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Abstract

This thesis explores the dimensional crossover between three and two
dimensions of two body bosonic systems interacting via a short-range
potential and whether this transition can be described universally for
any potential between the particles. The crossover is achieved by set-
ting the particles in an external one dimensional harmonic oscillator
trap, which confines the movement of the particles in the z-direction.

For determining the energies of the system, the stochastic varia-
tional method is used with a basis of fully correlated Gaussians. This
allows description of non-spherical symmetric systems which is re-
quired for the one dimensional harmonic oscillator. The properties of
the basis are tested by calculating both the spectrum of hydrogen and
the splitting of energies when applying a magnetic field to a spinless
hydrogen atom.

Calculating the binding energy of the two body system as function
of the trap width for several interaction potentials displays how the
transition is dependent on the shape and strength of the interactions.
No universality is apparent except for the initial part of the crossover.
However, choosing the length scale of the calculations as the effective
range of the potentials and scaling the results accordingly reveals,
that the weak-binding portion of the crossover is indeed universal.
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Resumé

Dette projekt undersøger den dimensionale overgang mellem tre og
to dimensioner for to-legeme bosoniske systemer, der interagerer via
et kortrækkende potential, og hvorvidt denne overgang kan beskrives
universelt for et vilk̊arligt potentiale mellem partiklerne. Overgan-
gen opn̊as ved at placere partiklerne i en ekstern én-dimensional har-
monisk oscillator fælde, som ved sammenpresning indskrænker par-
tiklernes bevægelse i z-retningen.

For at bestemme energierne af systemet benyttes stokastisk vari-
ationsregning med en basis af fuldt korrelerede Gaussiske funktioner.
Dette tillader beskrivelse af ikke-sfærisk symmetriske systemer, hvilket
er p̊akrævet for den én-dimensionale harmoniske oscillator. Basens
egenskaber testes ved at udregne b̊ade spektrummet af hydrogen samt
det energisplit, som forekommer ved at udsætte et spinløst hydro-
genatom for et magnetisk felt.

Udregningen af to-legeme systemets energi som funktion af vid-
den af fælden for adskillige interaktive potentialer viser, hvorledes
overgangen er afhængig af form og styrke af interaktionerne. Ingen
universalitet er tydelig bortset fra i den første del af overgangen. Ved
at vælge den effektive rækkevidde af potentialerne som længdeskala
og skalere resultaterne ifølge denne viser det sig dog, at en stor del af
overgangen er universel.
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Chapter 1

Introduction

In recent years a lot of work has been put into describing quantum
physics in two dimensions. This is due to the number of spacial di-
mensions having a large significance on the dynamics of quantum
systems. Thus, further exploration of the physics of two dimensions
could produce results in fields such as ultracold gasses or supercon-
ductivity. One significant difference between the two and three di-
mensions is due to the centrifugal barrier operator, which in two di-
mensions has negative eigenvalues for zero angular momentum states.
Hence, any infinitesimal attraction in two dimensions is sufficient to
create a bound system [1].

In this thesis the crossover from three to two dimensions of a
two particle system of bosons is examined. This is done by calculat-
ing the energies of the system using the correlated Gaussian method,
which utilizes the variational principle with stochastic Gaussian func-
tions as trial functions. Employing fully correlated Gaussians allows
description of non-spherical symmetric systems. Both benefits and
consequences of using a basis of fully correlated Gaussians is dis-
cussed throughout the thesis. Furthermore, the different dynamics
of two dimensions is explained, and the effect of different potentials
on the transitions between three and two dimensions is considered.
The dimensional crossover is achieved by putting the particles in a
one dimensional harmonic oscillator, which is being squeezed in one
dimension. This confines the movement of the particles in one dimen-
sion but allows them to move freely in the remaining two dimensions.

Using the hydrogen system as reference the fully correlated Gaus-
sian basis is tested for its capability of accurately describing a non-
spherical symmetric system. Following this, the dimensional crossover
is described for several interactive potentials between the particles.
Lastly, the effective ranges of the potentials are calculated, and the
crossover plot is scaled according to the effective ranges in order to
examine whether the crossover is universal for any shape of the inter-
active potential.
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Chapter 2

Mathematical description of
the variational method

The variational method is an approach to estimate the energies of
a physical system. The method allows approximation of both the
ground state and exited states using arbitrary functions. Naturally a
well chosen function will yield a more accurate result, however, the
variational principle will give an upper bound for the energy of the
desired state in any case. This chapter is based off theory described
in Suzuki and Varga[2], where proofs for the following theorems can
be found.

To illustrate this, consider a physical system with a Hamiltonian
Ĥ, which is time independent and bounded from below. The eigen-
value problems thus reads

Ĥφ = Enφ n = 1, 2, . . . (2.1)

where the eigenvalues En are assumed to be in order such that

E1 ≤ E2 ≤ . . . . (2.2)

Although the Hamiltonian of the system may be known, its eigen-
values and eigenvectors are often unknown. Due to the difficulty of
actually solving the eigenvalue equation, it is in many cases more ef-
ficient to approximate to the solution. For this reason the variational
method is extremely useful.
One of the key features of the variational principle is described in the
Ritz theorem.

Theorem 2.1 (Ritz theorem) For an arbitrary function Ψ of the
state space the expectation value of Ĥ in the state Ψ is such that

E ≡ 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≥ E1 , (2.3)
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where the equality holds if and only if Ψ is an eigenstate of Ĥ with
the eigenvalue E1.

Hence, the expectation value of the Hamiltonian taken with an ar-
bitrarily chosen function will yield an upper bound for the ground
state energy. By choosing ”good” functions, the deviation from E1

becomes minimal. However, the approximation may only be exact
for the eigenfunction itself.
The variational principle is not restricted to ground state approxi-
mations. In order to describe exited states, a linear combination of
independent functions is often used

Ψ =
K∑
i=1

ciψi . (2.4)

Although the functions have to be linear independent, they are not
required to be mutually orthogonal. For non-orthogonal functions
(E.g the Gaussian functions used in the correlated Gaussian method)
the overlap is not unit. Thus, the eigenvalue problem of equation
2.1 becomes a general eigenvalue problem. The functions ψ1, . . . , ψK
spans the subspace VK , thus restricting the eigenvalue problem to
said subspace, which in many cases is an advantage.

