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Abstract

The nuclear model with explicit mesons (MEM) has gained popularity

in recent years, reproducing the mass and the width of the N(1440)

Roper resonance [1] and the binding energy of the deuteron [2] among

other things. The question about how to include repulsion in themodel

remains unknown. In the following thesis an 𝜔meson has been added

to the established deuteron model, trying to explain repulsion.

Through the variational principle and correlated Gaussian’s as base

functions the binding energy of the deuteron could be reproduced

(about -2.20 MeV), but adding the 𝜔 meson led to a lowering in en-

ergy and therefore not to repulsion. Two different types of creation

operators were considered, which introduced 2 new parameters to the

model. Unfortunately no reasonable combination of these parameters

resulted in an increase in energy. An investigation of the effective

potential showed that the addition of the 𝜔 meson results in a deeper

effective potential and no repulsion could be found. A new approach

independent of the variational principle or a different form of creation

operator may be needed to explain repulsion in the MEM.



Resumé

En nuklear model med eksplicitte mesoner (MEM) har fået mere pop-

ularitet igennem de sidste år. Herved kunne man blandt andet re-

producere bindingsenergien af deuteronen [2] og massen og bredden

af N(1440) [1]. Det er stadigvæk uklart, hvordan frastødning kan

inkluderes i modellen. I det følgende projekt bliver der tilføjet en

𝜔-meson til den etablerede deuteronmodel, som forsøg på at forklare

frastødning.

Igennem brugen af variationsprincippet og korrelerede gauss som

basisfunktioner kunne den korrekte bindingsenergi af deuteronen re-

produceres (omkring -2.20 MeV). Tilføjelsen af 𝜔-mesonen førte til en

lavere energi og dermed ikke til frastødning. To forskellige former af

skabelsesoperator blev brugt for at danne 𝜔-mesonen, hvorved to nye

parametre blev introduceret. Det fremtrådte at ingen realistisk kom-

bination af disse parametre førte til frastødning. Desuden resulterede

tilføjelsen af 𝜔-mesonen til et dybere effektiv potentiale, uden tegn

på frastødning. En ny tilgang uden variationsprincippet eller en ny

form for skabelsesoperator kunne hjælpe med at forklare frastøding i

MEM.
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Chapter 1

Introduction

In the nuclear model with explicit mesons (MEM), the nucleons do not

interact via a phenomenological potential but rather by the emission

and absorption of mesons[2]. The mesons are treated on the same

footing as the nucleons and the nucleus is represented by a super-

position of states, where the nucleons are surrounded by a different

number of mesons [1]. The nucleus is hold together by transitioning

between these states[2].

The advantages of this model are the reduced number of parameters,

natural inclusion of mesonic physics and natural inclusion of few

body forces [2].

In recent years the model had success reproducing the binding energy

and the charge radius of the deuteron [2], the mass and the width of

the N(1440) Roper resonance [1] and the cross section for neutral pion

photoproduction off protons [3] among other things.

However it isn’t clear, how repulsion is included in this model. Since

the 𝜔 meson is responsible for short range repulsion[4], it might be a

good starting point. In the following the exchange of an 𝜔 meson is

investigated and some simple models are looked at, trying to explain

repulsion in the MEM.

The model and methods used will be in continuation of [2], where the

deuteron could be modeled by a superposition of the nucleons and

the nucleons plus a 𝜎 meson. In extension of that, the 𝜔 meson will

6
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be added and the resulting energy will be compared with the found

binding energy of about -2.20 MeV [2]. If adding the 𝜔 meson results

in an increase in energy, it might indicate repulsion.



Chapter 2

Theory

2.1 System

In the MEM theory, the deuteron can be modeled by a superposition of

the bare nucleons and the nucleons with one sigma meson. According

to [2] this leads to the correct binding energy. Expanding this form,

we are going to add another subsystem with the nucleons and an 𝜔
meson. The state is now a superposition of 3 states:

Ψ =
⎛
⎜
⎜
⎜
⎝

𝜓𝑛𝑝(𝑟𝑛, 𝑟𝑝)
𝜓𝑛𝑝𝜎(𝑟𝑛, 𝑟𝑝, 𝑟𝜎)
𝜓𝑛𝑝𝜔(𝑟𝑛, 𝑟𝑝, 𝑟𝜔).

⎞
⎟
⎟
⎟
⎠

(2.1)

The advantage of this form is that it can easily be compared with

the model including only one sigma meson, where we know what to

expect (more to this later).

Looking at the time independent Schrödinger equation leads to these

sets of equations:

⎛
⎜
⎜
⎜
⎝

𝐾𝑛 + 𝐾𝑝 𝑊 †
𝜎 𝑊 †

𝜔

𝑊𝜎 𝐾𝑛 + 𝐾𝑝 + 𝐾𝜎 + 𝑚𝜎 0
𝑊𝜔 0 𝐾𝑛 + 𝐾𝑝 + 𝐾𝜔 + 𝑚𝜔

⎞
⎟
⎟
⎟
⎠

Ψ = 𝐸Ψ (2.2)

, where W is a creation operator, which creates a meson of the given

type and W
†
annihilates it (we will discuss these later). Note that

8
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we have subtracted the masses of the nucleons from the diagonals

of the Hamiltonian. This leads to the energy on the right side being

the binding energy directly. We can also write the wavefunction as a

linear combination of basis functions[5]:

|Ψ⟩ =
𝑛

∑
𝑖=1
𝑐𝑖|𝜓𝑖(𝛼𝑖)⟩. (2.3)

, with 𝛼𝑖 being a parameter (we will later implement this form through

correlated Gaussian’s).

Inserting this and multiplying with ⟨Ψ| from the left results in:

𝑛

∑
𝑖,𝑗=1

𝑐∗𝑖 𝑐𝑗⟨𝜓𝑖|𝐻 |𝜓𝑗⟩ = 𝐸
𝑛

∑
𝑖,𝑗=1

𝑐∗𝑖 𝑐𝑗⟨𝜓𝑖 | 𝜓𝑗⟩. (2.4)

Isolating the energy leads to:

𝐸[Ψ] =
𝑐†𝑐
𝑐† 𝑐

(2.5)

, where c is an n×1 vector with the coefficients and where

𝑖𝑗 = ⟨𝜓𝑖|𝐻 |𝜓𝑗⟩ and 𝑖𝑗 = ⟨𝜓𝑖 | 𝜓𝑗⟩. (2.6)
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2.2 Variational principle

The variational principle is widely used in the MEM theory and we

will also use it here. Ritz Theorem states that for an arbitrary function

Ψ of the state space the expectation value of H in the state Ψ is such

that

𝐸 ≡
⟨Ψ|𝐻|Ψ⟩
⟨Ψ | Ψ⟩

≥ 𝐸1 (2.7)

, where E1 is the ground energy (in our case the binding energy) [5].

