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Abstract

In this paper we will investigate the diffusion Monte Carlo method for solving the Schrödinger equation numerically.

We will give a detailed account for the theoretical background including the fixed node approximation, which is used

when calculating fermionic and/or excited states. Hereafter we develop an algorithm capable of preforming basic DMC-

simulations on states without nodes and importance sampled DMC-simulations on excited states. Using this algorithm,

the energy and wave function of the lowest states of Hydrogen, Helium, H−, and H+
2 are calculated with simple trial

wave functions. The results are compared with theoretical and experimental data, in order to determine whether simple

trial wave function are useful for calculating energies and wave functions with reduced computation time. We find, that

simple trial wave function can give a fairly accurate value of the energy, however, will not yield a correct image of the

wave function.



Contents

Contents 1

1 Introduction 2

2 Theory 2

2.1 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Imaginary Time Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Random Walk Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Fixed Node Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Algorithm 10

4 Results 12

4.1 Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Helium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 H− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 H+
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusion 23

Bibliography 24

A Modification of the Schrödinger Equation 25

1



2

1 Introduction

During the past few decades advances in the processing power of computers have led to a dramatic improve-

ment in our ability to simulate quantum systems. Today the most successful methods are the Quantum Monte

Carlo methods. The simplest of these methods are the variational Monte Carlo (VMC) method. This method

uses Monte Carlo integration in order to evaluate the expectation values for a given trial wave function.

The main drawback of the VMC is that the accuracy of the result depends on the accuracy of the trial wave

function. In this theses we utilize another method, the diffusion Monte Carlo method (DMC). In this method

the limitations of trial wave functions is overcome, by using a projection method to pick out the ground state

component of a starting wave function. The DMC method consists of a random movement of particles in

space subject to a probability of multiplication or disappearance. The drawback of the DMC method is that

in it’s pure form, it is only useful for finding the bosonic ground states. However, using different boundary

conditions the method can be generalized to find wave functions for fermionic systems and excited states.

These boundary conditions are generally defined by the nodal planes of a guess trial wave functions. The

trial wave functions can also be used to bias the random walk by the implementation of importance sampling

in order to reduce statistical variation. The goal of all simulation tools is to achieve a high amount of accuracy

with a minimal amount of computational cost. Using simple trial wave function instead of optimized wave

functions will decrease the computational cost, but how much will it affect the accuracy of the result?

In this thesis we report random walk calculations on few body systems using simple trial wave functions.

We begin by outlining the theoretical background of the DMC-method. We will then construct an algorithm

capable of preforming a DMC-simulation for few body systems. We will test this algorithm on the atomic

Hydrogen and Helium systems before studying the ions H− and H+
2 .

2 Theory

The structure and physical properties of atoms and molecules are described by a wave function Ψ(~R, t), that

is a function of time and the coordinates of all particles expressed as the vector ~R. The wave function is the

solution to the complex wave equation known as the Schrödinger equation.

ih̄
δΨ(~R, t)

δt
= − h̄2

2me
∇2Ψ(~R, t) + V(~R)Ψ(~R, t) (1)

If the physical potential of the system V(~R) is independent of time we can separate the variables and find

that solutions can be written on the form.

Ψ(~R, t) = ψE(~R)e−
iEt/h̄ (2)

where E is a constant and the functions ψE(~R) are called stationary states and satisfy the time-independent

Schrödinger equation.

EψE(~R) = −
h̄2

2me
∇2ψE(~R) + V(~R)ψE(~R) = HψE(~R) (3)
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where we have introduced the Hamiltonian of the system H = − h̄2

2me
∇2 + V(~R). The general solution to the

Schrödinger equation is a linear combination of solutions to the time-independent Schrödinger equation.

Ψ(~R, t) =
∞

∑
n=0

cnψn(~R)e−
iEn t/h̄ (4)

The coefficients cn describe the overlap between the eigenfunction ψn(~R) and the wave function Ψ(~R, τ).

cn =
∫ ∞

−∞
ψ∗n(~R)Ψ(~R, t)d~R =

〈
ψn(~R)|Ψ(~R, t)

〉
In order to describe many electron system, one have to solve the time-independent Schrödinger equation.

For a molecular system the Hamiltonian to be used in (3) contains many terms since it must contain the

kinetic energy of every particle and also the potential of every particles electronic interaction with the rest.

The Hamiltonian has the form.

Ĥ = −∑
k

1
2Mk
∇2

k −∑
i

1
2
∇2

i −∑
ik

Zk
| ~rk −~ri |

+ ∑
k1k2

Zk1
Zk2

| ~rk1
− ~rk2 |

+ ∑
i1i2

1
| ~ri1 − ~ri2 |

(5)

The index k runs over all nuclei and the index i runs over all electrons. The two first terms are the kinetic

energy of the nucleus and electron respectively. The third term is the Coulomb potential between the nucleus

with charge Zk and position ~rk and the electron in position ~ri. The two last terms are the potential of the

electronic repulsion between the nuclei and electrons respectively. However, analytical solution of (3) are

only possible for few simple Hamiltonians. In general we need to make approximations to simplify the

Hamiltonian. One such successful approximation is the Born-Oppenheimer approximation, which states

that the motion of the nuclei is much slower compared to the motion of the electrons. This means that the

kinetic energy term of the nuclei is removed and that the potential repulsion between the nuclei is constant

since the internuclear distance is constant. In this paper we shall examine the numerical method of solving

the time-independent Schrödinger equation (3) known as diffusion Monte Carlo. We show it is possible to

transform the time dependent Schrödinger equation into an integral equation describing the time evolution.

Furthermore we find that in the long time limit the wave function will be dominated by the wave function of

the ground state. This is the foundation of the diffusion Monte Carlo method. By approximating the time

dependent wave function as a sum of points, it can be evolved through time as a diffusion process.

2.1 Monte Carlo Integration

Monte Carlo Integration is a numerical method of determining definite multidimensional integrals. Consider

the integral.

I =
∫

Ω
f (~x)d~x (6)

, where Ω is a subspace ofRN with volume.

V =
∫

Ω
d~x

According to the basic Monte Carlo approach the integral (6) can be approximated by summing the values of

f (~x) at N points with a factor of V/N.