Theorem 2.2 (Mini-Max theorem) Let Ĥ be a Hermitian oper-
ator with discrete eigenvalues E1 ≤ E2 ≤ . . .. Let ε1 ≤ ε2 ≤ . . . ≤ εK
be the eigenvalues of Ĥ restricted to the subspace VK of a linearly
independent set of K functions ψ1, . . . , ψK. Then

E1 ≤ ε1, E2 ≤ ε2, . . . , EK ≤ εK . (2.5)

Using a linear combination of linear independent functions thus al-
lows for approximation of the ground state plus an additional K − 1
excited states. Restricting the problem to a subspace VK has several
advantages. One of them is the ability to increase the precision of
the approximated eigenvalues by expanding the basis. Hence, higher
precision can be achieved through either better trial functions ψi, an
increase in basis size K, or a combination of both. The following
theorem describes the consequences of increasing the basis size.

Theorem 2.3 Let ε1 ≤ ε2 ≤ . . . ≤ εK be the eigenvalues of a Hermi-
tian operator Ĥ restricted to the subspace VK of linear combinations
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of independent functions ψ1, . . . , ψK. Let ε′1 ≤ ε′2 ≤ . . . ≤ ε′K+1 be the

eigenvalues of Ĥ restricted to the subspace VK+1 of linear combina-
tions of independent functions ψ1, . . . , ψK , ψK+1. Then

ε′1 ≤ ε1 ≤ ε′2 ≤ ε2 ≤ . . . ≤ ε′K ≤ εK ≤ ε′K+1 . (2.6)

An expansion of the basis will not worsen the previously calculated
eigenvalues. Therefore, expanding the basis can be done without
worry of loss of precision. Since this applies to all the previously cal-
culated eigenvalues, one may find that improving the approximation
of the energy of a higher exited state may yield better results for all
lower lying states. In the limiting case of the subspace approaching
the full Hilbert space, all the eigenvalues of the restricted subspace
will converge to the exact eigenvalues of the Hamiltonian [2]. Thus,
theorem 2.3 in principle implies the Mini-Max Theorem.

In practice increasing the basis size for higher precision is not
always a viable strategy. This is mainly due to the system becom-
ing overdetermined causing numeric eigenvalues algorithm to produce
round-off errors, thus reducing precision. Furthermore, a larger basis
requires more computations. When determining the eigenvalues of a
system, one has to weigh precision against time spent, and depending
on the system only a small basis may be required for accurate results.



Chapter 3

The correlated Gaussian method

In the correlated Gaussian method stochastic generated Gaussian
functions are used as trial function for approximating the eigenen-
ergies of a system. The method is based on the principles of the
variational method and offers the advantage of easily calculated ma-
trix elements.

3.1 The generalized eigenvalue problem

Because Gaussians are generally not orthogonal, their overlap will
not be diagonal. A consequence of this is a generalized eigenvalue
problem. Consider the eigenvalue problem

Ĥ|Ψ〉 = E|Ψ〉 , (3.1)

in which E and |Ψ〉 are considered the true eigenvalue and eigen-
function of the Hamiltonian. Next, consider a function |φk〉 from
the subspace VK of the chosen basis functions. Inserting |φk〉 into
equation 3.1 yields

Ĥ|φk〉 = εk|φk〉 , (3.2)

where εk is the energy corresponding to the state |φk〉. As |φk〉 is
part of the subspace of the basis, it can be represented as a linear
combination of the basis functions |ψi〉. Thus, equation 3.2 reads

Ĥ
K∑
i=1

ck,i|ψi〉 = εk

K∑
i=1

ck,i|ψi〉 . (3.3)

Now, projecting equation 3.3 onto an arbitrary basis function |ψj〉 for
the subspace VK results in

K∑
i=1

ck,i〈ψj|Ĥ|ψi〉 = εk

K∑
i=1

ck,i〈ψj|ψi〉 . (3.4)
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CHAPTER 3. THE CORRELATED GAUSSIAN METHOD 6

This expression can be written much more compactly in matrix form
by defining the matrix elements

Hj,i ≡ 〈ψj|Ĥ|ψi〉 , Bj,i ≡ 〈ψj|ψi〉 . (3.5)

From these elements equation 3.4 can be written as

Hck = εkBck , (3.6)

which is a generalized eigenvalue problem.
Through Cholesky decomposition the problem can be reduced to an
ordinary eigenvalue problem. In the Cholesky decomposition of the
overlap matrix, B, it is written as a product of lower triangular matrix
L and its transposed

B = LLT . (3.7)

For the decomposition, it is a requirement that B is positive definite.
However, B is a Gram-matrix, meaning its entries are inner products
of a set of vectors. Therefore, it is positive definite by definition
[3]. Inserting the decomposition 3.7 into the generalized eigenvalue
problem 3.6 allows the rewriting

Hck = εkLL
Tck ⇔

L−1H(LT )−1LTck = εkL
Tck ⇔

H′ck′ = εkck
′ . (3.8)

The generalized eigenvalue problem has thus been transformed into
a regular eigenvalue problem without modifying the eigenvalues εk.

3.2 Selection of coordinates for the

system

Using the right set of coordinates for the system at hand can often
simplify calculations. In this instance it is the inner structure of a
system of particles that is of interest. Thus, using relative coordinates
allows for separation of the center of mass coordinate, which can be
neglected in any computations regarding the relative positions of the
particles. As a result a system of N bodies can be described by a set
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of independent, relative coordinates {x1, . . . ,xN−1}.
For this a linear coordinate transformation is used

x̃ = U r̃ , (3.9)

where r̃ is the coordinate vectors of the N particles, and U is the
transformation matrix. The tilde abbreviates a super vector, which
is a vector containing other vectors. Thus, x̃ is the vector containing
all the relative coordinate vectors

x̃ ≡

x1
...

xN

 . (3.10)

The transformation matrix can be chosen in several ways following
certain criteria which allows for easier calculations: Firstly, the final
row of U is chosen such that xN is the center of mass coordinate.
Secondly, if the matrix is unitary, the diagonal form of the kinetic
energy and the harmonic trap is preserved in the new coordinates [4]

T =− h̄2

2m

∑
i

∂

∂x2
i

(3.11)

Vh =
mω2

2

∑
i

x2
i . (3.12)

With these considerations in mind the transformation matrix was
chosen as [2]

U =


1 −1 0 . . . 0
m1

m1+m2

m2

m1+m2
−1 . . . 0

...
...

...
. . .

...
m1

m1+...+mN

m2

m1+...+mN
. . . . . . mN

m1+...+mN

 . (3.13)

The resulting coordinate of using the matrix 3.13 is a set of Jacobi
coordinates.

