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Abstract
In this thesis the simple quantum system of the hydrogen atom has

been defined and investigated by stochastic variation. The ground

states of several Hamiltonians have been estimated while working

in a basis consisting of gaussian functions. In this basis matrix ele-

ments for different constituents of the Hamiltonians have been derived

specifically the relativistic kinetic energy in momentum space. The

simulated ground state values have been compared to values obtained

through perturbation and statistical considerations have been made.

Ultimately the stochastic variation method with correlated gaussians

have been found to be comparable to a perturbation calculation.

Resume på dansk
I dette projekt er det simple kvantesystem i form af hydrogen ato-

met, blevet defineret og undersøgt ved stokastisk variation. Grundtil-

standen af forskellige Hamiltoner er blevet estimeret i en basis be-

stående af gaussiske funktioner. I denne basis er matrixelementerne

for disse Hamiltoner blevet udledt specielt for den relativistiske kin-

etiske energi i impulsrum. De simulerede grundtilstandsværdier er

blevet sammenlignet med værdier opnået gennem en perturbations-

beregning og statistiske overvejelser er blevet gennemgået. Den

stokastiske variationsmetode med korrelerede gausser har vist sig

at være sammenlignelig med en perturbationsberegning.
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Chapter 1

Introduction

Modeling quantum mechanical systems is one of the primary en-

deavors in theoretical physics. The more difficult a subject is to study

physically, the more weight lies in theoretical investigation. The

mathematical formulation of quantum theory is quite well established

making for a great foundation when investigating the physical out-

comes of ideas and propositions.

One of the most important, yet potentially undervalued aspects of the-

oretical physics, is the development of the tools that are essential for

working within the established theoretical framework. Once within

a paradigm the real scientific work is making sure the theory is as

sound as possible as well as developing the tools that allow for the

theory to be utilized.

The hydrogen atom is a great simple system to act as playground for

the development of tools. This is because of the inherent simplicity of

a two body system as well as the vast amount of well known proper-

ties which are useful for comparison.

Working with special relativity together with the Schrödinger equa-

tion might be questionable, as the properties studied might be better

encapsulated by more sophisticated theories. It is however always of

interest to have good approximations that are easier to work with but

more importantly, the methods used in this thesis is expected to be

useful in other circumstances.
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Chapter 2

Theoretical background

2.1 Quantum system
The methods outlined in this thesis is particularly motivated by the

desire to study nuclear interactions by way of explicitly calculating

meson exchange as quantum bodies using the standard Schrödinger

equation governing the motion of quantum particles as described in

[2]. For instance the deuterium nucleus would be modeled with the

state of the nucleus itself as well as a state with an additional particle,

for instance the 𝜎 meson. The state might look like this

𝜓 = (
𝜓𝑛,𝑝(𝒓𝑛, 𝒓𝑝)

𝜓𝑛,𝑝,𝜎(𝒓𝑛, 𝒓𝑝, 𝒓𝜎))
(2.1)

where the system is in a superposition of having the meson present

or not. The Hamiltonian might look like this

𝐻 = (
𝐾𝑛 + 𝐾𝑝 𝑊
𝑊 𝐾𝑛 + 𝐾𝑝 + 𝐾𝜎 + 𝑚𝜎)

(2.2)

with the energies of the particles as well as the W operators respons-

ible for the coupling of the two subsystems. Additionally energy

required for creating the particle is included as the mass.
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In this thesis a slightly simpler example will be examined where

only one system is present and thus no coupling is necessary spe-

cifically the proton-electron system of the hydrogen atom.. Multiple

Hamiltonians will be examined, involving the regular coulomb poten-

tial as well as both classical kinetic energy and a relativistic kinetic

energy, making the model semi relativistic.

𝐻 = 𝐾𝑐𝑙𝑎𝑠𝑠𝑖𝑐 + 𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏 (2.3)

𝐻 = 𝐾𝑐𝑙𝑎𝑠𝑠𝑖𝑐 + 𝐾𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 + 𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏 (2.4)

Aditionally for model control the following hamiltonian will be used

𝐻 = 𝐾𝑐𝑙𝑎𝑠𝑠𝑖𝑐 + 𝑉𝑆𝐻𝑀 (2.5)

where 𝑉𝑆𝐻𝑀 is the simple harmonic oscillator potential. The Hamilto-

nians here are one dimensional as the two body system can be reduced

by using the center of mass frame. This can be applied generally as

explained in the following section.