I ≈ V
N

n

∑
i=1

f (~xi) (7)
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The points ~xi are chosen, so that they are uniformly distributed over Ω. A major advantage of Monte Carlo

integration compared to other numerical integration methods, is that the variance of I is independent of the

number of dimensions. In addition to this the variance decreases as 1/
√

N, making it possible to determine I to

any desired accuracy by simple increasing the amount of points chosen. The variance can be deceased even

further by implementing importance sampling. Instead of sampling the points ~xi from a uniform distribution,

they are sampled from a non-uniform probability density p(~x) which shape resembles that of the integrand

on the subspace Ω. By doing this, we have to weigh the more common points less than the uncommon points

and the approximation of (6) becomes.

I ≈ 1
N

N

∑
i=1

f (~xi)

p(~xi)
(8)

2.2 Imaginary Time Schrödinger Equation

If we define imaginary time as τ = i · t and introduce an arbitrary shift in energy ER, from now on referred to

as the reference energy, the Schrödinger equation in atomic units takes the form:

− δΨ(~R, τ)

δτ
= −1

2
∇2Ψ(~R, τ) + (V(~R)− ER)Ψ(~R, τ) (9)

The imaginary time Schrödinger equation is similar to an ordinary diffusion equation modified by a branching

term. The solution to the Schrödinger equation can be written as a linear combination of the stationary states

and their characteristic exponential time dependence.

Ψ(~R, τ) =
∞

∑
n=0

cnψn(~R)e−(En−ER)τ (10)

The eigenfunctions ψn(~R) and their respective eigenvalues En are obtained from the time independent

Schrödinger equation.

Ĥψn(~R) = Enψn(~R) (11)

The exponential time dependence in (10) depends on the value of the reference energy. If the ER > En the

exponential diverges and if ER < En the exponential dies off. However, if ER = En the exponential equals

unity. This means that if the reference energy equals the energy of the ground state, an evolution of the wave

function in imaginary time will be dominated by the ground state after a sufficiently long time, since all

excited states have higher energy than the ground state.

lim
τ→∞

Ψ(~R, τ) = c0ψ0(~R) (12)

We now need a way to evolve the wave function in imaginary time for some reference energy. We saw that the

reference energy need to equal the ground state energy, however this is of cause unknown from the beginning.

We therefore also need some way to change our reference energy continuously in order to make sure the wave

function converges to the ground state.

By setting a function G(~R, ~R′, dτ) as the probability for an electron to move from a position ~R to ~R′ during

the short timespan dτ, the short time evolution of the wave function can be calculated by the integral.

Ψ(~R′, τ + dτ) =
∫ ∞

−∞
G(~R, ~R′, dτ)Ψ(~R, τ)d~R (13)
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The transition probability G(~R, ~R′, dτ) can be thought of as a wave function of an electron at position ~R at

time τ and at position ~R′ at time τ + dτ. Therefore G(~R, ~R′, dτ) must also satisfy the imaginary Schrödinger

equation. If the second term of the imaginary Schrödinger equation is neglected, (9) is simply an ordinary

diffusion equation in 3N dimensions, N being the number of electrons, and the solution is a simple Gaussian

function with mean ~R and variance dτ. The transition probability is then.

Gd =

(
1

2πdτ

)−3N/2

e
−
(~R′ − ~R)2

2dτ (14)

If the first term is neglected the imaginary Schrödinger equation is a branching equation and has the

solution.

Gb = e−(V(~R)−ER)dτ (15)

The transition probability can be approximated to the second order of dτ by the product of 14 and 15 [1].

The short time evolution of the wave function then becomes.

Ψ(~R′, τ + dτ) =
∫ ∞

−∞
Ψ(~R, τ)

(
1

2πdτ

)−3N/2

e
−
(~R′ − ~R)2

2dτ e−(V(~R′)−ER)dτd~R (16)

In order to obtain the wave function of the ground state we need to evaluate the short time integral (16)

enough times for the limit (12) to be valid. In the DMC-algorithm this is done by a series of diffusion processes

according to (14) and branching processes according to (15).

2.3 Random Walk Method

In order to use the Monte Carlo methods described earlier when calculating the ground state energy, we

need to be able to sample an unknown ground state wave function. However, using the short time evolution

integral (16) we can evolve samples from an initial known wave function. Imagine sample points from the

wave function Ψ(~R′, τ + dτ) is wanted. If we can interpret the wave function as a probability density we can

use the Monte Carlo method (8) and the short time evolution integral (16) can be approximated as.

Ψ(~R′, τ + dτ) ≈ 1
N

N

∑
i=1

~Ri∈Ψ(~R,τ)

(
1

2πdτ

)−3N/2

e
−
(~R′ − ~Ri)

2

2dτ e−(V(~R′)−ER)dτ (17)

The approximation contains a factor which is a sum of gaussian functions with mean at the sample points

of Ψ(~R, τ). This factor means that Ψ(~R′, τ + dτ) is larger for points within a gaussian function with mean
~Ri and variance dτ. Therefore an appropriate choice of the next sample points would be points normally

distributed around each former point. Then each of these new sample points are weighted by the exponential

e−(V(~R′)−ER)dτ . Accumulating these weights after every time step is very computationally heavy, however,

instead we can depending on the value of the potential create additional sample points or kill off sample

points.

Because the wave function itself is considered as a probability density, meaning that it must be positive

definite, the applicability of the DMC-algorithm is limited only to bosonic ground states. This is because only
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the absolute value of the square can be interpreted as a probability density according to the general principles

of quantum mechanics. It is, however, possible to overcome these limitations by the utilizing the Fixed Node

Approximation, (FNA).

An DMC-simulation is begun by sampling an initial wave function Ψ(~R, 0) at N points, known as walkers,

each of which then undergo the described diffusion meaning that each point diffuses to a point given by.

~x′ = ~x +
√

dτp (18)

Here p is a Gaussian random number with mean 0 and variance 1. If the walkers are points in multiple

dimensions they diffuse by (18) in each dimension. After this each walker is subject to a branching process. If

the potential energy of the walker is larger than the reference energy, equation (15) is less than unity, and the

probability for that walker to disappear becomes.

PD = 1− e−(V(~R)−ER)dτ (19)

If the potential energy of the walker is smaller than the reference energy, equation (15) is greater than unity,

and the associated probability for that walker to spawn new walkers becomes.

PB = e−(V(~R)−ER)dτ − 1 (20)

The probability of birth consist of an integer part m = 0, 1, 2... and a fraction f less than unity. After each

diffusive step a walker with potential energy less than the reference energy spawns m new walkers identical

to the parent walker. Additionally for each initial walker a uniform random number between 0 and 1 is

compared to PD and f and if smaller this walker disappears of spawns an additional walker respectively.