Choosing a transformation matrix such as U allows separation of
the internal motion from the motion of the center of mass, which
was among the desired effects of changing coordinates. Applying the
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inverse of the transformation 3.9 upon the momentum operator yields
[2]

pi,r =
N∑
j=1

Ujipj,x =
h̄

i

N∑
j=1

Uji
∂

∂xj
. (3.14)

Knowing this the total kinetic energy operator can be written as [5]

−
N∑
i=1

h̄2p2
i,r

2mi

=− h̄2

2

N∑
i=1

1

mi

(
N∑
k=1

Uki
∂

∂xk

)(
N∑
j=1

Uji
∂

∂xj

)

=− h̄2

2

N−1∑
k=1

N−1∑
j=1

N∑
i=1

UkiUji
mi

∂

∂xk

∂

∂xj
− h̄2

2

N∑
i=1

U2
Ni

mi

∂

∂x2
N

=− h̄2

2

N−1∑
k=1

N−1∑
j=1

Λkj
∂

∂xk

∂

∂xj
− h̄2

2(m1 + . . .+mN)

∂

∂x2
N

= T̂int + T̂CM , (3.15)

where T̂int and T̂CM denotes the kinetic energy operator of the internal
system and the center of mass respectively. Furthermore, the matrix
elements Λkj are defined as

Λkj ≡
N∑
i=1

UkiUji
mi

, (3.16)

such that Λ, in the case of the transformation matrix 3.13, is a diag-
onal matrix containing inverses of the reduced masses of the jacobi
subsystems. Finally, in the derivation of equation 3.15 the relation

N∑
i=1

Uji = δN,i (3.17)

was used, where δ is the delta function. Equation 3.17 can easily be
seen from the transformation matrix 3.13, as each row sums to zero
besides the N ’th, which sums to one.

3.3 Description of the basis

As stated in the Ritz theorem, theorem 2.1, any arbitrary function
can be chosen as part of the basis. However, when choosing types of
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functions one should consider the properties of said functions. Firstly,
the matrix elements specified in equation 3.5 should be easy to calcu-
late analytically. Secondly, the functions should be flexible enough to
account for any number of bodies described and for rapidly varying
functions. Gaussian functions fit all of these criteria.

Mainly there are two types of Gaussian bases, which are used for
stochastic variational methods: Spherical symmetric Gaussians and
fully correlated Gaussians. For spherical symmetric Gaussians each
coordinate vector consists only of a single value, namely the radial
length. This allows for smaller basis functions, hence lower compu-
tation times. In fully correlated Gaussians, however, each coordinate
vector holds Cartesian coordinates. While this causes the basis func-
tions to be much larger, it also allows much more flexibility of the
functions.
In general the Gaussian basis functions can be described as

|A, s;x〉 ≡ exp

(
−

D·n∑
i,j=1

Aij(x̃i − s̃i)(x̃j − s̃j)

)
= e−(x̃−s̃)TA(x̃−s̃) .

(3.18)

Here n = N−1 is the amount of relative coordinate vectors, and D is
the dimensionality of the system. In order to obtain fully correlated
Jacobi coordinates, the transformation matrix 3.13 has to be modified
such that every entry is a diagonal, square matrix of size D. The shift
vector s̃ allows for some additional flexibility of the basis functions.
These vectors are especially important when describing non-spherical
symmetric states.

3.4 Optimization of the basis

When selecting parameters for a new trial function for the varia-
tional method, several approaches can be taken. However, in this
instance stochastic chosen parameters were used. Stochastic varia-
tional method has the advantage of not converging towards a local
minima, which may be very common in more complex systems. Thus,
with enough stochastic samples the algorithm will almost surely con-
verge towards the global minima. The coefficients of the matrix A
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from equation 3.18 were chosen as

Aij = δi,j/b
2
i , (3.19)

where bi is stochastically sampled from an exponential distribution,
and δi,j is the delta function. As a result A is diagonal, which is
preferable for systems with spherical symmetries. For more complex
systems, however, A may be scrambled by taking the matrix prod-
uct A′ = QTAQ, where Q is from a QR-factorization of a randomly
generated matrix. Doing this will conserve the properties of the ma-
trix A. The shift vectors s̃ were also sampled from an exponential
distribution.

When optimizing upon the basis two methods were employed:
Expansion of basis and refinement of basis. For the refinement of the
basis, one function of the basis is selected and temporarily replaced
with randomly generated functions. If either of these functions yield
a lower energy, the original basis function is replaced. This process
continues for the remaining basis functions and can be cycled through
the entire basis multiple times for increased effect. Optimization of
the basis may also be achieved through expansion of the basis as
described by theorem 2.3.

In this instance a combination of refinement loops and basis ex-
pansion was used. For the ground state a suitable basis size was cho-
sen, and through several loops of refinement this basis was optimized
for describing the ground state. Thereafter, the exited states were
approximated by expanding the basis. The advantage of this method
is the ease of improving upon a previously calculated result by sim-
ply adding more basis functions. Furthermore, the initial refinement
loops allows a good approximation of the ground state without using
a large basis. This reduces runtime, as calculations become more time
consuming with a larger basis.

As mentioned earlier Gaussians are not orthogonal. While this
causes some additional calculations due to their overlap, it also has
some nice properties. For instance one does not have to ensure that
a newly generated function is orthogonal to the remaining basis [2].
Thus, trial functions can be generated and chosen faster and eas-
ier, therefore increasing the efficiency of the stochastic variational
method.
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3.5 Consequences of full correlation

Determining which type of Gaussian to use for solving a given prob-
lem is very important, as this choice will have great impact on the
efficiency and flexibility of the variational method. As stated ear-
lier, spherical symmetric Gaussians requires fewer calculations than
fully correlated Gaussians. To illustrate this, consider the calcula-
tion of the elements of the overlap matrix. The bottleneck of these
computations lies in taking the determinant of a matrix of size equal
to that of the A-matrices of the Gaussians (see appendix equation
A.3). The determinant can be computed through LU-decomposition
and requires O(n3) computation [6], where n is the size of the given
matrix. Since fully correlated Gaussians have coordinates for every
Cartesian coordinate of the space of the system, their A-matrices will
be of dimensions (N − 1)D × (N − 1)D. This is a factor D larger
than for spherical Gaussians. Since the systems in this instance will
be three dimensional, taking the determinant with a fully correlated
basis requires 33 = 27 times more computations than for spherical
Gaussians. Furthermore, one has to consider the larger amount of
parameters to be optimized for correlated Gaussians. Thus, it should
come as no surprise, that the time of convergence for simple systems of
high symmetry is much lower when using spherical Gaussians. How-
ever, a fully correlated Gaussians basis allows much more versatility
in the systems described. Furthermore, it enables description of sys-
tems with distinct spatial directions.