2.2 Coordinate transformation
When dealing with an 𝑁 -body system it can be useful to work in

center of mass frame using a different set of coordinates. One such

set of coordinates is the Jacobi coordinates which re-expresses the

system in terms of the center of mass and the relative position of the

particles with respect to each other. Since the relative coordinates and

the center of mass coordinate are completely independent one can

make the energy associated with the center of mass equal to zero and

thus reduce the 𝑁 -body problem to an 𝑁 − 1-body problem.

2.3 Solving energy states
When analyzing quantum mechanical systems the most meaningful

value is often the energy which is typically found as the eigenvalues

of the Schrödinger equation.

�̂� |𝜓⟩ = 𝐸 |𝜓⟩ (2.6)
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Here the wave function is given in some basis {|𝑒𝑖⟩ , 𝑖 = 1,… , 𝑛} with
a vector 𝒄 being the representation of the state in the basis.

|𝜓⟩ =
𝑛

∑
𝑖=1

𝑐𝑖 |𝑒𝑖⟩ (2.7)

Noting here that 𝑛 is the number of elements in the basis not the

number of particles 𝑁 . Now taking the inner product of the whole

expanded Schrödinger equation from the left with some basis function

|𝑒𝑘⟩, yields the following
𝑛

∑
𝑖=1

⟨𝑒𝑘 |�̂� |𝑒𝑖⟩ 𝑐𝑖 = 𝐸
𝑛

∑
𝑖=1

⟨𝑒𝑘 |𝑒𝑖⟩ 𝑐𝑖 (2.8)

which can be written in matrix form as

𝒄 = 𝐸 𝒄 . (2.9)

This is the generalized eigenvalue where  is again the Hamilto-

nian matrix and  is the overlap matrix. This can be solved using

a decomposition method when the overlap matrix is positive defin-

ite, and in thesis an implementation of this will be used using the

scipy.linalg.eigh function in Python.

2.4 Stochastic variation
The fundamental property of quantum systems that fuels the method

to be used is the variational principle. The principle ensures that for an

arbitrary normalized function, the expectation value of the Hamilto-

nian will stay above the the actual ground state energy, expressed like

this:

𝐸1 ≤ ⟨𝜓|�̂� |𝜓⟩ (2.10)

This principle allows for estimating the ground state energy of the

system by finding states with as low energy as possible. A method for

this optimization would be complete stochastic optimization in which

pseudo random states are generated in large amounts in an attempt

to find the lowest energy for a good estimate. The effectiveness of

this approach depends on the amount of parameters and how well

the basis suits the Hamiltonian.

Alternatively stochastic variation could involve saving individual

basis elements at a time and then expanding using optimized basis

elements. This can be more efficient in systems with more parameters.

Additionally some deterministic optimization could also be involved.
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2.5 Vector integral identity
The following vector integral will be used throughout the thesis and

as such shall be derived.

𝐼 = ∫ d
3−→𝑥1d3−→𝑥2 … d

3−→𝑥𝑁 𝑒−𝒙
𝑇𝐵𝒙+𝒗𝑇 𝒙 = (

𝜋𝑁

det(𝐵))

3
2

𝑒
1
4 𝒗

𝑇𝐵−1𝒗
(2.11)

Where 𝐵 is a real positive definite symmetric matrix and as such can

be diagonalized using an orthogonal transformation. The orthogonal

transformation matrix 𝑂 is introduced such that 𝐵 = 𝑂𝐷𝑂𝑇
where

𝐷 is diagonal. Naturally the associated coordinate transformation is

given as 𝑦 = 𝑂𝑥 . Using these tools the integral can be calculated. Due

to cumbersome notation the arrows over the 3D-vectors will be left

out.