The combined diffusion and branching process changes the distribution of the walkers in such a way that

the walkers is now distributed according to a probability density identified as Ψ(~R, τ + dτ). This process is

then repeated for a large number of times so the limit (12) becomes applicable. A graphical description of the

DMC-simulation is given in figure 1. As time progress particles die in regions where the potential is high

and multiplies in regions of low potential. In the end the particles will be distributed according to the wave

function of the ground state.

Due to the branching process the total number of walkers change. As mentioned earlier the long time

limit of the wave function only goes towards the ground state function, (12), if the reference energy equals

the ground state energy. If the reference energy is bigger than the energy of the ground state the distribution

lim
τ→∞

Ψ(~R, τ) would diverge i.e. increasing the number of walker through all bounds. If the reference energy

is smaller than the energy of the ground state the distribution lim
τ→∞

Ψ(~R, τ) would go to zero, or killing off

all walkers. Only if the reference energy equals the ground state energy the distribution lim
τ→∞

Ψ(~R, τ) would

settle such that the number of walkers will fluctuate around a steady state number, N0. It is possible to

adjust the value of the reference energy after each branching process so that the number of walkers stay

approximately constant. This is done by setting.

ER = 〈V〉 − N − N0
N0dτ

(21)

Once the steady state distribution has been reach and the number of particles fluctuate very little around N0,

the reference energy equals the average potential energy of the walkers. By integrating the energy eigenvalue
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Figure 1: Evolution of walkers in a DMC-simulation.
In regions of high potential the walkers dies and in

regions of low potential they multiply. Eventually the
walkers are distributed according to the ground state

wave function.

equation (11) over the entire configuration space we find that the average potential energy also equal the

energy expectation value of the distribution Ψ(~R, τ).

E0

∫
Ψ(~R, τ)d~R =

∫
ĤΨ(~R, τ)d~R

= −1
2

∫
δΩ
∇Ψ(~R, τ)d~S +

∫
V(~R)Ψ(~R, τ)d~R (22)

The divergence theorem has been applied on the first term one the second line. This term vanishes since it

describes the walker flow across the boundary and the integration is carried out over the entire configuration

space. Since we can think of Ψ(~R, τ) as a probability density the expectation value becomes.

E0 =

∫
V(~R)Ψ(~R, τ)d~R∫

Ψ(~R, τ)d~R
(23)

This is on a form that is suitable for Monte Carlo integration since the walkers are distributed according to the

distribution density Ψ(~R, dτ). Using the approximation (8) the energy expectation value becomes.

E0 =
1
N

N

∑
i=1

V(~Ri) (24)

The main sources for error in a random walk calculation are statistical variations due to the randomness

of the calculation procedure and the use of a finite time step, dτ. Any statistical variations can easily be

estimated by preforming several calculations on the same quantum system. Errors due to the use of a finite

time step stem from the fact that the motions should be continuous, and that the driving function (16) is an

approximation which only holds for small dτ. The effects of using a finite time step can be tested be repeating

calculations using different time step sizes, and extrapolation the energy to dτ = 0.
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2.4 Fixed Node Approximation

As noted the DMC-method depends on the interpretation of the wave function being a distribution density

and hence being positive definite. However, wave functions are not generally positive definite. Regions of

different sign are needed for fermionic wave functions to be antisymmetric under the interchange of fermions

as well as the orthonormality of excited states wave functions. By result the DMC-method is only usefull

for finding the bosonic ground state wave functions. The fixed node approximation imposes boundary

conditions of the form Ψ(~R) = 0 using the nodes of a reference function as the nodes of the wave function.

The DMC-method is the carried out in these regions of constant sign and the wave function evolve to the that

of the ground state in each region separately. Any walker that cross the nodes should be killed off in order to

ensure the Ψ(~R) = 0 boundary condition. If the nodes of the reference function are the same as the exact wave

function the fixed node solution is exact, since in each nodal region the walkers are distributed according to

the wave function of the lowest state with the imposed nodes. If, however, the nodes of the reference function

are only approximative, then the fixed node solutions obey the variational principle if the wave function in

question is a fermionic ground state. For excited states it is possible, due to the birth-death mechanism, for

the nodal region with the lowest energy to be overpopulated in the long time limit, and therefore it is possible

for excited to calculate a energy lower than the exact energy. This enforces the importance of choosing a good

reference function. There are no general procedure of finding the nodal surfaces, but the nodes of functions

optimized by Hartree-Fock calculation, variational Monte Carlo, or other variational methods work very

well in practice including for excited states. The elimination of walkers crossing the boundaries between the

regions does introduce some systematic error in the calculation, since the finite time step in the DMC-method

allows for the possibility of walkers crossing a node and recrossing back into the allowed region. Such a

walker is not eliminated because it begins and ends in the allowed region, however, it should. The probability

of a walker crossing and recrossing a node is a function of the distance from the node at the initial, R, and

final position, R′. The probability of moving from an initial position with a distance R from the nodal plane

to a position with distance R′ from the nodal plane is.

Pm =
1√

2πdτ
e−

(R′−R)2
2dτ (25)

Meanwhile the probability of moving from the initial position to the image of the final position in the nodal

plane is.

Pi =
1√

2πdτ
e−

(R′+R)2
2dτ (26)

If a walker steps onto the nodal plane during a finite time step the probability of going to the final position, m,

or its image, i, must be equal. Therefore the probability Pi is equal to the probability of moving to position R′

by a route crossing and recrossing the nodal plane. The probability of crossing and recrossing the nodal plane

given that the move must end in position m, is then the ratio of Pi to Pm

Px = e−
2RR′

dτ (27)

After each time step not only walkers which crosses the nodal planes should be eliminated, but also walkers

for which the probability Px exceeds a random number in the interval ]0; 1[.
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2.5 Importance Sampling

The efficiency of the discussed DMC-method can be improved by the implementation of importance sampling.

Since the Coulomb potential present in atomic and molecular system is inversely proportional to distance,

it is possible for the branching term in (9) to diverge leading to large fluctuations in the population and

increased statistical errors. By multiplication with a trial wave function, ΨT(~R), which we expect to resemble

the desired wave function, the imaginary time Schrödinger equation can be rewritten as (see appendix).