In theory fully correlated Gaussians should be able to describe all
systems without the use of shift vectors. Shift vectors allows a spher-
ical Gaussian to describe non-spherical symmetric states. However,
shift vectors are also necessary for describing certain exited states in
a fully correlated basis. Consider the parity operator P̂ ,

P̂ϕ(x, t) ≡ Pϕ(−x, t) , (3.20)

where P = ±1 is the eigenvalues of the operator [7]. Gaussian func-
tions have their coordinates squared, and since the Hamilton operator
does not affect the eigenfunction the following relation is true:

〈A, s;x|Ĥ|A, s;x〉 = 〈A, s;−x|Ĥ|A, s;−x〉 . (3.21)

Therefore, without the shift fully correlated Gaussians are unable to
describe states with odd angular momentum quantum number l.



Chapter 4

Bound states in dimensional
crossover

4.1 Centrifugal barrier in two

dimensions

Transitioning from three to two dimensions will have an effect on
the centrifugal barrier operator. In three dimensions the centrifugal
barrier eigenvalues will assume values that are positive or zero, thus
opposing a binding of the particles. In two dimensions, however,
the eigenvalues are negative for zero angular momentum. Thus, an
infinitesimal attraction between particles will be sufficient to cause
a bound system [1]. Consider the kinetic energy operator in two
dimensions

T̂2D = − h̄2

2m
∇2 = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
. (4.1)

Rewriting the operator in polar coordinates and applying it to a func-
tion f(r) yields

T̂2Df = − h̄2

2m

(
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r

∂2f

∂φ2

)
= εf . (4.2)

Consider the function f representing a state with zero angular mo-
mentum, hence its derivative with respect to φ being zero. Further-
more, f is of the form f(r) = rnu(r), whereby equation 4.2 reads

−rn∂
2u

∂r2
− rn−1∂u

∂r
(2n+ 1)− rn−2u(n(n+ 1) + n) =

2mε

h̄2 rnu . (4.3)

Choosing n = −1
2

implies
∫
|f |2d2x =

∫
|u|2dr

∫
dφ. Dividing by rn

in equation 4.3, inserting n = −1
2
, and rearranging the terms allows
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writing it in the form

− h̄2

2m

(
∂2u

∂r2
− 1

4r2
u

)
= εu . (4.4)

The term h̄2

2m
1

4r2
is the centrifugal barrier, which, as stated earlier, has

the opposite sign of its three dimensional counterpart. This centrifu-
gal barrier is a consequence of the system being two dimensional and
will only act as an effective potential. Thus, it will not lead to the
binding of particles on its own, however, any infinitesimal attraction
between the particles will cause them to create a bound system [1].

4.2 Squeezing of harmonic oscillator

An advantage of the fully correlated basis is the ability to actively
adjust the potential in a single direction. This allows investigation of
quantum systems in the transition from three to two dimensions. To
achieve this, the particles are placed in a harmonic oscillator in the
z-direction

Vosc =
1

2
mω2z2 =

1

2

h̄2

mb2
osc

z2

b2
osc

, (4.5)

where bosc is considered the width of the oscillator. In the limit of
bosc → ∞ the strength of the oscillator becomes negligible, and the
particles will behave as if they were free. However, in the limit of
bosc → 0 the particles will effectively be trapped in the xy-plane.
Thus, the effect of the dimensional crossover from three to two di-
mensions can be analysed by calculating the energies of the system
for varying lengths of bosc.

In order to actually see the formation of a bound system, it is
necessary to separate the oscillator potential of the center of mass
from that of the internal system. As seen in equation 3.15 the kinetic
energy operator could be split into a term involving the center of
mass and a term involving the internal motion. Likewise can be done
for the harmonic oscillator. Hence, the Hamilton of the system can
be split into a term for the internal system and for the center of
mass, which allows describing the two systems separately. Thus, the
eigenvalue problem for the center of mass reads

(T̂CM + V̂osc,CM)ψ0 =
1

2
h̄ωψ0 . (4.6)
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Therefore, separating the center of mass coordinate from the remain-
ing Jacobi coordinates in equation 4.5 allows for description of the
internal system (see Appendix A.4). Furthermore, the expectation
value of the harmonic oscillator has to be subtracted from the result
in order to see the effect of the squeezing. Otherwise, as bosc becomes
small, the potential energy of the oscillator grows huge thus overshad-
owing the effect of the dimensional crossover.

The squeezing of harmonic oscillators can in fact be done exper-
imentally. For this an optical lattice is used, where counter propa-
gating laser beams trap the atoms in a dipole potential. This is done
by inducing an oscillating dipole moment in the atom, through the
oscillating electric field of the laser. The same field interacts with the
induced dipole moment to create the desired potential. The actual
lattice is formed by interfering multiple laser beams, often to create a
periodic, ”egg tray” like potential. The actual squeezing is achieved
by adjusting the intensity of the laser beams, which determines the
dipole potential. [8]

4.3 Effective range

One point of interest is the energy of a system during the dimensional
crossover and how it is affected by the interactive potential between
the particles. During squeezing the average distance between parti-
cles shortens, hence the expectation value of the interactive potential
should change. Therefore, scaling different interaction potentials in
correlation with some physical parameter could result in a universal
dimensional transitions for all potentials. This physical parameter
could be the effective range of the potentials. [9]

The effective range theory describes nucleon scattering in the low-
energy regime. For kinetic energies lower than the potential, the
theory allows the scattering to be determined by only two parameters:
the scattering length a, and the effective range R [10]. To see this
consider the Schrödinger equation for a radial wave function u(r) with
zero angular momentum,

d2u

dr2
+

(
k2 − 2V µ

h̄2

)
u = 0 , (4.7)
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where k =
√

2µE/h̄2, µ is the reduced mass, and V is the potential.

For large distances the potential will go towards zero, while

uk(r)→ C sin(kr + δ) , (4.8)

where C = 1
sin δ

is a normalization constant. Next, consider the free-
scattering wave function, ũk, which is the equivalent wave function for
zero interaction. The asymptotic behaviour of ũk for large distances
is identical to that of uk, since the potential at these distances is zero.
By multiplying wave functions for two different values of k, solving
the Schrödinger equation and subtracting the results, it can be shown
that [10]

k2 cot δ2 − k1 cot δ1 = (k2
2 − k2

1)

∫ ∞
0

(ũ1ũ2 − u1u2)dr , (4.9)

Taking k1 = 0 and k2 = k yields

k cot δ =
1

a
+

1

2
k2R(k) , (4.10)

where R(k) is the desired effective range, which is given as

R(k) = 2

∫ ∞
0

(ũ0ũk − u0uk)dr . (4.11)

In the low energy regime where E < V , the difference between uk and
u0 will be very small. Therefore, the free-scattering wave functions
will be similar as well, which allows the approximation [10]

R(k) ≈ R(0) = 2

∫ ∞
0

(ũ2
0 − u2

0)dr . (4.12)

The mathematical description of the effective range emphasizes why
it may be a useful scaling parameter. Since the free-scattering wave
function is equal to the original wave functions outside the influence
of the potential, the integrand of equation 4.12 vanishes for larger val-
ues of r. Therefore, the main influence on the value of the effective
range is how far the potential extends. Thus, potentials of compara-
ble range should have comparable effective ranges. As particles are
squeezed together, the energy of their system is dependent on how
much the particles interact. Hence, a system with a longer range
interactive potential should during a dimensional crossover display
different characteristics than if it had a potential of shorter range.
Thus, scaling the potentials with their effective range might cause
the transition to appear very similar for different potentials.