This approach of cause gives an approximation of the binding energy,

but with a good choice of the basis function, we can expect a high

chance to come close to the true binding energy. This of course

depends on our trail function Ψ, where we are using the form of

Ψ as in 𝑒𝑞. (2.3). A popular choice of basis functions are correlated

Gaussian’s[6][7][8], which where also used as the base function in [2],

when calculating the binding energy of the deuteron. Differentiating

equation eq. (2.5) with respect to the coefficients leads to[9]:

𝜕𝐸[Ψ]
𝜕𝑐

=
1

(𝑐† 𝑐)2 (
𝑐† 𝑐

𝜕
𝜕𝑐 (

𝑐†𝑐) − 𝑐†𝑐
𝜕
𝜕𝑐 (

𝑐† 𝑐)) (2.8)

=
2

(𝑐† 𝑐)2 (
𝑐† 𝑐 ⋅ 𝑐† − 𝑐†𝑐 ⋅ 𝑐† ) (2.9)

=
2

𝑐† 𝑐 (
𝑐† − 𝐸[Ψ]𝑐† ) (2.10)

=
2

𝑐† 𝑐 (
𝑐 − 𝐸[Ψ] 𝑐)

†
(2.11)

, where we have used, that  and  are hermitian. Hence we see

that minimizing the energy with respect to c is equivalent to solving

the following equation:

𝑐 − 𝐸 𝑐. (2.12)

This is the equation we have to solve to find the binding energy. If it

rises compared to the system with one 𝜎 meson, this might indicate

that the 𝜔 meson is responsible for repulsion in the MEM.
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2.3 Jacobi coordinates

Before implementing the correlated Gaussian’s as base functions it is

beneficial tomake a coordinate transformation. The Jacobi coordinates

are a sufficient choice, since they reduce the dimension N of our 3

body problem by one, because the center of mass coordinate can be

omitted
1
. They are defined by [10]:

𝑥𝑖 =
𝑁

∑
𝑗=1
𝑈𝑖𝑗𝑟𝑗 (2.13)

, where 𝐫 = (𝑟1, ..., 𝑟𝑁 ) are single particle coordinates, 𝑥𝑁 is chosen to be

the center of mass coordinate and the rest of the coordinates 𝑥1, ..., 𝑥𝑁−1

is a set of independent relative coordinates (see fig. 2.1 for an example).

The matrix U is defined as (with 𝑚12...𝑖 = 𝑚1 + 𝑚2 + ... + 𝑚𝑖)[10]:

𝑈 =

⎛
⎜
⎜
⎜
⎜
⎝

1 −1 0 … 0
𝑚1
𝑚12

𝑚2
𝑚12

−1 … 0
⋮ ⋮ ⋮
𝑚1

𝑚12…𝑁

𝑚2
𝑚12…𝑁

… … 𝑚𝑁
𝑚12…𝑁

⎞
⎟
⎟
⎟
⎟
⎠

. (2.14)

,which leads to (the subscript m is used for either meson):

𝑟𝑛𝑝 = 𝑟𝑝 − 𝑟𝑛, 𝑟𝑛𝑝𝑚 =
𝑚𝑛𝑟𝑛 + 𝑚𝑝𝑟𝑝
𝑚𝑛 + 𝑚𝑝

− 𝑟𝑚 (2.15)

Figure 2.1: The Jacobi coordinates for the np𝜔 subsystem (not to scale). The

vector from the origin O follows the center of mass. The figure is inspired

by figure 2.1 in [10].

1: Note that we only have a 3 body problem, becausewe aren’t looking at the subsystem,

where there is both an 𝜎 and 𝜔 meson.
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The transformation of the kinetic energy operator with the center-

of-mass kinetic energy subtracted is[10]:

𝑁

∑
𝑖=1

𝑝𝑖
2

2𝑚𝑖
− 𝑇𝑐𝑚 =

1
2

𝑁−1

∑
𝑖=1

𝑁−1

∑
𝑗=1

Λ𝑖𝑗𝜋𝑖𝜋𝑗 (2.16)

,with

𝜋𝑖 = −𝑖ℏ
𝜕
𝜕𝑥𝑖

and Λ𝑖𝑗 =
𝑁

∑
𝑘=1

𝑈𝑖𝑘𝑈𝑗𝑘
1
𝑚𝑘
. (2.17)

This leads to (see appendix A):

𝐾𝑛𝑝 = −
ℏ2

2𝜇𝑛𝑝
𝜕2

𝜕𝑟2𝑛𝑝
, 𝐾𝑛𝑝𝑚 = −

ℏ2

2𝜇𝑛𝑝𝑚
𝜕2

𝜕𝑟2𝑛𝑝𝑚
(2.18)

, where 𝜇 is the respective reduced mass:

𝜇𝑛𝑝 =
𝑚𝑛𝑚𝑝
𝑚𝑛 + 𝑚𝑝

, 𝜇𝑛𝑝𝑚 =
𝑚𝑚(𝑚𝑛 + 𝑚𝑝)
𝑚𝑛 + 𝑚𝑝 + 𝑚𝑚

. (2.19)
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2.4 Correlated Gaussian

We are now ready to expand our states in terms of correlated Gaus-

sian’s. We write the wavefunctions as [2]:

𝜓𝑛𝑝(𝐫(𝑑)) =
𝑛(𝑑)

∑
𝑖=1
𝑐(𝑑)𝑖 𝑒−𝐫

(𝑑)T𝐴(𝑑)
𝑖 𝐫(𝑑) ≡

𝑛(𝑑)

∑
𝑖=1
𝑐(𝑑)𝑖 ⟨𝐫(𝑑) | 𝐴(𝑑)

𝑖 ⟩, (2.20)

𝜓𝑛𝑝𝜎(𝐫(𝜎)) =
𝑛(𝜎)

∑
𝑗=1
𝑐(𝜎)𝑗 𝑒−𝐫

(𝜎)T𝐴(𝜎)
𝑗 𝐫(𝜎) ≡

𝑛(𝜎)

∑
𝑖=1
𝑐(𝜎)𝑗 ⟨𝐫(𝜎) | 𝐴(𝜎)

𝑗 ⟩, (2.21)

𝜓𝑛𝑝𝜔(𝐫(𝜔)) =
𝑛(𝜔)

∑
𝑘=1

𝑐(𝜔)𝑘 𝑒−𝐫
(𝜔)T𝐴(𝜔)

𝑘 𝐫(𝜔) ≡
𝑛(𝜔)

∑
𝑘=1

𝑐(𝜔)𝑘 ⟨𝐫(𝜔) | 𝐴(𝜔)
𝑘 ⟩. (2.22)

, where

𝐫(𝑑) = (𝑟𝑛𝑝) , 𝐫(𝜎) =
(
𝑟𝑛𝑝
𝑟𝑛𝑝𝜎)

and 𝐫(𝜔) =
(
𝑟𝑛𝑝
𝑟𝑛𝑝𝜔)

. (2.23)

The upper limit of the sums (n
(𝑑)
, n

(𝜎)
, n

(𝜔)
) are the number of Gaus-

sian’s in the respective subsystem and (c
(𝑑)
𝑖 ,c

(𝜎)
𝑗 ,c

(𝜔)
𝑘 ,A

(𝑑)
𝑖 ,A

(𝜎)
𝑗 ,A

(𝜔)
𝑘 ) are

variational parameters. The A parameters are chosen stochastically,

while the c coefficients are obtained by solving the generalized eigen-

value problem, where the elements can now be written as:

 =
(

⟨𝐴(𝑑)
𝑖 |𝐾𝑛𝑝 |𝐴(𝑑)

𝑖′ ⟩ ⟨𝐴(𝑑)
𝑖 |𝑊 †

𝜎 |𝐴(𝜎)
𝑗 ⟩ ⟨𝐴(𝑑)

𝑖 |𝑊 †
𝜔 |𝐴(𝜔)

𝑘 ⟩

⟨𝐴(𝜎)
𝑗 |𝑊𝜎 |𝐴(𝑑)

𝑖 ⟩ ⟨𝐴(𝜎)
𝑗 |𝐾𝑛𝑝+𝐾𝑛𝑝𝜎+𝑚𝜎 |𝐴(𝜎)

𝑗′ ⟩ 0

⟨𝐴(𝜔)
𝑘 |𝑊𝜔 |𝐴(𝑑)

𝑖 ⟩ 0 ⟨𝐴(𝜔)
𝑘 |𝐾𝑛𝑝+𝐾𝑛𝑝𝜔+𝑚𝜔 |𝐴(𝜔)

𝑘′ ⟩
)

(2.24)

and

 =
⎛
⎜
⎜
⎜
⎝

⟨𝐴(𝑑)
𝑖 | 𝐴(𝑑)

𝑖′ ⟩ 0 0
0 ⟨𝐴(𝜎)

𝑗 | 𝐴(𝜎)
𝑗 ′ ⟩ 0

0 0 ⟨𝐴(𝜔)
𝑘 | 𝐴(𝜔)

𝑘′ ⟩

⎞
⎟
⎟
⎟
⎠

. (2.25)

Consequently we have to solve a n×n eigenvalue problem (where n is

the number of combined Gaussian), where the matrices can be written

as 3 × 3 block matrices.
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2.4.1 Notation

A new notation has been introduced above, namely that vectors writ-

ten in bold contain other vectors, while 3-dimensional vectors are

written with a vector arrow. For example:

𝐫(𝜔) =
(
𝑟𝑛𝑝
𝑟𝑛𝑝𝜔)

. (2.26)

Note that, while 𝐫(𝑑) actually contains only one 3-d vector, the bold

notation is kept for consistency. Apart from that we’ll donate vectors

that pick out single 3-d vectors as 𝑤𝑖:

𝑤T
𝑖 𝐫 = 𝑟𝑖. (2.27)

These new bold vectors behave as follows [6]:

𝐚T𝐛 =
𝑁

∑
𝑖=1
𝑎𝑖 ⋅ 𝑏𝑖, (2.28)

𝐚T𝐴𝐛 =
𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
𝑎𝑖 ⋅ 𝑏𝑖𝐴𝑖𝑗 . (2.29)

The gradient in this notation becomes[9]:

𝜕
𝜕𝐫

= (
𝜕
𝜕𝑟1
,
𝜕
𝜕𝑟2
, ...,

𝜕
𝜕𝑟𝑁 )

. (2.30)

Going back to our wavefunctions, we see that we can write the Gaus-

sian part as[2]:

⟨𝐫 | 𝐴⟩ = exp (−𝐫T𝐴𝐫) = exp
(
−

𝑁

∑
𝑖,𝑗=1

(
𝑟𝑖 − 𝑟𝑗
𝑏𝑖𝑗 )

2

)
(2.31)

, with the matrix A being:

𝐴 =
𝑁

∑
𝑖<𝑗=1

𝑤𝑖𝑗𝑤T
𝑖𝑗

𝑏2
𝑖𝑗

(2.32)

and 𝑤𝑖𝑗 being defined by:

𝑤T
𝑖𝑗𝐫 = 𝑟𝑖 − 𝑟𝑗 . (2.33)
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Under the Jacobi transformation, these transform as [2]:

𝑤𝑖𝑗 → (𝑈−1)T𝑤𝑖𝑗 (2.34)

,which follows from:

𝑤T
𝑖𝑗𝐫 = 𝑤

T
𝑖𝑗(𝑈

−1)𝐱 = ((𝑈−1)T𝑤𝑖𝑗)T𝐱. (2.35)

The parameters 𝑏𝑖𝑗 are range parameters and are chosen stochastically

from:

𝑏𝑖𝑗 = −ln(𝑢)𝑏 (2.36)

, where u is a pseudo random number and b is a range parameter.

We now have a way to calculate the A matrices, which are needed for

calculating the matrix elements later on. The calculation can be found

in appendix B. The results are:

𝐴(𝑑) =
1
𝑏2
1

(2.37)

and

𝐴(𝑚) =
1
𝑏2
1 (

1 0
0 0)

+
1
𝑏2
2 (

𝑚2
𝑝

(𝑚𝑛+𝑚𝑝)2
𝑚𝑝

𝑚𝑛+𝑚𝑝
𝑚𝑝

𝑚𝑛+𝑚𝑝
0 )

+
1
𝑏2
3 (

𝑚2
𝑛

(𝑚𝑛+𝑚𝑝)2
𝑚𝑛

𝑚𝑛+𝑚𝑝
𝑚𝑛

𝑚𝑛+𝑚𝑝
0 )

(2.38)

, wherem is used for eithermeson. Note that𝐴(𝑑)
actually just becomes

a scalar, but we’ll again keep the notation for consistency.
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2.5 W operator

Before calculating the matrix elements, we have to know the creation

operator (W) and the corresponding annihilation operator (W
†
).

Fortunately from [2] we already know a creation and annihilation

operator for the 𝜎 meson that works, namely:

𝑊𝜎 = 𝐴 ⋅ 𝑆𝜎 ⋅ exp(−
𝑟2𝑛𝑝 + 𝑟2𝑛𝑝𝜎

𝑏2
𝜎 ) (2.39)

,where 𝑆𝜎 and 𝑏𝜎 are parameters of the model and A is a normaliza-

tion factor, which can be pulled into 𝑆𝜎. In [2] 𝑆𝜎 = 20.35 MeV and

𝑏𝜎 = 3 fm could reproduce the binding energy and charge radius of

the deuteron and we will keep them here. The form of this operator

is chosen very well, since it will vanish if either of the 3 particles is

far away.