− δ f (~R, τ)

δτ
= −1

2
∇2 f (~R, τ) +∇(~vD f (~R, τ)) + (EL(~R)− ER) f (~R, τ) (28)

Here we have defined a new distribution, f (~R, τ), the drift velocity, ~vD(~R), and the local energy, EL(~R) as.

f (~R, dτ) = ΨT(~R)Ψ(~R, dτ) (29)

~vD(~R) =
∇ΨT(~R)
ΨT(~R)

(30)

EL(~R) = −
∇2ΨT(~R)
2ΨT(~R)

+ V(~R) (31)

If our trial wave function share the nodes and the signs of the actual wave function we can without loss of

generality assume the distribution f (~R, dτ) to be positive definite, and therefore eligible for the simulation

described earlier. A simulation using importance sampling has to be slightly modified in order to incorporate

the drift velocity and local energy. Consequently the transition probabilities corresponding to (28) is.

Gd =

(
1

2πdτ

)3N/2

e
−
(~R′ − ~R− dτ ·~vD(~R))2

2dτ (32)

Gb = e−(EL(~R)−ER)dτ (33)

The exponential in the diffusion function, (32), now also contains a term dependent on the drift velocity

and the branching exponential, (33), now contains the local energy instead of the electronic potential. The

sampling procedure described above have to be modified accordingly. In addition to the random diffusion

motion each walker now also undergo a drift motion equal to the product of the time step size and the drift

velocity, dτ ·~vD(~R). This drift motion drives the walkers away from the nodes of the trial wave function,

and towards regions where it has a large absolute value. This help enforce the fixed-node approximation. In

real simulations it is however still possible for walkers to cross the nodal planes. This is due to the standard

deviation of the random diffusion motion being proportional to
√

dτ and the directed drift motion being

proportional to dτ. Since most simulations use time step sizes less than 1 in order to ensure the approximation

of the transition probability (16), it is possible for the diffusion motion to overcome the drift and move across

the nodes. Such walkers should either be killed off as discussed previously, or it should be kept in it’s original

position. Either method is valid, but it turns out rejecting moves crossing nodal planes yield smaller time step
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errors compared to killing of walkers [1]. The branching probabilities are also changed when introducing

importance sampling. The probabilities of a walker dying or giving birth to new walkers are modified to.

PD = 1− e−(EL(~R)−ER)dτ (34)

PB = e−(EL(~R)−ER)dτ − 1 (35)

Using the local energy instead of the potential energy in order to determine the branching probabilities

may greatly improve the accuracy of DMC calculations, since the local energy is mostly better behaved

than the electronic potential function. If the trial wave function is almost equal the the exact ground state

wave function the local energy is nearly constant and equal to the ground state energy so any fluctuations in

population will be greatly reduced.

The result of a DMC simulation using importance sampling is walkers distributed according to the mixed

state ΨT(~R)Ψ0(~R). Therefore the ground state energy can be calculated using the mixed state estimator [2].

E0 =

〈
Ψ0(~R) | Ĥ | ΨT(~R)

〉
〈

Ψ0(~R) | ΨT(~R)
〉 (36)

=

∫
EL(~R) f (~R, τ)d~R∫

f (~R, τ)d~R
(37)

This integral is on a form capable for Monte Carlo integration. Using (8) the energy of the ground state is.

E0 =
1
N

N

∑
i=1

EL(~Ri) (38)

3 Algorithm

In this chapter we describe the algorithm of our DMC simulation. The simulation was carried out using

the MATLAB numerical calculation environment using the MATLAB language. All random numbers was

generated using MATLAB’s random number generating functions ”rand” and ”randn” respectively for uniform

and Gaussian distributions. The simulation is run multiple times in order estimate the statistical variance of

the calculated energy. A flow diagram of the algorithm is shown in figure 2. Each block preforms the tasks

described below.

Setup: In this block all required data for the simulation is defined. The number of time steps and the size of

these are defined in an array such that the time step for the i′th move of the simulation is located the i′th index.

The positions of the walkers are saved in a matrix of size (n · d)× N. Here n is the number of electrons in a set

of walkers, d is the number of physical dimensions and N is the desired number of walkers. The walkers are

initially distributed uniformly in the interval [−10; 10] in all dimensions in order to ensure a sufficient overlap

between Ψ(~R, 0) and Ψ0(~R). If the simulation utilizes importance sampling the trial function is defined as a

string as well as finding the gradient and laplacian and saving them as string. The initial value of the reference

energy is arbitrary, since it is updated after every time step, and is for convenience set to 0. After this the

simulation enters a loop, where each run corresponds to taking one time step.
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Figure 2: Flow diagram of our DMC-algorithm.

Move: Here all walkers are moved according to the earlier mentioned rules. In a simple DMC simulation

without importance sampling the walkers move according to (18) in each dimension. The implementation of

importance sampling add another term dependent on the drift velocity (30) to this movement.

~x′ = ~x + dτ ·~vD(~R) +
√

dτp (39)

This routine also checks and ensure all walkers satisfy the fixed node approximation. This check is being

done by calculating the sign of the trial wave function before and after the move. If the trial wave function

changes sign the walker crossed a node and is moved back to its previous position.

Potential Calculation: This routine calculates the electronic potential or local energy of the quantum system.

For the case of atoms and molecules this is done by summing all attractive and repulsive coulomb potentials

present for each set of walkers.

V(~R) = −∑
ik

Zk
| ~rk −~ri |

+ ∑
k1k2

Zk1
Zk2

| ~rk1
− ~rk2 |

+ ∑
i1i2

1
| ~ri1 − ~ri2 |

(40)

Since the potential might diverge for r −→ 0 leading to an infinite number of walkers created during the

branching process there is placed a variable limit on the potential. For particles within a distance of rc of each

other the potential between them is set to the average over the volume enclosed by a shell of radius rc.

〈V〉 = 2Z1Z2
3rc

(41)

The value of rc is adjusted at each time step such that the probability of birthing new walkers , PB, has an

upper limit of 1000.

rc = −
3
2

1

− log(1001)
dτ

+ ER

(42)

For runs using importance sampling the local energy is calculated as.

EL(~R) = −
1
2
∇2ΨT(~R)

ΨT(~R)
+ V(~R) (43)

Branch: At this point we carry out the branching process of the walkers. Firstly the probabilities of walkers

dying or replicating are calculated using (19), (20), (34) and (35) for simulations without and with importance
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sampling. The probability of a walker dying is then compared with a random number between 0 and 1 and if

higher the walker is killed off. The corresponding column in the position matrix and in the potential/local

energy vector is thus removed. The probability of a walker replicating is added to a random number between

0 and 1. Each walker then replicates into a number of walkers equal to the integer part of this number. The

corresponding column in the position matrix and potential/local energy vector is consequently copied into

this amount of columns.