Chapter 5

Testing the method

In order to simplify the numeric calculations it is an advantage to
choose a suitable set of units. For evaluating the hydrogen system
atomic units (a.u.) are very convenient. In atomic units the electron
mass, the elementary charge, Plancks reduced constant and Coulombs
constant is set to unity

me = e = h̄ = ke = 1 a.u. . (5.1)

This has the favourable consequence of simplifying several quantities
present in the numerical computations:

a0 =
4πε0h̄

2

mee2
= 1 a.u. (5.2)

E0 =− me

2h̄2

(
e2

4πε0

)2

= −1

2
a.u. (5.3)

µB =
eh̄

2me

=
1

2
a.u. , (5.4)

here a0 being the Bohr radius, E0 being the hydrogen ground state
energy, and µB being the Bohr magneton.

Whether the optimization algorithm achieves good results may de-
pend on the stochastic sampling of the parameters, i.e. bi from equa-
tion 3.19. The mean of the distribution is chosen as the expectation
value of r with respect to the Gaussian function ψγ = exp

(
−1

2
γr2
)

[2]

〈ψγ|r|ψγ〉 =

√
4

πγ
. (5.5)

For hydrogen the mean parameter is set as γ = 4
π
, since the Bohr

radius is unity. The spin of the electron and the nucleus is not con-
sidered in the calculations.

16
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5.1 Expansion of coulomb potential

The hydrogen atom is analytically solvable due to the Coulomb at-
traction being a central force. Thus, the hydrogen wave function can
be split into a radial and an angular part [11]. Unfortunately this
is not possible in a fully correlated basis, as VC ∝ 1

r
, which can not

be split into its Cartesian components. As a solution the Coulomb
potential can be expanded in a series of Gaussian functions. Choos-
ing the unit of length as the Bohr radius a0 prompts the following
expansion

a0

r
'

G∑
k=1

βk exp

(
− r

2

α2
k

)
. (5.6)

One method of determining βk and αk is sampling the parameters
from a given distribution. In this instance αk was sampled with a
logarithmic spacing in the range αmin to αmax. Following this the
values of βk were obtained by solving equation 5.6 for Nr values of r.
The logarithmic distribution was chosen, as 1/r varies fast for small
values of r, thus prompting a higher density of Gaussians compared
to higher values, where variations are slow. The parameters αmin and
αmax were found in [12] through calculations of the hydrogen ground
state energy, which yielded αmin = 0.01 and αmax = 10. However,
replicating those calculations using the logarithmic distribution led to
better convergence for a slightly wider interval, namely αmin = 0.005
and αmax = 12.

Calculating the expectation value of the Coulomb potential is done
in a similar manner to calculating the overlap. The process is illus-
trated in Appendix A.2. Unfortunately the calculations involve taking
a determinant for every Gaussian in the expansion. Hence, compu-
tations involving the Coulomb potential in a fully correlated basis
are very slow, as taking the determinant is a heavy computational
operation.

Finally, increasing the amount of Gaussians in the expansion, G,
will not always yield a better result. Although the fidelity may be-
come lower, the resulting expansion will consist of Gaussians with
very large values of βk and with alternating sign. Such an expansion
will be prone to round-off errors, thus leading to a poor result. There-
fore, an expansion of size G = 10 was chosen, as this was sufficient for
producing accurate results while maintaining a reasonable runtime.
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5.2 The hydrogen atom

The Ritz Theorem, theorem 2.1, states that only the eigenfunction of
the Hamiltonian will yield the exact eigenvalue. Thus, as the approx-
imated energy approaches the eigenvalue so should the linear combi-
nation of Gaussian functions approach the wavefunction. Therefore,
other expectation values than the energy should resemble those of hy-
drogen. The r2 operator commutes with the Hamiltonian [11], thus
it will have the same eigenstates as those of the Hamiltonian. There-
fore, 〈r2〉 can be calculated using the approximated wave function. If
the expectation values of both Ĥ and r̂2 are comparable with theo-
retical values, the linear combination of basis functions resembles the
hydrogen wave function.

For calculating the energies of hydrogen a basis size of K = 8
was chosen for the ground state, as this allowed for decent precision
while maintaining a relatively low runtime. The basis was optimized
through 3 refinement loops with 5000 trial functions for each basis
function. The exited states were calculated by expanding the basis.
For the i’th state 6 + i functions were added to the basis size, and
each member was chosen using 10000 trial functions. In total five
states were optimized, although an additional two were calculated in
order to display further exited states.

The results of the calculations for the first 5 states can be seen
in table 5.1, and a visual of the approximated energies, Eapp, can be
seen in figure 5.1.

Only the ground state improves when optimizing it through refine-
ment loops, while all states are improved when expanding the basis.
After three refinement loops the approximated ground state energy
has almost converged to the theoretical value Egs. The highest exited
states are quite imprecise, as the initially chosen parameters are bet-
ter suited for the lower exited states. However, the two higher exited
states were included primarily as a visual, hence they are not listed
in table 5.1.

As seen from table 5.1 the correlated Gaussian basis is able to
reproduce the energy spectrum of the hydrogen atom within single
digit percentile deviation. Furthermore, the basis is sufficient for cal-
culating 〈r2〉, although the deviation is larger compared to that of
the energies. Further precision could be achieved with more basis
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Figure 5.1: Optimization progress of approximated energy Eapp for hy-
drogen. The ground state is improved through refinement loops, while
additional basis function are added for improving the exited states.

functions and trial functions. However, as computations are slow due
to the expansion of the Coulomb potential, and the calculations are
merely a demonstration of the method, it was not deemed necessary.
Lastly, notice how the calculated energy of the 2s state is below the
tabulated value. This is theoretically impossible when consulting the
Mini-Max theorem. However, since the Coulomb potential is an ex-
pansion, such small deviations are to be expected.