𝐼 = ∫ d
3𝑥1d3𝑥2 … d

3𝑥𝑁 𝑒−𝒙
𝑇𝑂𝑂𝑇𝐵𝑂𝑂𝑇 𝒙+𝒗𝑇 𝒙

= ∫ d
3𝑦1d3𝑦2 … d

3𝑦𝑁 𝑒∑
𝑁
𝑖=1 −𝐷𝑖𝑖𝑦2𝑖 +(𝒗𝑇𝑂)𝑖𝑦𝑖

=
𝑁

∏
𝑖=1

∫ d
3𝑦𝑖 𝑒−𝐷𝑖𝑖𝑦

2
𝑖 +(𝒗𝑇𝑂)𝑖𝑦𝑖

By completing the square it is possible to rearrange the exponent such

that the integral reduces to the simple gaussian.

𝐼 =
𝑁

∏
𝑖=1

∫ d
3𝑦𝑖 𝑒

−𝐷𝑖𝑖(
𝑦𝑖−

(𝒗𝑇 𝑂)𝑖
2𝐷𝑖𝑖 )

2

+(𝒗
𝑇 𝑂)2𝑖
4𝐷𝑖𝑖

=
𝑁

∏
𝑖=1

𝑒
(𝒗𝑇 𝑂)2𝑖

4𝐷𝑖𝑖 ∫ d
3𝑦𝑖 𝑒

−𝐷𝑖𝑖(
𝑦𝑖−

(𝒗𝑇 𝑂)𝑖
2𝐷𝑖𝑖 )

2

Since the integral is over all of space the constant shift in the exponent

can be eliminated by a simple coordinate transformation 𝜔𝑖 = 𝑦𝑖 −
(𝒗𝑇𝑂)𝑖
2𝐷𝑖𝑖

after which the simple gaussian integral is trivial.

𝐼 =
𝑁

∏
𝑖=1

𝑒
(𝒗𝑇 𝑂)2𝑖

4𝐷𝑖𝑖 ∫ d
3𝜔𝑖 𝑒−𝐷𝑖𝑖𝜔

2
𝑖

=
𝑁

∏
𝑖=1

𝑒
(𝒗𝑇 𝑂)2𝑖

4𝐷𝑖𝑖
(
𝜋
𝐷𝑖𝑖)

3
2
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Now finally by using the properties of the diagonal and orthogonal

matrices the product can be expanded into the vector forms again.

𝐼 = (
𝜋𝑁

det (𝐷))

3
2

𝑒
1
4 𝒗

𝑇𝑂𝐷−1𝑂𝑇 𝒗

= (
𝜋𝑁

det (𝐵))

3
2

𝑒
1
4 𝒗

𝑇𝐵−1𝒗



Chapter 3

Correlated Gaussians

3.1 Gaussian functions

3.1.1 Definition
This thesis will work with quantum states expressed in a basis of

gaussian functions. The motivation for this relates to the nature of

gaussian function. Integrals involving gaussian are often analytical

and converges when multiplied with many unbounded functions,

which makes them especially nice to work with. The functions are

defined using their projection onto a position vector.

⟨𝒓|g⟩ = exp
(
−

𝑁

∑
𝑖,𝑗=1

𝐴𝑖,𝑗
−→𝑟𝑖 ⋅ −→𝑟𝑗 +

𝑁

∑
𝑖=1

−→𝑠𝑖 ⋅ −→𝑟𝑖)
(3.1)

Introducing the size 𝑁 column vector 𝒓 with elements consisting of 𝑁
three dimensional position vectors

−→𝑟𝑖 as well as the 𝑁 ×𝑁 correlation

matrix 𝐴 and the column vector 𝒔 with 𝑁 shift vectors −→𝑠𝑖 the function
can be expressed more compactly,

⟨𝒓|g⟩ ≡ 𝑒−𝒓
𝑇𝐴𝒓+𝒔𝑇 𝒓 ≡ g𝐴,𝒔(𝒓) (3.2)

using the following notation with the matrices and vectors:

𝒓𝑇𝐴𝒓 ≡
𝑁

∑
𝑖,𝑗=1

𝐴𝑖,𝑗
−→𝑟𝑖 ⋅ −→𝑟𝑗 𝒔𝑇 𝒓 ≡

𝑁

∑
𝑖=1

−→𝑠𝑖 ⋅ −→𝑟𝑖

11
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Additionally an even simpler notation will be used for just the vector

itself:

|𝐴, 𝒔⟩ ≡ |g⟩

It will be valuable to make the requirement that the 𝐴 matrix must

be positive definite. This can be accomplished by defining it using a

size 𝑁 coloumn vector 𝒘 with the property that all components equal

zero except two where 𝑤𝑖 = 1 = −𝑤𝑗 . Generating a positive definite

matrix can be done like this

𝐴 = ∑
𝑖<𝑗

𝒘𝑖𝑗𝒘𝑇
𝑖𝑗𝛼𝑖𝑗 (3.3)

where 𝒘𝑖𝑗 denotes, through abuse of notation, the 𝒘 vector whose

𝑖’th and 𝑗 ’th entries are 1 and -1. This ensures the required positive

definiteness.

Applying a coordinate transformation as described earlier is easily

done through this definition. By transforming the 𝒘 vectors using the

transformation matrix and removing the row concerning the center

of mass, the 𝐴 matrix is now an (𝑁 − 1) × (𝑁 − 1) matrix retaining its

positive definiteness as required.

In the case of the proton-electron system, this transformation leaves

the 𝐴 matrix as a scalar. Similarly, while matrix elements will be

derived using the shift vector 𝒔, only the ground state of systems will

be examined in this thesis and as such the particles will be in a zero

angular momentum state. This leaves the shift vector to be zero.

3.1.2 Momentum space
It will be useful later to calculate matrix elements in momentum

space, thus the projection of g onto 𝒌 is needed. It is known that

the eigenfunction of the momentum operator in position space is

exactly the fourier transform, meaning that projecting the state onto

momentum space is simply taking the fourier transform of the position

space vector. This is particularly practical in the case of gaussians, as

the fourier transform of a gaussian function is itself a gaussian.

Using the relation of the fourier transform themomentum space vector
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is found:

⟨𝒌|𝐴, 𝒔⟩ = g̃𝐴,𝒔 (𝒌) = ∫ d
3𝑁𝒓 g𝐴,𝒔 (𝒓) 𝑒−𝑖𝒌⋅𝒓

= ∫ d
3𝑁𝒓 𝑒−𝒓

𝑇𝐴𝒓+𝒔𝑇 𝒓−𝑖𝒌𝑇 𝒓

= ∫ d
3𝑁𝒓 𝑒−𝒓

𝑇𝐴𝒓+(𝒔𝑇−𝑖𝒌𝑇 )𝒓

Here g̃ refers to the fourier transform [g] of g. The𝑁 ×3-dimensional

integral is denoted using the differential d
3𝑁𝒓 using the column vector

𝒓 meaning d
3−→𝑟1d3−→𝑟2 … d

3−→𝑟𝑁 . Now applying the vector integral identity

(2.11) and subsequently using linearity of real scalar products one

obtains:

= (
𝜋𝑁

det(𝐴))

3
2

𝑒
1
4(𝒔𝑇−𝑖𝒌𝑇 )𝐴−1(𝒔−𝑖𝒌)

= (
𝜋𝑁

det(𝐴))

3
2

𝑒
1
4 𝒔

𝑇𝐴−1𝒔− 1
4𝒌

𝑡𝐴−1𝒌− 𝑖
4 𝒔

𝑇𝐴−1𝒌− 𝑖
4𝒌

𝑇𝐴−1𝒔

= (
𝜋𝑁

det(𝐴))

3
2

𝑒
1
4 𝒔

𝑇𝐴−1𝒔𝑒−
1
4𝒌

𝑡𝐴−1𝒌− 𝑖
2 𝒔

𝑇𝐴−1𝒌

= (
𝜋𝑁

det(𝐴))

3
2

𝑒
1
4 𝒔

𝑇𝐴−1𝒔g 1
4𝐴−1,− 𝑖

2𝐴−1𝒔(𝒌)

Again for brevity and practicality later, the following function is in-

troduced:

 (𝐴, 𝒔) ≡ (
𝜋𝑁

det(𝐴))

3
2

𝑒
1
4 𝒔

𝑇𝐴−1𝒔
(3.4)

which allows the momentum space vector be written compactly as

⟨𝒌|𝐴, 𝒔⟩ =  (𝐴, 𝑠) g 1
4𝐴−1,− 𝑖

2𝐴−1𝒔(𝒌). (3.5)

3.2 Matrix elements

3.2.1 Overlap
Initially the overlap between two gaussians is needed as it will be a

recurring factor in the upcoming calculations. Again using the identity
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(2.11) the overlap can be calculated directly.