We will now start to find the simplest and consistent form of the𝑊𝜔

operator. We know that the interaction has to obey some conserva-

tion laws. In our case the most important ones are the conservation

of angular momentum (which corresponds to spin, since we’re just

looking at s waves), the conservation of isospin and the conservation

of parity. Looking at the matrix element of the form:

⟨𝐴(𝜔)
𝑘 |𝑊 |𝐴(𝑑)

𝑖 ⟩ (2.40)

we realize, that both the bra and ket are scalars. This leads to the

conclusion, that the W operator also should be a scalar and therefore

should have positive parity. Furthermore we of course know that the

𝜔 meson should be included. The 𝜔 meson has negative parity, is an

isoscalar and a vector meson (spin=1). Since it is already an isoscalar

we don’t have to do anything there, but we have to pair it with a

vector with negative parity. The simplest operator of this form is:

𝑊𝜔 = (𝜔⃗ ⋅ 𝑟𝑛𝑝𝜔)𝐹(𝐫(𝜔)) (2.41)

,where the function 𝐹(𝐫(𝜔)) is a short-range form-factor of the same

form as before:

𝐹(𝐫(𝜔)) = 𝐴 ⋅ 𝑆𝜔 ⋅ exp(−
𝑟2𝑛𝑝 + 𝑟2𝑛𝑝𝜔

𝑏2
𝜔 ) . (2.42)



Effect of one omega meson on the deuteron in the nuclear model

with explicit mesons 17

In this case A is again a normalization constant and 𝑆𝜔 and 𝑏𝜔 are

new parameters of the model. The normalization constant is again

ignored, since it can be pulled into the 𝑆𝜔 constant.

Looking at the lower equation of the Schödinger equation leads to the

following equation:

(𝜔⃗ ⋅ 𝑟𝑛𝑝𝜔)𝐹(𝐫(𝜔))𝜓𝑛𝑝 + (𝐾𝑛𝑝 + 𝐾𝑛𝑝𝜔 + 𝑚𝜔)𝜓𝑛𝑝𝜔 = 𝐸𝜓𝑛𝑝𝜔 (2.43)

, suggesting that the wavefunction of the subsystemwith one𝜔meson

has the form (also known as prefactor Gaussian):

𝜓𝑛𝑝𝜔 = (𝐚T ⋅ 𝐫(𝜔))
𝑛(𝜔)

∑
𝑘=1

𝑐(𝜔)𝑘 𝑒𝐫
(𝜔)T𝐴(𝜔)

𝑘 𝐫(𝜔) . (2.44)

Note that both the spin and isospin part of the wavefunction haven’t

been written down, since they don’t matter (because our operators

aren’t acting on either spin or isospin).

Just like 𝜔⃗, we require that:

𝐚T𝐚 = (𝑐1𝑎1, 𝑐2𝑎2)(
𝑐1𝑎1
𝑐2𝑎2)

= 𝑐21𝑎1
2 + 𝑐22𝑎2

2 = 1. (2.45)

That 𝑎𝑖
2 = 1 can easily be achieved by introducing spherical coordin-

ates:

𝑎𝑖 =
⎛
⎜
⎜
⎜
⎝

sin(𝜃𝑖)cos(𝜙𝑖)
sin(𝜃𝑖)sin(𝜙𝑖)

cos(𝜃𝑖)

⎞
⎟
⎟
⎟
⎠

(2.46)

, which together with:

𝑐1 = cos(𝜒) and 𝑐2 = sin(𝜒) (2.47)

fulfills the normalization condition. The new variables 𝜃𝑖, 𝜙𝑖 and 𝜒
are also treated as variational parameters, which are created using

pseudo random numbers.

Apart from that we’ll also look at a different form of the creation

operator, namely:

𝑊𝜔 = (𝜔⃗ ⋅ 𝑟𝑛𝑝𝜔)2𝐹(𝐫(𝜔)) (2.48)
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, which leads to:

𝜓𝑛𝑝𝜔 = (𝐚T ⋅ 𝐫(𝜔))(𝐛T ⋅ 𝐫(𝜔))
𝑛(𝜔)

∑
𝑘=1

𝑐(𝜔)𝑘 𝑒𝐫
(𝜔)T𝐴(𝜔)

𝑘 𝐫(𝜔) . (2.49)

The form of these wavefunctions will come very handy when looking

at the matrix elements, which we are going to do next.
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2.6 Matrix elements

Fortunately the matrix elements of the matrices are all analytic, which

is one of the big advantages of the correlated Gaussian method.

The calculation of these matrix elements can be quite long. Since they

have been calculated before [11][6], we will simple state the relevant

results, starting with the diagonal terms without kinetic energy:

⟨𝐵 | 𝐴⟩ ≡ 𝑀0 = (
𝜋𝑛

det(𝐴 + 𝐵))

3/2

, (2.50)

⟨𝐵|(𝐛T𝐫)(𝐚T𝐫)|𝐴⟩ ≡ 𝑀1 =
1
2
(𝐛𝑇𝑅𝐚)𝑀0, (2.51)

⟨𝐵|(𝐝T𝐫)(𝐜T𝐫)(𝐛T𝐫)(𝐚T𝐫)|𝐴⟩ ≡ 𝑀2 (2.52)

=
1
4[

(𝐛T𝑅𝐚)(𝐝T𝑅𝐜) + (𝐛T𝑅𝐜)(𝐝T𝑅𝐚) + (𝐛T𝑅𝐝)(𝐜T𝑅𝐚)]𝑀0

, where n is the dimension of either A or B and 𝑅 = (𝐴 + 𝐵)−1.
Now let’s have a look at the terms with kinetic energy, where we

write the kinetic energy in the general form[12]:

𝐾̂ = −
𝑁

∑
𝑖,𝑗=1

𝜕
𝜕𝑟𝑖
𝐾𝑖𝑗

𝜕
𝜕𝑟𝑗

≡ −
𝜕
𝜕𝐫
𝐾
𝜕
𝜕𝐫T

. (2.53)

With eq. (2.30) it becomes trivial to see that the matrices of the given

subsystems become:

𝐾 (𝑑) = (
ℏ2
2𝜇𝑛𝑝) , 𝐾 (𝜎) =

(

ℏ2
2𝜇𝑛𝑝

0
0 ℏ2

2𝜇𝑛𝑝𝜎)
, 𝐾 (𝜔) =

(

ℏ2
2𝜇𝑛𝑝

0
0 ℏ2

2𝜇𝑛𝑝𝜔)
.

(2.54)

The matrix elements with the kinetic energy are:

⟨𝐵|𝐾̂ |𝐴⟩ = 6Tr(𝐵𝐾𝐴𝑅)𝑀0 ≡ 𝐿𝑀0, (2.55)

⟨𝐵|(𝐛T𝐫)𝐾̂(𝐚T𝐫)|𝐴⟩ = 𝐿𝑀1 + 𝐛T𝐾 ′𝐚𝑀0 (2.56)

⟨𝐵|(𝐝T𝐫)(𝐜T𝐫)𝐾̂(𝐛T𝐫)(𝐚T𝐫)|𝐴⟩ = 𝐿𝑀2 (2.57)

+
𝑀0

2 [(𝐚T𝑅𝐜)(𝐝T𝐾 ′𝐛) + (𝐚T𝑅𝐝)(𝐜T𝐾 ′𝐛)

+(𝐛T𝑅𝐜)(𝐝T𝐾 ′𝐚) + (𝐛T𝑅𝐝)(𝐜T𝐾 ′𝐚)

−(𝐚T𝑅𝐛)(𝐝T𝐾1𝐜) − (𝐜T𝑅𝐝)(𝐛T𝐾2𝐚)]
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,with

