ann* network = (ann*) params;

int n = (network -> r) -> size;
for (int i=0; i<n; i++){gsl_vector_set (network -> r, i,

x[i]); }↪→

double psi = ann_feed_forward (network);
double Hpsi_val = Hpsi (network, psi);
double result = psi*Hpsi_val;
return result;

}

double
psipsi (double x[], size_t dim, void* params)
{

ann* network = (ann*) params;
for (int i=0; i<(network->r->size); i++)
{

gsl_vector_set (network->r, i, x[i]);
}
double psi = ann_feed_forward (network);
double result = psi*psi;
return result;

}



void
E_hion (ann* network, double* E, double* E_err)
{

//TRACE ("Entering E_hion");
size_t dim = 6;
size_t calls = (size_t) network -> pts;
double pp, pHp, pp_err, pHp_err;

const gsl_rng_type* T = gsl_rng_default;
gsl_rng* r = gsl_rng_alloc (T);

// Monte considers (xl, xu) open
double xl[] = {1e-1, 1e-1, 1e-1, 1e-1, 1e-1, 1e-1};
double xu[] = {3, 3, 3, 3, 3, 3};

gsl_monte_function F;
F.f = &psiHpsi;
F.dim = dim;
F.params = network;

gsl_monte_function G;
G.f = &psipsi;
G.dim = dim;
G.params = network;

//////////////////////////////////////////////////////////////////////////////
gsl_monte_vegas_state* s = gsl_monte_vegas_alloc (dim);
gsl_monte_vegas_integrate (&F, xl, xu, dim, calls, r, s,

&pHp, &pHp_err);↪→

do
{

gsl_monte_vegas_integrate (&F, xl, xu, dim, calls, r, s,
&pHp, &pHp_err);↪→

//printf ("result = % .6f sigma = % .6f "
// "chisq/dof = %.1f\n", pHp, pHp_err,

gsl_monte_vegas_chisq (s));↪→

}
while (fabs (gsl_monte_vegas_chisq (s) - 1.0) > 0.1);

// printf ("pHp done\n");
//////////////////////////////////////////////////////////////////////////////

gsl_monte_vegas_init (s);
gsl_monte_vegas_integrate (&G, xl, xu, dim, calls, r, s,

&pp, &pp_err);↪→



do
{

gsl_monte_vegas_integrate (&G, xl, xu, dim, calls, r, s,
&pp, &pp_err);↪→

// printf ("result = % .6f sigma = % .6f "
// "chisq/dof = %.1f\n", pp, pp_err,

gsl_monte_vegas_chisq (s));↪→

}
while (fabs (gsl_monte_vegas_chisq (s) - 1.0) > 0.1);

// printf ("pp done\n");
//////////////////////////////////////////////////////////////////////////////

*E = pHp/pp;
*E_err = sqrt( pow((pHp/(pp*pp))*pp_err, 2) +

pow((1./pp)*pHp_err, 2) );↪→

network -> norm = pp;

gsl_monte_vegas_free(s);
gsl_rng_free (r);

}

double
cost (const gsl_vector* p, void* params)
{

ann* network = (ann*) params;
assert (network->data->size == p->size);
gsl_vector_memcpy (network->data, p);

//double lambda = gsl_vector_get(network->data,
4*(network->n));↪→

double E, E_err;
E_hion (network, &E, &E_err);

return E + (1-network->norm);
}



Makefile

Listing 4: Example on a MAKE script. This is for the hydrogen anion.

# Compiler
CC = gcc
CFLAGS = -Wall -pedantic -lm $$(gsl-config --cflags)
LDLIBS = $$(gsl-config --libs)

CFLAGS += -Ofast -O2
#CFLAGS += -DNDEBUG
#CFLAGS += -g
#LDLIBS += -pg

# main is called with (n, pts, step, eps)
hion.txt : main

./$< -n 3 -p 3000 -t 1 > $@

main : main.o hion.o ann.o

# This is for gaussian trial functions
mybash :

echo "\
#!/bin/bash\n\
for i in 1 2 3 4 5\n\
do\n\

./main -n "'$$i '" -p 2000 -s 1e-2 -e 1e-6 -t 0\n\
done\n\
for i in 1 2 3 4 5\n\
do\n\

./main -n "'$$i '" -p 2000 -s 1e-2 -e 1e-6 -t 1\n\
done\n\
" > $@
chmod u+x mybash

neurons.pdf : neurons0.data neurons1.data
echo '\
set terminal pdf;\
set output "$@";\
set tics out;\
set xlabel "m [Neurons in hidden layer]";\
set ylabel "E [Energy]";\
set xrange [1:9];\



set title "Convergence test" font "Helvetica, 20";\
set arrow 10 from 1,-0.5277159032 to 6,-0.5277159032

nohead;\↪→

plot\
"$<" u 1:2:3 w yerrorbars pt 1 lc "red" t

"Approximation (Gaussian)"\↪→

,"$(word 2, $^)" u 1:2:3 w yerrorbars pt 2 lc "blue" t
"Approximation (Exponential)"\↪→

,"$(word 2, $^)" u 1:4 w p pt 6 lc "black" t "Exact";\
set key default;\
'|gnuplot
evince $@

#,"$(word 2, $^)" with lp dt 2 lc "black" t "Exponential";\

profiling :

# Monitor file
gmon.txt : main gmon.out

gprof $^ > $@

gmon.out : main
#==============================================================================#

.PHONEY :clean
clean : # this is "clean" target. it does

not depend on anything↪→

find ./ -type f -executable -delete
$(RM) *.dat $(SCRIPT) *.svg *.png *.pdf log* *.eps *.o

gmon* vector_in vector_out↪→
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