Update energy: This block calculates the average potential/local energy of the walkers, which equals the

energy of the quantum system when steady state has been reached. During the first run a vector containing

the average potential/local energy is generated, and this is updated each subsequent run. Hereafter the

reference energy is updated according to (21).

Output: The Output block returns the results of our simulation. These are first of all the energy of the

quantum system. This is the average of the energies found during steady state. Secondly it is the time

evolution of energy towards the steady state and finally it is the distribution of the walkers. The density of

walkers are proportional to the wave function of the quantum system.

4 Results

In this section we report the results obtained by the described algorithm generalized in 3N spacial dimensions,

where N is the number of electrons of the quantum system. For each quantum system 40 independent

calculations were made. These calculation are divided into 4 groups of 10 which terminated with different

time step sizes. The details are given below. In accordance with the short time approximation the energy

calculated from each of these groups are used to extrapolate the energy to dτ = 0. In all calculation the total

number of walkers was maintain near 1000 by updating the reference according to (21). All errors in the

calculated energy exclude systematic errors and are only the statistical error determined from the variance in

the energy calculated in the 10 simulations within each group.

4.1 Hydrogen

Wave functions of hydrogenic atoms are separable into a product of a radial function and a angular function,

ψn,l,m(r, θ, φ) = Rn,l(r) ·Yl,m(θ, φ). The angular functions are known as spherical harmonic functions and the

details of them and the radial functions depend on the principal quantum number, n, the orbital quantum

number, l, and the magnetic quantum number. The spherical harmonic functions are complex functions

except when m = 0. Since the DMC-method discussed above assumes real wave functions, we will stick to

functions for which m = 0. The first 4 of these function can be seen in table 1. None of the spherical harmonics

share the same nodes, and since the values of the orbital quantum number is limited to l ≤ n− 1, we can use

nodes of the spherical harmonic function corresponding to the maximum value of l when simulating a given

value of n. The energy levels of hydrogen only depend on the principal quantum number. In atomic units the

energy given as.

En = − 1
2n2
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l Spherical harmonic Yl,0(θ, φ)

0 1√
4π

1
√

3
4π cos (θ)

2
√

5
16π

(
3cos2 (θ)− 1

)
3

√
7

16π

(
3cos2 (θ)− 3cos (θ)

)
Table 1: The first 4 spherical harmonics for which
m = 0

n l Radial wave function Rn,l(r)
1 0 2e−r

2 1 r√
24

e−r/2

3 2 4r2

81
√

30
e−r/3

4 3 r3

768
√

35
e−r/4

Table 2: The first 4 radial wave functions for
which the orbital quantum number has the maxi-
mum possible value.

The 4 first radial wave functions, which has the maximum possible value of the orbital quantum number

is given in table 2

We see from table 1 and table 2, that the wave function of the ground state of hydrogen has no nodes, and

therefore can be simulated using a simple DMC-method. For excited states, however, the radial function is

zero when r = 0, and the number of nodes of the spherical harmonics increase with the orbital quantum

number. The radial function by itself can be simulated using the simple DMC-method, since it only zero in the

origin and actually do not change signs. In theory it should suffice to use the spherical harmonics as the trial

wave function in importance sampled DMC simulations. In order to test this hypothesis, simulations using

a product of the spherical harmonic function and a power of r as the trial wave function have been made,

in addition to simulations only using the spherical harmonic. Simulations of hydrogen’s first excited state

without importance sampling, but instead incorporating the Cross-Recross probability (27) will also be made.

Each simulation ran for a total time of 142a.u.. The time steps was decreased as follows: Group a)

τ = 0− 100, dτ = 0.050; 100− 120, 0.020; 120− 130, 0.010; 130− 135, 0.005; 135− 137, 0.002; 137− 142, 0.001;

Group b) 0− 135, 0.050; 135− 142, 0.005; Group c) 0− 130, 0.050; 130− 142, 0.005; Group d) 0− 120, 0.050;

120− 142, 0.010. The total energy of the system was calculated by averaging the energy of the system during

the last 4a.u.. The evolution of the energy during a simple DMC-simulation of the ground state, and during

an importance sampled simulation using the spherical harmonic as the trial wave function is illustrated in

figure 3 and 4. All simulations employing importance sampling looked similar to figure 4, although when the

trial wave function depended on r it took significantly longer for the simulation to reach the steady state. For

this reason simulations of hydrogen’s third excited state was increased by 100a.u. with a time step size of

0.05a.u. Also it was observed, that the energy of the system could drop very quickly before recovering, and

going back towards that of the steady state. This behaviour will be discussed later. Table 3 shows the average

runtimes of a single simulation.

The calculated energy for each group is illustrated in figures 5, 6, 7, and 8. A linear extrapolation to dτ = 0

yields the final energy which are listed in table 4. Simulations using the Cross-Recross probability (27) returns

energies significantly lower than the analytical result, suggesting the Cross-Recross probability is too low. All

other results are in good agreement with the theoretical solutions, all being within two standard deviations

from the exact value. Using only the spherical harmonic as the trial wave function tends to yield a better

results closer to the exact value and with smaller errors. This might be explained by the laplacian of the

trial wave function. The point of the local energy is, that the kinetic term, −∇2ΨT(~R)/2ΨT(~R), helps smooth the

diverging behaviour of the potential as r tends to zero. For the spherical harmonics the kinetic term goes
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Figure 3: Evolution of the ground state energy of
Hydrogen during a simple DMC simulation.
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Figure 4: Evolution of the energy of Hydrogen’s
first excited state during an importance sampled
DMC simulation using the spherical harmonic as
the trial wave function.

Quantum State Function Runtime, sec.
- Group a) Group b) Group c) Group d)

1s Simple 4.20 2.15 1.68 1.55
2p cos(θ) 53.9 30.2 24.2 22.3
- r · cos(θ) 15.2 8.33 6.65 6.10
- Cross-Recross 4.98 2.60 2.05 1.88

3d 3cos2(θ)− 1 55.2 30.9 24.9 22.8
- r2 · (3cos2(θ)− 1) 27.5 15.2 12.3 11.3

4f 5cos3(θ)− 3cos(θ) 170 107 90.2 85.3
- r3 · (5cos3(θ)− 3cos(θ)) 55.0 34.6 29.2 27.6

Table 3: The average runtime in seconds for one simulation.