𝐾 ′ = (1 − 𝑅𝐵)𝐾(1 − 𝐴𝑅) + 𝑅𝐴𝐾𝐵𝑅), (2.58)

𝐾1 = (1 − 𝑅𝐵)𝐾𝐴𝑅 + 𝑅𝐴𝐾(1 − 𝐵𝑅), (2.59)

𝐾2 = (1 − 𝑅𝐴)𝐾𝐵𝑅 + 𝑅𝐵𝐾(1 − 𝐴𝑅). (2.60)

Now the onlymatrix elements left are the off diagonals. The ⟨𝐴(𝜎)
𝑗 |𝑊𝜎 |𝐴(𝑑)

𝑖 ⟩
elements were already calculated in [2]:

⟨𝐴(𝜎)
𝑗 |𝑊𝜎 |𝐴(𝑑)

𝑖 ⟩ = 𝑆𝜎⟨𝐴(𝜎)
𝑗 | 𝐴̃𝑖⟩ (2.61)

, with 𝐴̃𝑖 given as:

𝐴̃𝑖 = (
𝐴(𝑑)
𝑖 + 1

𝑏2𝜎
0

0 1
𝑏2𝜎
.)

(2.62)

We will use the same approach for the other matrix elements:

⟨𝐴(𝜔)
𝑘 |𝑊𝜔|𝐴(𝑑)

𝑖 ⟩ = 𝑆𝜔⟨𝐴(𝜔)
𝑘 |(𝐚T𝐫(𝜔))(𝜔T𝐫(𝜔))|𝐴̄𝑖⟩ (2.63)

, with:

𝜔 =
(
0⃗
𝜔⃗)

and 𝐴̄𝑖 = (
𝐴(𝑑)
𝑖 + 1

𝑏2𝜔
0

0 1
𝑏2𝜔
.)
. (2.64)

Now the matrix elements can be calculated with eq. (2.51) above.

The form of 𝐴̃𝑖 and 𝐴̄𝑖 originates from the short-range form-factor

part of the creation operator. In the following the subscript m is again

used for either meson. Looking at the matrix elements we have:

⟨𝐴(𝑚)
𝑗 |𝑊𝑚|𝐴(𝑑)

𝑖 ⟩ ∝ ⟨𝐴(𝑚)
𝑗 |𝑒−

𝑟2𝑛𝑝+𝑟
2
𝑛𝑝𝑚

𝑏2𝑚 𝑒
−
𝑟2𝑛𝑝
𝑏2𝑖 . (2.65)

Introducing the matrix notation and 𝐫(𝑚) = (𝑟𝑛𝑝, 𝑟𝑛𝑝𝑚)T it becomes

clear, that we can merge these exponential together into the form

exp(−𝐫(𝑚)𝐴𝑖𝐫(𝑚)), with the matrix being:

𝐴𝑖 = (
𝐴(𝑑)
𝑖 + 1

𝑏2𝑚
0

0 1
𝑏2𝑚
)
. (2.66)
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The same from can be used for the creation operator of the squared

form, where the elements are:

⟨𝐴(𝜔)
𝑘 |𝑊𝜔|𝐴(𝑑)

𝑖 ⟩ = 𝑆𝜔⟨𝐴(𝜔)
𝑘 |(𝐚T𝐫(𝜔))(𝐛T𝐫(𝜔))(𝜔T𝐫(𝜔))(𝜔T𝐫(𝜔))|𝐴̄𝑖⟩ (2.67)

and eq. (2.52) can be used to calculate the matrix elements.

Since these matrix elements are completely real it follows that:

⟨𝐴(𝜔)
𝑘 |𝑊𝜔|𝐴(𝑑)

𝑖 ⟩ = ⟨𝐴(𝑑)
𝑖 |𝑊 †

𝜔 |𝐴
(𝜔)
𝑘 ⟩ (2.68)

and the same concludes for the 𝜎 meson elements.

Now we are able to see the advantage of constructing the system

in the way it has been done, since we can remove the effect of the

𝜔 meson by setting 𝑆𝜔=0 (we then should be able to reproduce the

foundings of [2]).
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2.7 Numerical methods

Before continuing with the results, the numerical methods used will

be described briefly.

First the matrix elements are calculated from the equations above

and afterwards assembled into  and  . Since these are real and

symmetric by construction, scipy.linalg.eigh can be used to solve

the eigenvalue problem (the variational parameters are constructed

with eq. (2.36), where the range parameter b is set to: 3 fm for the

np and np𝜎 subsystem, 1.5 fm for the np𝜔 subsystem and 1 for all

angles).

The solution is now minimized with the scipy.optimize.minimize

function, where the conjugate gradient method is used. Trying to

ensure that we are finding the global minimum, the minimization

process is divided into 3 iteration with different tolerances. As starting

point a tolerance of 0.06 is used, trying to find the vicinity of the global

minimum. Subsequently a tolerance of 0.02 and 0.01 is used to get a

more precise result.

Another important point regarding the minimization process is to

keep in mind that not all parameters are optimized at once. In each

iteration first the 𝐴(𝑑)
parameters are optimized, then the 𝐴(𝜎)

(where

each 𝐴(𝜎)
𝑗 gets optimized one after the other), followed by the angles

and finally 𝐴(𝜔)
and the angles again (the angles are optimized 2 times

in one iteration as achieving convergence was more difficult). You

hence might get a small error of optimizing them one after each other,

but the effect should be minimal since we are iterating 3 times. This

means that they can also be refined again after the rest has been

optimized too. Apart from that we’re not that interested in the exact

value, but rather if the energy rises or falls when adding the 𝜔 meson.



Chapter 3

Results

3.1 Simplest creation operator

The masses of the nucleons and mesons where taken from [13]: 𝑚𝑛 =
939.565 MeV, 𝑚𝑝 = 938.272 MeV, 𝑚𝜎 = 500 MeV and 𝑚𝜔 = 782.66
MeV. When creating the 𝜔 meson, we have 3 possibilities, because

the 𝜔 meson can be created with 3 different spin directions. Since the

𝜔 meson gets dotted with 𝑎𝑖 (which is free to change, since it only

depends on variational parameters) it shouldn’t matter which spin

direction we choose. This is also what we get when changing the spin

direction and in the following plots 𝜔𝑧 = 1 is chosen
1
, so that the

number of plots can be reduced (since 𝑎𝑖𝑧 only depends on 2 angles

instead of 3 the matrix elements should converge faster).

Apart from that the model has 4 free parameters: 𝑆𝜎, 𝑏𝜎, 𝑆𝜔 and 𝑏𝜔.
Both 𝑆𝜎 and 𝑏𝜎 were taken from [2], since they produced the correct

binding energy and charge radius of the deuteron. The values of 𝑆𝜔
and 𝑏𝜔 had to be guessed, since there is no final values to compare to.

One may assume, that 𝑏𝜔 (as being a range parameter) is smaller than

the corresponding 𝜎 parameter, since the mass of the𝜔meson is much

greater compared to the 𝜎 meson. As seen in fig. 3.1 it doesn’t seem

1: For the interested reader some plots with different spin directions of the 𝜔 meson

are included in appendix C.