⟨𝐴, 𝒔|𝐴′, 𝒔′⟩ = ∫ d
3𝑁𝒓 𝑒−𝒓

𝑇𝐴𝒓+𝒔𝑇 𝒓𝑒−𝒓
𝑇𝐴′𝒓+𝒔′𝑇 𝒓

= ∫ d
3𝑁𝒓 𝑒−𝒓

𝑇 (𝐴+𝐴′)𝒓+(𝒔+𝒔′)𝑇 𝒓

= (
𝜋𝑁

det(𝐴 + 𝐴′))

3
2

𝑒
1
4(𝒔+𝒔′)

𝑇 (𝐴+𝐴′)−1(𝒔+𝒔′)

⟨𝐴, 𝒔|𝐴′, 𝒔′⟩ =  (𝐴 + 𝐴′, 𝒔 + 𝒔′) =  (𝐵, 𝒗) (3.6)

where 𝐵 = 𝐴 + 𝐴′
and 𝒗 = 𝒔 + 𝒔′.

3.2.2 Kinetic energy
The classical kinetic energy is given by the kinetic energy operator

which sums the energy contributions from the individual particles.

�̂� = −
𝑁

∑
𝑖=1

ℏ2

2𝑚𝑖

𝜕2

𝜕𝑟2𝑖
(3.7)

More generally it can be written using introduced notation.

�̂� = −
𝜕
𝜕𝒓

Λ
𝜕
𝜕𝒓𝑇

(3.8)

whereΛ represents the constants. Thematrix element for this operator

can be evaluated using cumbersome integration and substitution and

is given by [1].

⟨𝐴, 𝒔
||||
−
𝜕
𝜕𝒓

Λ
𝜕
𝜕𝒓𝑇

||||
𝐴′, 𝒔′⟩

= (6Tr(𝐴Λ𝐴′𝐵−1) + (𝒔 − 2𝐴𝒖)𝑇 Λ (𝒔′ − 2𝐴′𝒖)) (𝐵, 𝒗) (3.9)

where 𝒖 = 1
1𝐵

−1𝒗 and Tr is the trace of the matrix

For the states with 𝒔 = 0 the matrix element simplifies.

⟨𝐴
||||
−
𝜕
𝜕𝒓

Λ
𝜕
𝜕𝒓𝑇

||||
𝐴′
⟩ = 6Tr(𝐴Λ𝐴′𝐵−1) (𝐵) (3.10)
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3.2.3 Coulomb potential
The coulomb potential using relative coordinates is equivalent to the

electric potential that arises from a point charge [3].

𝑉 (𝑟) =
1

4𝜋𝜀0
𝑄
𝑟

(3.11)

In the Hydrogen atom the charge will be equal to the 𝑒2 and using

electrostatic units the front factor can be completely omitted. To

calculate the matrix element the following formula from [1] can be

used:

⟨𝐴, 𝒔|𝑓 (|𝑤𝑇 𝒓|)|𝐴′, 𝒔′⟩ =  (𝐵, 𝒗) [𝑓 ] (3.12)

where

 [𝑓 ] = (
𝛽
𝜋)

3
2

2𝜋
𝑒−𝛽𝑞2

𝛽𝑞 ∫
∞

0
𝑟d𝑟𝑓 (𝑟)𝑒−𝛽𝑟

2
sinh(2𝛽𝑞𝑟) (3.13)

where 𝛽 = (𝑤𝑇𝐵−1𝑤)
−1

and 𝒒 = 𝑤𝑇 1
2𝐵

−1𝒗.
For the coulomb potential with the form

1
𝑟 the element can be evaluated

and the limit where 𝒔, and therefore also 𝒒, goes to zero can be found.