Quantum State Method Function Energy, a.u.
1s Simple - −0.495± 4.10 · 10−3

2p Importance sampling cos(θ) −0.124± 5.00 · 10−5

- Importance sampling r · cos(θ) −0.121± 2.83 · 10−3

- Cross-Recross - −0.146± 8.25 · 10−4

3d Importance sampling 3cos2(θ)− 1 −0.056± 5.55 · 10−4

- Importance sampling r2 · (3cos2(θ)− 1) −0.058± 2.67 · 10−3

4f Importance sampling 5cos3(θ)− 3cos(θ) −0.031± 3.10 · 10−4

- Importance sampling r3 · (5cos3(θ)− 3cos(θ)) −0.033± 1.17 · 10−3

Table 4: The energies found by extrapolation of the simulation results to dτ = 0.

towards infinity as 1/r2 for r going towards zero. This is faster than the potential energy so the local energy

will also tend towards infinity. So instead of creating a large amount of new walkers, we simply kill off one.

For the other trial functions the laplacian equals zero, so in these cases the local energy equals the potential

energy, and thus is not an improvement. This would also explain the drops in energy during simulation. A

walker with low potential energy has simply been replicated a large amount of times.

The final distribution of walkers are proportional to ψ0(~R), or f (~R) in the case of importance sampling.

We can therefore visualize the wave functions by plotting the density of the walkers. These are illustrated in
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Figure 5: Variation of the total energy of hydrogen’s
ground state with time step size for simulations. A
linear fit is used to extrapolate the energy to dτ = 0.
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Figure 6: Variation of the total energy of hydrogen’s
first excited state with time step size for simulations
using different trial wave function (red/blue) and
simulations using the Cross-Recross probability. A
linear fit is used to extrapolate the energy to dτ = 0.
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Figure 7: Variation of the total energy of hydrogen’s
second excited state with time step size for simula-
tions using different trial wave function. A linear
fit is used to extrapolate the energy to dτ = 0.
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Figure 8: Variation of the total energy of hydrogen’s
third excited state with time step size for simula-
tions using different trial wave function. A linear
fit is used to extrapolate the energy to dτ = 0.

figures 9-16 for simulation using only the spherical harmonics as the trial wave function. Since the spherical

harmonics are independent of r, the radial part of f (~R) are equal to the radial part of ψ0(~R). Therefore it

is not necessary to compensate for the trial wave function. The final radial distribution of f (~R) was very

different from the exact wave function when the trial function had a radial dependence. For small values

of r, it appears the distribution does not match the exact radial function, but overall the radial distribution

of walkers are fairly accurate. The angular distribution also fit the analytical result very well. The apparent

gap along the z-axis in figure 13 and figure 15 are due to an error in the representation, that made this region

sparsely populated. There are, however, some walkers present in contrast to the completely empty regions

along the nodal lines, indicated by green lines.
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Electron density of Hydrogen 1s

Figure 9: The final distribution of walkers in the
xz-plane from a simple DMC simulation of the hy-
drogen ground state. The walkers are all located
near the origin in a sphere corresponding to the 1s
orbital.
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Figure 10: The final radial distribution of walkers
from a simple DMC-simulation of the hydrogen
ground state. The exact radial wave function is
given in red.

Electron density for Hydrogen 2p

 

 

Figure 11: The final distribution of walkers in the
xz-plane from a DMC simulation of hydrogen’s
first excited state. The walkers are all located in
two bulges along the z-axis corresponding to the
2pz orbital. The green line indicate the node of the
spherical harmonic.
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Figure 12: The final radial distribution of walkers
from a DMC-simulation of hydrogen’s first excited
state. The exact radial wave function is given in red.

4.2 Helium

Several very accurate variational calculations have been made on the Helium atom. These have calculated the

energy of the ground state configuration 1s2 to be E1s2 = −2.90372437703411959813a.u. which is identical to

the experimental exact value. Since the electrons have opposite spin the wave function for this configuration

is space-symmetric and we can therefore assume it is positive definite making this configuration eligible for

a simple DMC simulation. For the Helium atom each simulation ran for a total time of 48.5a.u.. The time

steps was decreased as follows: Group a) τ = 0− 25, dτ = 0.050; 25− 35, 0.020; 35− 40, 0.010; 40− 42.5,

0.005; 42.5− 43.5, 0.002; 43.5− 48.5, 0.001; Group b) 0− 42.5, 0.050; 42.5− 48.5, 0.005; Group c) 0− 40, 0.050;

40− 48.5, 0.005; Group d) 0− 35, 0.050; 35− 48.5, 0.010. The total energy of the system was calculated by

averaging the energy of the system during the time interval 44.5− 48.5. The evolution of the energy was

similar in all runs and is illustrated in figure 17. The calculated energy for each group is illustrated in figure
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Electron density for Hydrogen 3d

Figure 13: The final distribution of walkers in the xz-
plane from a DMC simulation of hydrogen’s second
excited state. The walkers are all located away from
the nodes of the spherical harmonic, indicated by
the green lines.
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Figure 14: The final radial distribution of walkers
from a DMC-simulation of hydrogen’s second ex-
cited state. The exact radial wave function is given
in red.

Electron density for Hydrogen 4f

Figure 15: The final distribution of walkers in the xz-
plane from a DMC simulation of hydrogen’s third
excited state. The walkers are all located away from
the nodes of the spherical harmonic, indicated by
the green lines.
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Figure 16: The final radial distribution of walkers
from a DMC-simulation of hydrogen’s third excited
state. The exact radial wave function is given in
red.

18. A linear extrapolation to dτ = 0 yields the final energy of.

E = −2.900a.u.± 0.030a.u.

This is in good agreement with the exact result. The final distribution of the walkers as seen on figure 19 is

clumped around the origin consistent with both electrons being in the 1s orbital. The average runtime for the

simulations in group a was 4.06 seconds, while the groups took 2.04s for group b, 1.33s for group c and 1.11s

for group d.

The first excited state of Helium, 1s2s, is the lowest space-antisymmetric state. Using variational cal-

culations for the space-antisymmetric Helium 1s2s configuration a wave function consisting of a simple

Slater-determinant have been calculated.
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Figure 17: Evolution of the electronic energy of He-
lium 1s2 during a simple non-importance sampled
DMC simulation.
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Figure 18: Variation of the total energy of Helium
1s2 with time step size. A linear fit is used to extrap-
olate the energy to dτ = 0.