23
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to matter, which parameter values we choose, since all reasonable

guesses lead to a decrease in energy ( the maximum of Δ𝐸0 is about
-0.0055 MeV). In the following 𝑏𝜔=1.4 fm and 𝑆𝜔 = 20MeV are used,

since it leads to a clearly recognizable lowering of the energy, but it

doesn’t get lowered so much, that the figures get too big.

Figure 3.1: The difference in binding energy (Δ𝐸0 = 𝐸0𝜔 − 𝐸0, where 𝐸0 is
the binding energy without the 𝜔 meson) is plotted with respect to the 2

free parameters: 𝑏𝜔 and 𝑆𝜔. The number of Gaussian’s in the respective

subsystems are: 𝑛(𝑑)=4, 𝑛(𝜎)=6 and 𝑛(𝜔)=1. The simplest form of creation

operator has been used.

Of course when looking at fig. 3.1 we need to have a sufficient

amount of Gaussian’s in the respective subsystems in order to achieve

energy converges. To ensure this, the number of Gaussian’s is varied

within a subsystem, while holding the rest fixed. Since the 𝜔meson is

very heavy, the energy should converge rather fast. Consequently 𝑛(𝜔)

is always set to 1. The results can be seen in fig. 3.2(a) and fig. 3.2(b).

In fig. 3.2(a) 𝑛(𝜎)=6 has been used and it is recognizable, that the en-

ergy converges after 3 Gaussian’s in the np subsystem. When looking
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at fig. 3.2(b), where 𝑛(𝑑) = 4 has been used, the energy converges

after 4 Gaussian’s in the np𝜎 subsystem. In fig. 3.1 𝑛(𝑑)=4, 𝑛(𝜎)=6 and
𝑛(𝜔)=1 has been used, since the energy converges for these numbers

of Gaussian’s.

Furthermore when looking at fig. 3.2(a) and fig. 3.2(b) we notice that

the binding energy of about -2.2 MeV could be reproduced for the

system without the 𝜔 meson. Adding the meson led to a lowering in

energy.

(a) Convergence of 𝑛(𝑑) (b) Convergence of 𝑛(𝜎)

Figure 3.2: The convergence of the energy for different number of Gaus-

sian’s in the respective subsystem with (𝑆𝜔=20 MeV) and without (𝑆𝜔=0
MeV) the 𝜔 meson (𝑏𝜔 is set to 1.4 fm). In the left figure (a) 𝑛(𝑑) was varied,
with 𝑛(𝜎) = 6 and 𝑛(𝜔) = 1 fixed. In the right figure (b), 𝑛(𝜎) was varied, with
𝑛(𝑑) = 4 and 𝑛(𝜔) = 1 fixed. The simplest form of the creation operator has

been used.

It looks like we don’t have any repulsion, but maybe the wavefunc-

tion will give us more insight (maybe we can find a hint of repulsion

through the effective potential producing the wavefunction). As seen

in fig. 3.3: u(r) with 𝑆𝜔 = 60MeV is shifted a bit to the left with respect

to 𝑆𝜔 = 0MeV. (The scale parameter S𝜔 is set to 60 MeV, so that the

effect can be seen). Comparing the effective potential of the form [2]:

𝑉eff = 𝐸0 +
ℏ2

2𝜇𝑛𝑝
𝑢′′

𝑢
(3.1)

results in the lower part of fig. 3.3. Adding the 𝜔meson led to a deeper

effective potential and no sign of repulsion could be found.
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Figure 3.3: In the top part u(r)=r⋅𝜓𝑛𝑝 is plotted with respect to r𝑛𝑝 together

with its asymptotic form e
−𝜅𝑟

, with 𝜅 =
√
2𝜇𝑛𝑝 |𝐸0|/ℏ2[2]. In the lower part

of the figure the different effective potentials are compared. The coefficients

and parameters needed for the wavefunction were taken from a minimiza-

tion process with 𝑛(𝑑) = 4, 𝑛(𝜎) = 6 and 𝑛(𝜔) = 1. 𝑏𝜔 was set to 1.4 fm and

𝑆𝜔 = 0 MeV is compared to 𝑆𝜔 = 60 MeV. The simplest form of creation

operator has been used.



Effect of one omega meson on the deuteron in the nuclear model

with explicit mesons 27

3.2 Squared form

Moving on to the second form of the creation operator, namely:

𝑊𝜔 = (𝜔⃗ ⋅ 𝑟𝑛𝑝𝜔)2𝐹(𝐫(𝜔)) (3.2)

, we again have to choose the spin direction of the 𝜔 meson. Again

it doesn’t make a difference and 𝜔𝑧 = 1 is chosen in the following

plots
2
. Looking at the convergence and choosing the same parameters

as before leads to fig. 3.4(a) and fig. 3.4(b). We reach convergence for

the same number of Gaussians’s as before in both subplots (which

of course isn’t a big surprise, since the form of the omega creation

operator doesn’t influence the convergence when 𝑆𝜔 = 0 MeV and

the 𝜔 meson is so heavy that 𝑛(𝜔) = 1 is sufficient). Comparison of

these convergence plots with the ones before, lead to the conclusion

that the energy gets lowered even further with the squared form of

the operator.

(a) Convergence of 𝑛(𝑑) (b) Convergence of 𝑛(𝜎)

Figure 3.4: The convergence of the energy for different number of Gaussian

in the respective subsystem with (𝑆𝜔=20 MeV) and without (𝑆𝜔=0 MeV) the

𝜔 meson (𝑏𝜔 is set to 1.4 fm). In the left figure (a) 𝑛(𝑑) was varied, with
𝑛(𝜎) = 6 and 𝑛(𝜔) = 1 fixed. In the right figure (b), 𝑛(𝜎) was varied, with
𝑛(𝑑) = 4 and 𝑛(𝜔) = 1 fixed. The squared form of the creation operator has

been used.

One might still wonder, if there exists a combination of 𝑆𝜔 and 𝑏𝜔
that leads to repulsion. The conclusion from fig. 3.5 becomes that no

2: For the interested reader some plots with different spin directions of the 𝜔 meson

are included in appendix C.
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combination could be found and that the reduction of energy is again

larger for the squared form of the creation operator (the maximum

value of Δ𝐸0 is about -0.0062 MeV).

Figure 3.5: The difference in binding energy (Δ𝐸0 = 𝐸0𝜔 − 𝐸0, where 𝐸0 is
the binding energy without the 𝜔 meson) is plotted with respect to the 2

free parameters: 𝑏𝜔 and 𝑆𝜔. The number of Gaussian’s in the respective

subsystems are: 𝑛(𝑑)=4, 𝑛(𝜎)=6 and 𝑛(𝜔)=1. The squared form of the creation

operator has been used.