⟨𝐴, 𝒔
||||

1
|𝑤𝑇 𝒓|

||||
𝐴′, 𝒔′⟩ =

erf (
√
𝛽𝑞)

𝑞
−−−→
𝑞→0

2
√
𝛽

𝜋
(3.14)

3.2.4 Harmonic oscillator potential
For model control the harmonic oscillator potential is also evaluated

using an identical method to the coulomb potential. The general

harmonic oscillator potential is given by:

𝑉 (𝑟) =
1
2
𝑚𝜔2𝑟2 (3.15)

This has the form of 𝑟2 which can be used in (3.12) again.

⟨𝐴, 𝒔||𝑤𝑇 𝒓|2|𝐴′, 𝒔′⟩ =  (𝐵, 𝒗) [𝑟2] (3.16)

=  (𝐵, 𝒗)(
𝛽
𝜋)

3
2

2𝜋
𝑒−𝛽𝑞2

𝛽𝑞 ∫
∞

0
d𝑟 𝑟3𝑒−𝛽𝑟

2
sinh(2𝛽𝑞𝑟) (3.17)
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Now in the limit where q goes to zero this is easily evaluated:

⟨𝐴, 𝒔||𝑤𝑇 𝒓|2|𝐴′, 𝒔′⟩ −−−→
𝑞→0

 (𝐵)(
𝛽
𝜋)

3
2

4𝜋 ∫
∞

0
d𝑟 𝑟4𝑒−𝛽𝑟

2

=  (𝐵)(
𝛽
𝜋)

3
2

4𝜋
3
√
𝜋

8𝛽5/2 =  (𝐵)
3
2𝛽

(3.18)

3.2.5 Relativistic kinetic energy
The relativistic kinetic energy operator is a differential operator in

position space.

�̂�𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 =

√

−ℏ2𝑐2
𝜕2

𝜕𝒓2
+ 𝑚2𝑐4 − 𝑚𝑐2 (3.19)

In general differential operators are not a problem as long as they are

raised to a whole number power. The square root in the relativistic

energy however does not allow for this. The operator must be applied

in momentum space using just the momentum.

�̂�𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 =
√
𝒑2𝑐2 + 𝑚2𝑐4 − 𝑚𝑐2 (3.20)

In momentum space the differential operator �̂� simply becomes a

multiplicative operator which can be used by the formula (3.12) like

before.

⟨𝐴, 𝒔|𝑓 (𝑤𝑇𝒌)|𝐴′, 𝒔′⟩ = ∬ d
3𝑁𝒌d3𝑁𝒌′ ⟨𝐴, 𝒔|𝒌⟩ ⟨𝒌|𝑓 (𝑤𝑇𝒌)|𝒌′⟩ ⟨𝒌′|𝐴′, 𝒔′⟩

(3.21)

Now due to the normalization between the position and momentum

overlap the integral is reduced and a factor is introduced. The gaussi-

ans are in the momentum form from (3.5):

⟨𝐴, 𝒔|𝑓 (𝑤𝑇𝒌)|𝐴′, 𝒔′⟩

= ∫
d
3𝑁𝒌

(2𝜋)3𝑁
 (𝐴, 𝒔) g 1

4𝐴−1,− 𝑖
2𝐴−1𝒔(𝒌)𝑓 (𝑤𝑇𝒌) (𝐴′, 𝒔′) g 1

4𝐴′−1,− 𝑖
2𝐴′−1𝒔′(𝒌)

(3.22)

which reduces to the form of a matrix element:

=
 (𝐴, 𝒔) (𝐴′, 𝒔′)

(2𝜋)3𝑁 ⟨
1
4
𝐴−1,−

𝑖
2
𝐴−1𝒔 ||𝑓 (𝑤

𝑇𝒌)||
1
4
𝐴′−1,−

𝑖
2
𝐴′−1𝒔′⟩

(3.23)
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Now finally applying (3.12) using (3.20) the following is found:

⟨𝐴, 𝒔|
√
(ℏ𝑤𝑇𝒌)2𝑐2 + 𝑚2𝑐4 − 𝑚𝑐2|𝐴′, 𝒔′⟩

=
 (𝐴, 𝒔) (𝐴′, 𝒔′)

(2𝜋)3𝑁
(

1
4 (

𝐴−1 + 𝐴′−1) ,−
𝑖
2 (

𝐴−1𝒔 + 𝐴′−1𝒔′)) [𝑓 ]

(3.24)

Now again looking at the limit where q goes to zero the matrix element

can be simplified.