Electron density of Helium 1s
2

Figure 19: The final distribution of walkers in the xz-
plane from a simple DMC simulation of the Helium
1s2 configuration. All walkers are located around
the origin consistent with the electrons being in the
1s orbital.
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Energy evolution of Helium 1s2s using Variational−wavefunction

Figure 20: Evolution of the electronic energy of
Helium 1s2s during an importance sampled DMC
simulation using a trial wave function optimized
using variational calculations.

Φ = e−2.01~r1

(
1− 1.53~r2

2

)
e−1.53~r2/2 − e−2.01~r2

(
1− 1.53~r1

2

)
e−1.53~r1/2 (44)

The energy corresponding with this wave function is E1s2s = −2.167a.u. which is in good agreement with the

results from more elaborate trial wave function using Hylleraas coordinates. This simple Slater-determinant

equals zero only when ~r1 = ~r2. Therefore Φ = ~r1 − ~r2 might be a simple trial wave function for importance

sampled simulations of Helium 1s2s. Importance sampled DMC simulations using both (44) and the more

simple Φ = ~r1 − ~r2 as the trial wave function has been made. The evolution of the energy for both trial wave

functions are pictured in figure 20 and 21. We see that at steady state the energy in simulations using the

simple wave function are more varying, which also can be seen from the significantly larger errors in the

energies from the simple trial wave function simulations in figure 22. The energy found by linear extrapolation

if.
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Evariational = −2.176a.u.± 2.750 · 10−3a.u.

Esimple = −2.170a.u.± 9.000 · 10−3a.u.

Both of these energies are within one standard deviation of the exact energy Eex = −2.175a.u. calculated from

elaborate Hylleraas-wave functions. The simple wave function, however, does produce increased statistical

errors but the runtime of the simulations were on average 8.32 times faster than the simulations using the

variational optimized wave function.
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Figure 21: Evolution of the electronic energy
of Helium 1s2s during an importance sampled
DMC simulation using a simple trial wave function.
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Figure 22: Variation of the total energy of Helium
1s2s with time step size for simulations using an
optimized trial wave function (red) and a simple
trial wave function (blue). A linear fit is used to
extrapolate the energy to dτ = 0.

In figure 23 and 24 the final walker distribution in the xz-plane is pictured. In figure 23 both the 1s and 2s

orbitals are clearly visible, but in figure 24 only the 1s is clear. The rest of the electrons apart for some outliers

are concentrated in a shell like structure around the densely packed sphere, but they are more scattered unlike

the clear spherical shell in figure 23. It looks as if the simple trial function does not give a precise image of the

wave function, although the symmetry is apparent.

4.3 H−

For the H− ion each simulation ran for a total time of 192a.u.. The time steps was decreased as follows: Group

a) τ = 0− 150, dτ = 0.050; 150− 170, 0.020; 170− 180, 0.010; 180− 185, 0.005; 185− 187, 0.002; 187− 192,

0.001; Group b) 0− 185, 0.050; 185− 192, 0.005; Group c) 0− 180, 0.050; 180− 192, 0.005; Group d) 0− 170,

0.050; 170− 192, 0.010. The total energy of the system was calculated by averaging the energy of the system

during the time interval 188− 192. As with the ground state of the Helium atom the wave function of the

ground state of H− is space-symmetric and a simple non importance sampled simulation is sufficient. The

evolution of the energy was similar to the evolution in the Helium ground state. The calculated energy for the

four groups and their statistical variance are pictured in figure 25. Extrapolation to dτ = 0 yields the energy
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Electron density of Helium 1s2s using Variational wavefunction

Figure 23: The final distribution of walkers in the
xz-plane from a DMC simulation of the Helium
1s2s configuration using an optimized trial wave
function. The walker are apart from a few outliers
clearly separated in a sphere close to the origin sur-
rounded by a spherical shell corresponding to the
1s and 2s orbitals.

Electron density of Helium 1s2s using simple−wavefunction

Figure 24: The final distribution of walkers in the xz-
plane from a DMC simulation of the Helium 1s2s
configuration using a simple trial wave function.
Most walkers are located in a sphere around the
origin corresponding to the 1s orbital, however a
spherical shell corresponding to the 2s orbital is not
clearly visible.

E1s2 = −0.5251a.u.± 6.175 · 10−3a.u. in good agreement with the experimental value Eex = −0.528a.u. The

distribution of walkers illustrated in figure 26 are also in agreement with both electrons being in the 1s orbital.
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Figure 25: Variation of the total energy of H−

1s2 with time step size. A linear fit is used to
extrapolate the energy to dτ = 0.

Electron density of H
−
 1s

2

Figure 26: The final distribution of walkers in the
xz-plane from a simple DMC simulation of the H−

1s2 configuration. All walkers are located around
the origin consistent with the electrons being in the
1s orbital.

Using the same simple trial wave function Φ = ~r1 − ~r2 as we used when calculating the first excited state

of Helium, we will try to calculate a potential excited state of H−. The evolution of the energy illustrated

in figure 27 are again similar to the simulations of Helium, and the errors in the energy as seen on 28 are of

a relative same size being approximately 1% of the calculated energy. The energy found by extrapolation

to dτ = 0 is E = −0.5041a.u.± 7.175 · 10−3a.u.. This is within one standard deviation of the ground state

of Hydrogen in agreement with experimental results that, the negative ion H− only has one bound state

with a very small ionization potential. The final walker distribution in figure 29 also indicate an empty 2s

orbital. Most electrons are located near the nucleus, however, the remaining electrons are not located in a
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clear surrounding ring as was the case for the Helium atom. Our simulations therefore indicate a single

bound state with the ionization potential Ip = 0.0210a.u.± 9.466 · 10−3. This is a bit lower but still within one

standard deviation from the experimental value Iexp
p = 0.0286a.u.
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Figure 27: Evolution of the electronic energy of H−
1s2s during an importance sampled DMC simula-
tion using a simple trial wave function.
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Figure 28: Variation of the total energy of H− 1s2s
with time step size. A linear fit is used to extrapolate
the energy to dτ = 0

4.4 H+
2

When studying molecules the usual starting point is the linear combination of atomic orbitals (LCAO). So

lets try to reproduce these results. H+
2 is a homonuclear diatomic molecule, and therefore has a point of

symmetry on the internuclear axis in the middle of the nuclei. Electronic wave functions can thus be classified

according to the parity under reflection with respect to this point. A simulation of the lowest even state, called

gerade, should not require a trial wave function, while the lowest odd state, called ungerade, would require a

trial wave function, which changes sign when reflected though the middle point between the nuclei. If we