Continuing with the the wavefunction (fig. 3.6), we again see a

slight shift of u(r) to the left when adding the 𝜔meson (𝑆𝜔 is again set

to 60 MeV, so that the effect can be seen). Looking at the lower part of

the figure one concludes that the effective potential becomes deeper

(even lower than for the non squared form of the creation operator)

and once more no repulsion can be detected.
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Figure 3.6: In the top part u(r)=r⋅𝜓𝑛𝑝 is plotted with respect to r𝑛𝑝 together

with its asymptotic form e
−𝜅𝑟

. In the lower part of the figure the different

effective potentials are compared. The coefficients and parameters needed

for the wavefunction were taken from a minimization process with 𝑛(𝑑) = 4,
𝑛(𝜎) = 6 and 𝑛(𝜔) = 1. 𝑏𝜔 was set to 1.4 and 𝑆𝜔 = 0 MeV is compared to

𝑆𝜔 = 60MeV.𝑊𝜔 = (𝜔⃗ ⋅ 𝑟𝑛𝑝𝜔)2𝐹(𝐫(𝜔)) has been used.
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3.3 Negative S𝜔
Another approach is the application of a negative value for 𝑆𝜔, which
results in the following:

(a) Non squared form (b) Squared form

Figure 3.7: The convergence for different number of Gaussian in the np

subsystem with (S𝜔=20 MeV) and without (S𝜔=-20 MeV) the 𝜔 meson (𝑏𝜔 is

set to 1.4 fm). 𝑛(𝜎) = 6 and 𝑛(𝜔) = 1 are fixed, while 𝑛(𝑑) is varied. In the left

figure (a) the simplest form of the creation operator is used and in figure (b)

the squared form is used.

As seen in fig. 3.7(a) and fig. 3.7(b) the sign of 𝑆𝜔 doesn’t change

anything, since the lines coincide. This could have been anticipated

to begin with, by looking at the Hamiltonian of the system:

⎛
⎜
⎜
⎜
⎝

𝐾𝑛𝑝 𝑊 †
𝜎 𝑊 †

𝜔

𝑊𝜎 𝐾𝑛𝑝 + 𝐾𝑛𝑝𝜎 + 𝑚𝜎 0
𝑊𝜔 0 𝐾𝑛𝑝 + 𝐾𝑛𝑝𝜔 + 𝑚𝜔

⎞
⎟
⎟
⎟
⎠

. (3.3)

When calculating the eigenvalues and therefore the determinant, we

recognize that the𝑊𝜔 term only appears squared. Hence the sign on

𝑆𝜔 shouldn’t matter.
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Discussion

In the following we want to discuss the possible reasons why we’re

only seeing a lowering in energy and what could be the next steps,

trying to explain repulsion in the MEM.

First the overall strategy used to answer the question of repulsion

should be critically examined. In the MEM theory the variational

principle and the use of correlated Gaussian is very popular (see for

example [2][11]), but this might cause some problems when trying to

find repulsion and hence an increase in energy. Assuming that the 𝜔
meson would cause repulsion, one might expect that the minimization

process would choose the variational parameters in such a way that

the contribution of the 𝜔 meson vanishes. Then we wouldn’t be able

to see an increase in energy, but merely an unchanged energy.

A different reason for not discovering repulsion could of course be

the form of the creation operator, where different forms could be

tried as the next step. One may for example try to introduce complex

numbers, since this changes the sign on the𝑊 †
operator. A different

opportunity would be to introduce spin dependence by including the

Pauli vector in the creation operator. A suitable form would be:

𝑊𝜔 = (𝜔⃗ ⋅ 𝜎⃗)(𝜎⃗ ⋅ 𝑟𝑛𝑝𝜔)𝐹(𝐫(𝜔)) (4.1)
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, where 𝜎⃗ donates the Pauli vector.

The creation operator of the the form:

𝑊𝜔 = (𝜔⃗ ⋅
𝜕

𝜕𝑟𝑛𝑝𝜔)
𝐹(𝐫(𝜔)) (4.2)

might be interesting to look at as well.

Another approach could be to include the state with both the 𝜎 and

𝜔 meson like this:

Ψ =
⎛
⎜
⎜
⎜
⎝

𝜓𝑛𝑝(𝑟𝑛, 𝑟𝑝)
𝜓𝑛𝑝𝜎(𝑟𝑛, 𝑟𝑝, 𝑟𝜎)

𝜓𝑛𝑝𝜎𝜔(𝑟𝑛, 𝑟𝑝, 𝑟𝜎, 𝑟𝜔).

⎞
⎟
⎟
⎟
⎠

(4.3)

with the Hamiltonian:

𝐻 =
⎛
⎜
⎜
⎜
⎝

𝐾𝑛𝑝 𝑊 †
𝜎 0

𝑊𝜎 𝐾𝑛𝑝 + 𝐾𝑛𝑝𝜎 + 𝑚𝜎 𝑊 †
𝜔

0 𝑊𝜔 𝐾𝑛𝑝 + 𝐾𝑛𝑝𝜎 + 𝐾𝑛𝑝𝜔 + 𝑚𝜎 + 𝑚𝜔

⎞
⎟
⎟
⎟
⎠

. (4.4)

Another possibility could be the implementation of both 𝜓𝑛𝑝𝜔 and

𝜓𝑛𝑝𝜎𝜔 or to simply look at a different vector meson (or exchanging

the 𝜎 meson with the pion).

Last but not least one could of course explain the absence of repulsion

by simply concluding that something might be missing in the MEM,

but this should be done last.



Chapter 5

Conclusion

In this thesis we tried to explain repulsion by adding an 𝜔 meson to

the established deuteron model in the MEM which contains the bare

nucleons and a 𝜎 meson.

The variational principle together with correlated Gaussian’s with

prefactors were used to calculate the binding energy. The conver-

gence of the energy could be achieved with 4 Gaussian’s in the np

subsystem, 6 Gaussian’s in the np𝜎 subsystem and 1 Gaussian in the

np𝜔 subsystem.

When adding the 𝜔 meson, two different types of creation operator

were considered, which introduced two new parameters 𝑏𝜔 and 𝑆𝜔.
The binding energy of the deuteron (about -2.20 MeV) could be repro-

duced, while ignoring the 𝜔 meson. Adding it resulted in a lowering

of the energy. This was true for both types of operators (the squared

form resulted in a lower energy) and apparently for all reasonable

choices of the parameters 𝑏𝜔 and 𝑆𝜔 (including negative 𝑆𝜔). Compar-

ing the different effective potentials resulting in an even deeper Veff ,

when adding the 𝜔 meson. Furthermore it did not support repulsion.