5.3 Zeeman effect

The degeneration of the exited states can be lifted by applying a
magnetic field in one direction, which will select a preferred direction
in space of the angular momentum. This is called the Zeeman effect
and is due to the fields interaction with the magnetic dipole moment
of the electron. Pointing the magnetic field in the direction of the



CHAPTER 5. TESTING THE METHOD 20

Table 5.1: Results of first five states from calculations on the hydrogen
atom without spin. Tabulated values are calculated from equations in
Appendix B.

State Quantity Exp. val. [a.u.] Result [a.u.] Rel. deviation

1s E -0.5000 -0.4996 8.00 · 10−4

r2 3 2.992 2.67 · 10−3

2s E -0.1250 -0.1265 1.20 · 10−2

r2 42 39.19 6.69 · 10−2

2p E -0.1250 -0.1246 3.20 · 10−3

-0.1250 -0.1243 5.60 · 10−3

-0.1250 -0.1236 1.12 · 10−2

r2 30 28.64 4.53 · 10−2

30 28.97 3.43 · 10−2

30 27.36 8.80 · 10−2

z-axis of the system will cause the interaction to depend only on the
z-component of the angular momentum Lz.

The effect of the magnetic field of strength B can be considered a
perturbation to the Hamilton [13]

Ĥ ′ = µBBL̂z , (5.7)

where µB = eh̄
2me

is the Bohr magneton. This perturbation can only
be regarded as valid for weak magnetic fields, as the dependence on
field strength no longer is linear for high magnetic field strength [13].
However, only weak magnetic fields were considered in these calcula-
tions.

The calculations were done for a magnetic field of varying strength
applied on the same hydrogen model as above. However, only the
lowest five states were calculated. Adding the perturbation of the
applied magnetic field to the Hamiltonian yields the data displayed in
figure 5.2. All the energies are linear in field strength, as described by
equation 5.7. Furthermore, the four-fold degeneracy of the first exited
state is lifted. As expected no states with zero angular momentum
are affected by the magnetic field.
The expectation value of the Lz-operator can be obtained from the
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Figure 5.2: Calculated energies of spinless hydrogen atom affected by
magnetic field. The lines are merely for guiding the eye.

slope ∆E
∆B

, as the following relation can be deduced from equation 5.7

〈L̂z〉 =
∆E

µB∆B
. (5.8)

The estimated values of 〈L̂z〉 using equation 5.8 are given in table 5.2
along with the tabulated values.

Table 5.2: Results from calculations on the hydrogen atom in an ex-
ternal magnetic field.

State Quantity Exp. val. [a.u.] Result [a.u.] Rel. deviation

2s Lz 0 −8.7 · 10−3 −
2p Lz -1 −0.974 2.60 · 10−2

0 1.8 · 10−2 −
1 0.998 2.00 · 10−3

Although the relative deviations of the results from tabulated val-
ues are fairly small, a higher precision could be desired. While this
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could be achieved by increasing the size of the basis and using more
trial functions, it would be extremely time consuming, as both the
Coulomb potential and the perturbation has to be calculated for each
magnetic field strength. However, as this is merely a demonstration
of the method further precision was not deemed necessary.



Chapter 6

Results

All system described in the following chapter consists of bosons, thus
their states are not restricted by the Pauli exclusion principle. Fur-
thermore, all particles are of identical mass, m, prompting m as the
scale of mass in the calculations. The matrix elements used for the
computations are given in Appendix A.

6.1 Squeezing of two-particle systems

As described in section 4.2 only an infinitesimal attraction between
the particles should be sufficient to create a bound system in two di-
mensions. Thus, an interaction potential consisting of a single Gaus-
sian was chosen

Vint,1(r) = −S1 exp

(
− r2

b2
int

)
, (6.1)

where r was the distance between the particles, and S1 is the strength
of the potential. bint was defined as the the length scale for the
calculations. The strength of the potential was tuned, such that the
ground state energy would be zero in three dimension. Thus, as the
system transitions into two dimensions, the energy should decrease
and the system should become further bound. This was done due to
an unfortunate consequence of the Gaussian basis. As the width of the
oscillator tends towards larger values, wider Gaussians are needed in
order to describe the system. The variational method takes the lowest
eigenvalue of the Hamiltonian as the ground state energy, however,
the eigenvalue of the widest Gaussian will tend towards zero. This
is due to the eigenvalues of the harmonic oscillator having the form
h̄2

2mb2i
, where bi is the Gaussian width from equation 3.19. Thus, the

approximated energy using Gaussians will not exceed zero when the
system is affected by the harmonic oscillator. Tuning the interactive
strength led to S1 = 2.684.

23
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In addition to the simple interaction potential described in equa-
tion 6.1, another slightly more realistic potential was used

Vint,2(r) = 2S2 exp

(
− r2

(bint/2)2

)
− S2 exp

(
− r2

b2
int

)
. (6.2)

This potential resembles that of atom-atom or nucleon-nucleon inter-
action, in that it is attractive at short ranges and highly repulsive
at very close range. The potential strength S2 was also tuned for a
ground state energy of zero in the limit of three dimensions. This
yielded S2 = 4.188.

Lastly the effect of an exponential potential was explored using

Vint,3(r) = −S3 exp (−bintr) , (6.3)

where the interactive strength was tuned to S3 = 1.4456.
The results were calculated using an initial basis of 10 Gaussian,

which were optimized through three refinement loops with 8000 trial
functions for each Gaussian. Thereafter, another six Gaussians were
added to the basis, each being selected among 4000 candidates. The
calculated binding energies, Eapp − 1

2
h̄ω, of the two body system for

all three interaction potentials can be seen in figure 6.1.
In the three dimensional limit the binding energy asymptotically

approaches zero due to the tuning of the strength of the interactive
potentials. As the system is squeezed in the z-direction by the har-
monic oscillator, the energy drops until the system reaches the two
dimensional limit. The energy, which the system reaches upon being
squeezed, is dependent on both the tuned strength of the potential
and the actual shape of the potential. For instance, the local mini-
mum in the energy for the double Gaussian interaction is due to the
shape of the potential. As the particles are squeezed together their ex-
pected distance reaches the bottom of the outer Gaussian, while any
further squeezing causes less attraction, thus a lesser bound system.
Furthermore, the energy during the transition shows high dependence
on the reach of the potential. The curves for the three potentials are
almost identical for the first part of the transitions, which is due
to the potentials appearing identical from large distances. Once the
particles are squeezed further together, the difference between the
potentials becomes noticeable. For instance, the exponential poten-
tial has a longer range than the Gaussian potentials, which causes its
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Figure 6.1: Calculated ground state energy of two particle system for
various trap widths. The dashed lines are merely for guiding the eye.

corresponding curve to break off from the other curves early. From
these observations it appears very likely that scaling the potentials
according to their effective range might result in a similar, or in best
case universal, dimensional crossover.