Electron density of H
−
 1s2s

Figure 29: The final distribution of walkers in the
xz-plane from a DMC simulation of the h− 1s2s

configuration using a simple trial wave function. Most
walkers are located in a sphere around the origin

corresponding to the 1s orbital. The remaining walkers
scattered in space with any systematic distribution.
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Figure 30: The electronic potential curves of the low-
est gerade (blue) and ungerade (red) state of H+

2 . The
energy of the ungerade state is positive for all inter-
nuclear distance, meaning no molecule can be formed
in this state. The energy of the gerade state exhibits a
negative minimum at R = 2a.u. meaning, this states
leads to bonding between the two nuclei.

place the internuclear axis along the z-axis and the middle point at the origin, a simple such function would

be g = z. Each simulation ran a total of 142a.u. with the same time steps as hydrogen. Figure 30 shows the

energy found by extrapolation to dτ = 0 offset by the ground state energy of hydrogen as a function of the

internuclear distance. These curves are known as electronic potential curves. The blue data are the energies of

the gerade-state and the red the energies of the ungerade state. We see that the energy of the ungerade state

are positive for all internuclear distances, meaning this state is repulsive for all distances and does not lead to

bonding between the nuclei. A molecule in this state would instantly separate into a proton and a hydrogen

atom. This state is called the antibonding state. On the other hand the gerade state shows negative energies,

meaning that there is an attraction leading to a stable molecule. This state is called a bonding state. The

minimum is located at internuclear separation of 2a.u. and attains the value −0.111a.u.± 2.00 · 10−3. Overall

the calculated energies of the gerade state are lower then the energies found by simple LCAO. However, very

accurate numerical solutions of the Schrödinger electronic equation have shown the energies of the bonding

state predicted by LCAO are slightly to high, in agreement with our result. Moreover the numerical solutions

predict the minimum to be −0.103a.u. at a separation distance of 2.00a.u. also in agreement with our results.

The bonding and antibonding of the states can also be seen in figure 31 and 32, which shows the final

walker distribution in the xz-plane. The grade state has a large number of walkers located between the nuclei,

indicating the wave function is large in this region, and the electron is shared by the nuclei. Meanwhile the

region is empty in the ungerade state, indicating the wave function is close to zero, and the electron is bound

to only one nuclei.
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Electron density of bonding H
2

+

Figure 31: The final walker distribution in a simple
DMC-simulation of H+

2 . This distributes the walk-
ers according to the lowest gerade state, leading
to a bonding between the nuclei. This can be seen
by the large amount of walkers between the two
nuclei.

Electron density of antibonding H
2

+

Figure 32: The final walker distribution in a DMC-
simulation of H+

2 using g = z as a trial wave func-
tion. This distributes the walkers according to the
lowest ungerade state, leading to an antibonding
between the nuclei. This can be seen by the gap in
walkers between the two nuclei.

5 Conclusion

In this paper, a detailed account of the theoretical background for the diffusion Monte Carlo method for

solving the Schrödinger equation has been presented. The importance of the trial wave function in importance

sampled DMC-simulations have been studied through simulations of few-body systems. We found, that

simple trial wave functions are useful for finding a rough estimation of the energy expectation values with a

minimal of computation effort. Simple trial wave functions are, however, not useful for finding the precise

wave function since the final walkers are distributed according to the product ΨT(~R)Ψ0(~R), but can be

useful for illustrating the symmetry. For a more accurate value of the energy and a precise picture of the

wave function it is necessary to use a trial function optimized by some other means at the cost of increased

computation time. The DMC-method seems to be most suited for systems with several electrons since it

does not require the usage of complicated multidimensional integrals, basis sets, or large matrices like other

numerical methods. For these larger systems the importance of the trial wave function might increase due to

the more complicated structure of the nodal planes. The discussed method assumes real wave functions, so a

natural step would be to generalise the method to complex wave functions.
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A Modification of the Schrödinger Equation

We will show the deviation of the importance sampled Schrödinger equation (28). The following two vector

calculus identities are considered known, and will be used without proof.

∇(Ψ(~R, τ) · ∇φ(~R)) = Ψ(~R, τ) · ∇2φ(~R) +∇Ψ(~R, τ) · ∇φ(~R)

∇2(Ψ(~R, τ)φ(~R)) = φ(~R) · ∇2Ψ(~R, τ) + Ψ(~R, τ) · ∇2φ(~R) + 2∇Ψ(~R, τ) · ∇φ(~R)

Multiplying the imaginary time Schrödinger equation in atomic units (9) by a trial wave function φ(~R) yields.

− δ f (~R, τ)

δτ
= − δΨ(~R, τ)

δτ
φ(~R) = −1

2
φ(~R)∇2Ψ(~R, τ) + (V(~R)− ER) f (~R, τ)

= −1
2

φ(~R)∇2Ψ(~R, τ)− 1
2

Ψ(~R, τ) · ∇2φ(~R)−∇Ψ(~R, τ) · ∇φ(~R)

+
1
2

Ψ(~R, τ) · ∇2φ(~R) +∇Ψ(~R, τ) · ∇φ(~R) + (V(~R)− ER) f (~R, τ)

= −1
2
∇2 f (~R, τ) +

1
2

Ψ(~R, τ) · ∇2φ(~R) +∇Ψ(~R, τ) · ∇φ(~R) + (V(~R)− ER) f (~R, τ)

= −1
2
∇2 f (~R, τ) + Ψ(~R, τ) · ∇2φ(~R) +∇Ψ(~R, τ) · ∇φ(~R)

− 1
2

Ψ(~R, τ) · ∇2φ(~R) + (V(~R)− ER) f (~R, τ)

= −1
2
∇2 f (~R, τ) +∇(Ψ(~R, τ) · ∇φ(~R))− 1

2
Ψ(~R, τ) · ∇2φ(~R) + (V(~R)− ER) f (~R, τ)

= −1
2
∇2 f (~R, τ) +∇

(
f (~R, τ) · ∇φ(~R)

φ(~R)

)
− 1

2
f (~R, τ) · ∇

2φ(~R)
φ(~R

+ (V(~R)− ER) f (~R, τ)

= −1
2
∇2 f (~R, τ) +∇

(
f (~R, τ) · ∇φ(~R)

φ(~R)

)
+

(
−1

2
∇2φ(~R)

φ(~R)
+ V(~R)− ER

)
f (~R, τ)

= −1
2
∇2 f (~R, τ) +∇(~vD f (~R, τ)) + (EL(~R)− ER) f (~R, τ)