New types of creation operators, a new structure of the system or

even different methods than the variational method may be the next

approaches in trying to explain repulsion in the MEM. If these at-

tempts don’t lead to the desired results it might be that something is

missing in the model used.
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Appendix A

Kinetic energy transformation

In the following we are going to look at the kinetic energy transform-

ation of the subsystem with one meson m (the subsystem with just

the nucleons is identic to just the first term of the subsystem with the

meson). Starting with calculating the Λ elements (eq. (2.17)) leads to:

Λ11 =
𝑈11𝑈11

𝑚𝑛
+
𝑈12𝑈12

𝑚𝑝
(A.1)

=
1
𝑚𝑛

+
1
𝑚𝑝

=
𝑚𝑛 + 𝑚𝑝
𝑚𝑛𝑚𝑝

=
1
𝜇𝑛𝑝

,

Λ12 = Λ21 =
𝑈11𝑈21

𝑚𝑛
+
𝑈12𝑈22

𝑚𝑝
+
𝑈13𝑈23

𝑚𝑚
(A.2)

=
𝑚𝑛

(𝑚𝑛 + 𝑚𝑝)𝑚𝑛
−

𝑚𝑝
(𝑚𝑛 + 𝑚𝑝)𝑚𝑝

+ 0 = 0,

Λ21 =
𝑈21𝑈21

𝑚𝑛
+
𝑈22𝑈22

𝑚𝑝
+
𝑈23𝑈23

𝑚𝑚
(A.3)

=
𝑚2
𝑛

(𝑚𝑛 + 𝑚𝑝)2𝑚𝑛
+

𝑚2
𝑝

(𝑚𝑛 + 𝑚𝑝)2𝑚𝑝
+

1
𝑚𝑚

=
1

𝑚𝑛 + 𝑚𝑝
+

1
𝑚𝑚

=
𝑚𝑛 + 𝑚𝑝 + 𝑚𝑚
(𝑚𝑛 + 𝑚𝑝)𝑚𝑚

=
1
𝜇𝑛𝑝𝑚

.

Plugging this into eq. (2.16) leads to:

𝐾𝑛 + 𝐾𝑝 + 𝐾𝑚 − 𝐾𝑐𝑚 = −
ℏ2

2𝜇𝑛𝑝
𝜕2

𝜕𝑟2𝑛𝑝
−

ℏ2

2𝜇𝑛𝑝𝑚
𝜕2

𝜕𝑟2𝑛𝑝𝑚
≡ 𝐾𝑛𝑝 + 𝐾𝑛𝑝𝑚.

(A.4)
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Appendix B

A matrices

In the following the A matrices are calculated for the different subsys-

tems, where the subscript m stand for either meson. For all subsystems

we have:

𝐴 =
𝑁

∑
𝑖<𝑗=1

𝑤𝑖𝑗𝑤T
𝑖𝑗

𝑏2
𝑖𝑗
. (B.1)

For the neutron-proton subsystem we have:

𝑤12 = (
1
−1)

(B.2)

Which has to be transformed because of the change to Jacobi coordin-

ates. The new "vector" becomes:

𝑤12 = (
𝑚𝑝

𝑚𝑛+𝑚𝑝
− 𝑚𝑛
𝑚𝑛+𝑚𝑝)(

1
−1)

= 1. (B.3)

This means, that 𝐴(𝑑)
simply becomes:

𝐴(𝑑) =
1
𝑏2
1

(B.4)

Continuing with the subsystems with one meson, we have:

𝑤12 =
⎛
⎜
⎜
⎜
⎝

1
−1
0

⎞
⎟
⎟
⎟
⎠

, 𝑤13 =
⎛
⎜
⎜
⎜
⎝

1
0
−1

⎞
⎟
⎟
⎟
⎠

and 𝑤23 =
⎛
⎜
⎜
⎜
⎝

0
1
−1

⎞
⎟
⎟
⎟
⎠

. (B.5)
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Transforming these leads to:

𝑤12 = (

𝑚𝑝
𝑚𝑛+𝑚𝑝

− 𝑚𝑛
𝑚𝑛+𝑚𝑝

0
𝑚𝑚

𝑚𝑛+𝑚𝑝+𝑚𝑚
𝑚𝑚

𝑚𝑛+𝑚𝑝+𝑚𝑚
− 𝑚𝑛+𝑚𝑝
𝑚𝑛+𝑚𝑝+𝑚𝑚)

⎛
⎜
⎜
⎜
⎝

1
−1
0

⎞
⎟
⎟
⎟
⎠

=
(
1
0)

, (B.6)

𝑤13 = (

𝑚𝑝
𝑚𝑛+𝑚𝑝

− 𝑚𝑛
𝑚𝑛+𝑚𝑝

0
𝑚𝑚

𝑚𝑛+𝑚𝑝+𝑚𝑚
𝑚𝑚

𝑚𝑛+𝑚𝑝+𝑚𝑚
− 𝑚𝑛+𝑚𝑝
𝑚𝑛+𝑚𝑝+𝑚𝑚)

⎛
⎜
⎜
⎜
⎝

1
0
−1

⎞
⎟
⎟
⎟
⎠

=
(

𝑚𝑝
𝑚𝑛+𝑚𝑝

1 )
, (B.7)

𝑤23 = (

𝑚𝑝
𝑚𝑛+𝑚𝑝

− 𝑚𝑛
𝑚𝑛+𝑚𝑝

0
𝑚𝑚

𝑚𝑛+𝑚𝑝+𝑚𝑚
𝑚𝑚

𝑚𝑛+𝑚𝑝+𝑚𝑚
− 𝑚𝑛+𝑚𝑝
𝑚𝑛+𝑚𝑝+𝑚𝑚)

⎛
⎜
⎜
⎜
⎝

0
1
−1

⎞
⎟
⎟
⎟
⎠

=
(

𝑚𝑛
𝑚𝑛+𝑚𝑝

1 )
. (B.8)

This results in the matrices:

𝐴(𝑚) =
(

1
𝑏2
1 (

1 0
0 0)

+
1
𝑏2
2 (

𝑚2
𝑝

(𝑚𝑛+𝑚𝑝)2
𝑚𝑝

𝑚𝑛+𝑚𝑝
𝑚𝑝

𝑚𝑛+𝑚𝑝
0 )

+
1
𝑏2
3 (

𝑚2
𝑛

(𝑚𝑛+𝑚𝑝)2
𝑚𝑛

𝑚𝑛+𝑚𝑝
𝑚𝑛

𝑚𝑛+𝑚𝑝
0 ))

(B.9)



Appendix C

Figures

(a) 𝜔𝑥 = 1 (b) 𝜔𝑦 = 1

Figure C.1: The convergence of the energy for different number of Gaus-

sian’s in the np subsystem with (𝑆𝜔=20 MeV) and without (𝑆𝜔=0 MeV) the 𝜔
meson (𝑏𝜔 is set to 1.4 fm). 𝑛(𝜎) = 6 and 𝑛(𝜔) = 1 are fixed and 𝑛(𝑑) is varied.
In the left figure (a) 𝜔𝑥 = 1 is used and in figure (b) 𝜔𝑦 = 1. The simplest

form of the creation operator is used.
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(a) 𝜔𝑥 = 1 (b) 𝜔𝑦 = 1

Figure C.2: The convergence of the energy for different number of Gaus-

sian’s in the np subsystem with (𝑆𝜔=20 MeV) and without (𝑆𝜔=0 MeV) the 𝜔
meson (𝑏𝜔 is set to 1.4 fm). 𝑛(𝜎) = 6 and 𝑛(𝜔) = 1 are fixed and 𝑛(𝑑) is varied.
In the left figure (a) 𝜔𝑥 = 1 is used and in figure (b) 𝜔𝑦 = 1. The squared
form of the creation operator is used.
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