6.2 Potentials scaled with effective

range

In order to compute the effective ranges using equation 4.12 the wave
function, u0, and the free-scattering wave function, ũ0, had to be
found for each potential. The wave function u0 was found by solv-
ing the Schrödinger equation 4.7 for E = 0 numerically. The free-
scattering wave function was determined as a straight line with the
same slope as u0 for large distances. This was due to ũ0 being defined



CHAPTER 6. RESULTS 26

as the function with the same asymptotic behaviour as the wave func-
tion. For potentials tuned for zero energy in the three dimensional
limit, the asymptotic behaviour of the wave function should be a
straight line with zero slope. This is due to the wave functions hav-
ing the shape ψ = e

√
EBrC , with EB being the binding energy, and

C being some constant. Thus, a binding energy of zero outside the
potential yields a constant wave function. The numerically calculated
wave functions can be seen in Appendix C. Inserting the wave func-
tions into equation 4.12 yields the effective ranges displayed in table
6.1 As expected the exponential potential has a much larger effective

Table 6.1: Calculated effective ranges for interactive potentials.

Potential Single Gaussian Double Gaussian Exponential

Effective range 1.4394 1.7061 3.5483

range than the Gaussian potentials. Likewise, the two Gaussian po-
tentials have very similar effective ranges with the double Gaussian
having the largest, which is probably due to the tuned strength of
this potential having the highest value.

For scaling the calculated result in figure 6.1 the length scale of
individual curves was chosen as the corresponding effective range.
Thus, the curves are plotted as a function of the harmonic oscillator
width in units of the respective effective ranges. Furthermore, the
energy is scaled according to the natural unit of energy with the cho-
sen scales of length and mass. Hence, the energy is given in units of
h̄2

2µR2 , where R corresponds to the effective effective range of the indi-
vidual curves. The result of the scaling can be seen in figure 6.2. As
a result of the scaling the curves seem to follow a universal curve dur-
ing the weak-binding part of the dimensional crossover. Whereas the
curve of the exponential interaction broke off from the other curves
very early in figure 6.1, it now follows the same path as the Gaussian
potentials, even though the shape of the potentials is different. In
the two dimensional limit the curves are obviously very different, as
the values, which the curves converge towards, are highly dependent
on the tuning of the potentials as well as their shape. Scaling the
curves has resulted in a different ordering of which potential yields
the tightest bound system. However, no useful information has come
of this, as the actual crossover rather than the two dimensional limit
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Figure 6.2: Results from figure 6.1 scaled according to the effective
ranges, R, of the interactive potentials.

is of interest. Figure 6.3 shows a comparison of figure 6.1 and figure
6.2 in the area of interest, which is during the dimensional crossover.
The curves all tend asymptotically towards zero due to the tuning
of the potentials, whereby the universality of the curves in both the
scaled and the non-scaled case should come as no surprise. However,
as figure 6.3 clearly shows, the non-scaled curves starts diverging from
each other as soon as the oscillator width becomes comparable with
the length scale. However, this is not the case of the scaled curves,
which diverge by only a tiny fraction once the oscillator width be-
comes equal to the length scale. Although this example is not proof
of a universal behaviour during the dimensional crossover, the results
highlighted in figure 6.3 clearly suggest a universal behaviour.

This illustrates the possibility of a universality of the dimensional
crossover for two-particle bosonic systems. Whether this universal-
ity applies to systems of any number of particles is left to explore.
Although the fully correlated Gaussian method was excellent for ap-
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Figure 6.3: Comparison of dimensional crossover displayed in figure
6.1 and figure 6.2.

proximating energies for two particles, it struggled at three parti-
cles, due to the large increase in parameters when considering all
three spacial dimensions. Thus, a more refined algorithm than sim-
ply choosing random trial functions is required for describing more
particles. Furthermore, an uneven distribution of mass may also af-
fect the crossover, all of which could be explored in further studies.



Chapter 7

Conclusion

The objective of this thesis was to explore the dimensional crossover
from three to two dimensions. In order to achieve this, stochastic
variational method was used with a basis of fully correlated Gaus-
sians. The consequences of using fully correlated Gaussians were dis-
cussed, and their ability to describe non-spherical symmetric systems
was tested by calculating the spectrum of hydrogen and the splitting
of energies when applying a magnetic field to the spinless hydrogen
atom. The results confirmed the ability of the basis to describe non-
spherical symmetric systems.

For realising the transition of dimensionality, a two boson system
was put in a one dimensional harmonic oscillator trap. By squeez-
ing the oscillator, the movement of the particles became confined
in one dimension, thus effectively restricting the particles to two di-
mensional space. In two dimensions the centrifugal barrier operator
has negative eigenvalue, causing an infinitesimal attraction between
the particles to create a bound system. Using the fully correlated
Gaussian method, the ground state energy was calculated for vari-
ous widths of the trap. This was done for three different kinds of
interactive potentials between the particles in order to illustrate their
effect on the dimensional crossover. As expected the energy of the
system decreased when being squeezed. However, the energy curves
were very dependent on the shape and strength of the interactive po-
tential. Nevertheless, the initial part of the transition was identical
for all potentials, which prompted an investigation of whether scaling
the curves according to some physical parameter would result in a
universal curve. Thus, the effective ranges of the potentials were cal-
culated numerically and used as the length scale of the calculations.
The result revealed that the weak-binding part of the transition was
universal for all three interactive potentials.

Further studies could explore the effect of adding more particles
to the system as well as using particles, which are not identical.
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[13] Demtröder, W.: Atoms, Molecules and Photons, 2nd Ed.,
Springer, Inc., 2010



Appendix A

Full correlation matrix elements

This appendix will list the matrix elements used in the numerical
computation. For this some notation has to be introduced. A basis
function will be denoted

|A, s;x〉 ≡ exp

(
−

D·n∑
i,j=1

Aij(x̃i − s̃i)(x̃j − s̃j)

)
= e−(x̃−s̃)TA(x̃−s̃) ,

(A.1)

where the tilde denotes super vectors. For more simplistic expressions
for integrals the following notation is used

dx̃ ≡ dDx1 . . . d
Dxn , (A.2)

where D is the amount of spatial dimensions. For this entire thesis
D = 3 was used.
Formulae used to calculate matrix elements were found in [4], how-
ever, all elements are analytical and can be calculated using the de-
scribed integrals.

A.1 Overlap and kinetic energy

The overlap of correlated Gaussian functions is given as

N ≡ 〈A′, s′;x′|A, s;x〉

=

∫ ∞
−∞

dx̃ e−(x̃−s̃′)TA′(x̃−s̃′)−(x̃−s̃)TA(x̃−s̃)

=
π

D·n
2

√
detB

e−s̃
′TA′s̃′−s̃TAs̃+ 1

4
ṽTB−1ṽ , (A.3)

where

B ≡ A+ A′ (A.4)

ṽ ≡ 2As̃ + 2A′s̃′ . (A.5)
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Following this the expectation value of the kinetic energy is given as

T ≡ 〈A′, s′;x′|∂
T

∂x̃
Λ
∂

∂x̃
|A, s;x〉

=N ·
(
2tr
(
A′ΛAB−1

)
+ 4ũTA′ΛAũ

− 4ũT (A′ΛAs̃ + AΛA′s̃′) + 4s̃′
T
A′ΛAs̃

)
, (A.6)

where Λ is the reduced mass matrix described in equation 3.16 and

ũ =
1

2
B−1ṽ . (A.7)

A.2 Coulomb potential

As stated previously the coulomb interaction can be described through
an expansion of Gauss functions. Thus, the Coulomb interaction be-
tween particle i and j is given as

V̂coul,ij = qiqj

G∑
k=1

βk · exp

(
(ri − rj)

2

α2
k

)
(A.8)

Using the inverse of the coordinate transformation matrix U−1

allows a description of the potential energy operator using Jacobi
coordinates.

V̂coul,ij = qiqj

G∑
k=1

βk · exp

(
r2
i + r2

j − 2ri · rj
α2
k

)

= qiqj

G∑
k=1

βk · exp

(
r̃TRij r̃

α2
k

)

= qiqj

G∑
k=1

βk · exp
(
x̃Tκijkx̃

)
, (A.9)

where qi is the charge of the i’th particle. Rij denotes the interaction
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matrix between particle i and j, which takes the form

Rij =



1 i j . . . n

1 0D 0D 0D . . . 0D
i 0D ID −ID . . . 0D
j 0D −ID ID . . . 0D
...

...
...

...
. . .

...
n 0D 0D 0D . . . 0D

 , (A.10)

where 0D is the zero matrix and ID is the identity matrix both of side
length D. Following this κijk is defined as

κijk ≡ U−1T Rij

α2
k

U−1 . (A.11)

Using this definition the potential energy matrix element can be com-
puted in the same manner as the overlap:

Vcoul,ij ≡ 〈A′, s′;x′|V̂coul,ij|A, s;x〉

= qiqj

G∑
k=1

βk
π

D·n
2√

detκijk
e−s̃

′TA′s̃′−s̃TAs̃+ 1
4
ṽT κ−1

ijkṽ (A.12)

A.3 Angular momentum

For this matrix element only the two particle case is considered. Thus,
the matrices A will be of dimensions 3×3 and the Jacobi coordinates
read

x̃ = x =

xxxy
xz

 . (A.13)

Applying the z-component of the angular momentum operator on a
Gaussian function yields

L̂z|A, s;x〉 =
(
xy(2A11xx − 2ux + A12xy + A21xy + A13xz + A31xz)

−xx(A12xx − 2uy + A21xx + 2A22xy + A23xz + A32xz)
)

·|A, s;x〉 , (A.14)
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where u = 2sTA is three dimensional such as A.13. The above expres-
sion can be reduced since A is symmetric. In matrix form equation
A.14 reads

L̂z|A, s;x〉 =
(
xTFx + aT · x

)
|A, s;x〉 , (A.15)

where

F =

 −2A12 A11 − A22 −A23

A11 − A22 2A12 A13

−A23 A13 0

 and a =

 2uy
−2ux

0

 . (A.16)

Thus, the expectation value of the operator in matrix form is given
as

〈A′, s′;x|L̂z|A, s;x〉 = N

(
uTFu +

1

2
tr(FB−1) + aTu

)
(A.17)

A.4 Harmonic oscillator

For a system consisting of two identical particles of mass m the po-
tential energy operator of a harmonic oscillator can be written as

Vosc =
1

2

h̄2

mb4
osc

z2
1 +

1

2

h̄2

mb4
osc

z2
2

=
1

2

h̄2

mb4
osc

(
(z1 − z2)2

2
+

(z1 + z2)2

2

)
=

1

2

h̄2

1
2
mb4

osc

x2
z +

1

2

h̄2

2mb4
osc

R2
z

=
1

2
µω2

µx
2
z +

1

2
Mω2

MR
2
z , (A.18)

where µ and ωµ are the reduced mass and its corresponding oscillation
frequency, while M and ωM are the total mass and its corresponding
oscillation frequency. Lastly xz is the z-component of the relative
coordinate, while Rz is the z-component of the center of mass coordi-
nate. Thus, the potential energy operator can be split into a relative
part and a center of mass part.
The expectation value is calculated as

〈A′, s′;x| ˆVosc|A, s;x〉 = N

(
uTQu +

1

2
tr(QB−1)

)
, (A.19)
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where Q is the matrix

Q =

0 0 0
0 0 0
0 0 1

 , (A.20)

which selects the z-component of the two particle jacobi coordinate.



Appendix B

Expectation values of hydro-
gen

The following equations were used for calculating the tabulated ex-
pectation values for the hydrogen atom:

En =− mee
4

2(4πε0)2h̄2n2
(B.1)

〈r̂2〉 = a2
0n

4

(
1 +

3

2

(
1−

l(l + 1)− 1
3

n2

))
(B.2)

〈L̂z〉 = mh̄ , (B.3)

where n is the principal quantum number, me is the mass of the
electron, l is the angular quantum number, and m is the magnetic
quantum number.
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Appendix C

Zero energy scattering wave
functions

The following figures show the results from solving equation 4.7 nu-
merically for E = 0. The free-scattering wave function ũ0(r) is equal
to the asymptotic behaviour of the wave function u0(r). Due to the
binding energy being zero outside the potential, the resulting free-
scattering wave function is a straight line with zero slope. Using
these wave functions the effective ranges were calculated.
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Figure C.1: Numerically calculated wave functions for the single
Gaussian potential described in equation 6.1. The normalized wave
function, u0, and free-scattering wave function, ũ0, are plotted along-
side the corresponding potential.

38



APPENDIX C. ZERO ENERGY SCATTERING WAVE
FUNCTIONS 39

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

2

3

4

r [bint]

V
(r

)

Potential
u0(r)
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Figure C.2: Numerically calculated wave functions for the double
Gaussian potential described in equation 6.2. The normalized wave
function, u0, and free-scattering wave function, ũ0, are plotted along-
side the corresponding potential.
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Figure C.3: Numerically calculated wave functions for the exponential
potential described in equation 6.3. The normalized wave function,
u0, and free-scattering wave function, ũ0, are plotted alongside the
corresponding potential.