−−−→
𝑞→0

 (𝐴) (𝐴′)
(2𝜋)3𝑁

(
1
4 (

𝐴−1 + 𝐴′−1))(
𝛽
𝜋)

3
2

4𝜋 ∫
∞

0
d𝑟 𝑟2𝑓 (𝑟)𝑒−𝛽𝑟

2

(3.25)

Now this is the end for the analytical part of the matrix element. A

similar derivation is done in [5]. The final integral will be solved

numerically during implementation.

3.2.6 Relativistic energy term using Taylor
expansion

A somewhat easier way to determine the relativistic energy is from

the Taylor expansion of the relativistic kinetic energy operator (3.20).

𝐾𝑟𝑒𝑙 ≈
𝒑2

2𝑚
−

𝒑4

8𝑚3𝑐2
… (3.26)

It is seen here that the initial term is the classical kinetic energy, which

is expected since this is the physics in the low momentum limit. The

second term however is a common approximation for the relativistic

shift. Luckily the matrix element for this operator can be calculated

fairly quickly in momentum space using the method of the previous

section. To get the matrix element in the limit of q going to zero the

form 𝑘4 can be inserted directly into (3.25). This yields the following:

⟨𝐴|𝒌4|𝐴′⟩

=
 (𝐴) (𝐴′)

(2𝜋)3𝑁
(

1
4 (

𝐴−1 + 𝐴′−1))(
𝛽
𝜋)

3
2

4𝜋 ∫
∞

0
d𝑟 𝑟6𝑒−𝛽𝑟

2

(3.27)

=
 (𝐴) (𝐴′)

(2𝜋)3𝑁
(

1
4 (

𝐴−1 + 𝐴′−1))
15
4𝛽2 (3.28)

This matrix element is very useful as model control similar to the

harmonic oscillator potential.



Chapter 4

Results

4.1 Implementation

4.1.1 Units
The matrix elements have been derived without explicit consideration

for units and constants. As such it is necessary to compute the con-

stants in the chosen units and apply the values when implementing

the matrix elements. The units have been chosen such that the num-

bers can be calculated accurately within the double precision float

point format which is used by python by default. Within this regime

the units Ångstrom [Å] and electronvolt [eV] have been chosen some-

what arbitrarily. Other common units in atomic physics include the

Bohr radius [𝑎0] and Hartree [Ha].
The constants as used in the program are displayed in table 4.1:

ℏ𝑐 1973.269 804 eVÅ

𝑚𝑒 51 099.895 000 eV/c2
𝑚𝑝 938 272 088.16 eV/c2
𝛼 137.036−1
𝑎0 0.529 177 210 903Å

Table 4.1: The exact numbers used in the implementation. The values are

gathered online from NIST[6].

18



Semirelativistic Kinetic Energy with Correlated Gaussian Method19

4.1.2 Program
The process of stochastic variation requires a random number gen-

erator for which the function numpy.random.rand from the numpy

package for python is used. Here a random number between 0 and

1 is generated for each basis element and scaled by an appropriate

factor and inversely squared to ensure an exponential like distribution

of values.

Matrix elements are then found using the generated basis and the

eigenstate is solved using scipy.linalg.eigh from the scipy pack-

age. This energy is then compared to the energies of previous states

and the lowest energy state is selected and saved. After an arbitrary

number of iterations the results can be examined and the relativistic

corrections can be calculated from the low energy state given by both

a basis and a state vector. For the relativistic matrix element the in-

tegral is evaluated numerically using scipy.integrate.quad.

Through approximate trial and error the configuration which found

moderate success in convergence time was a scale value of 3 with 8

gaussians.

4.2 Classical Kinetic energy

4.2.1 Ground state energies
The targeted ground state energy with the coulomb potential can be

calculated using the following from [4]:

𝐸1 = −
𝑚𝑒

2ℏ2 (
𝑒2

4𝜋𝜖0)

2

= −13.605 693 1 eV (4.1)

however using the the reduced mass from the relative coordinates the

value changes slightly

𝐸1 = −
𝜇𝑒𝑝
2ℏ2 (

𝑒2

4𝜋𝜖0)

2

= −13.598 287 eV (4.2)

Both situations have been simulated and the lowest values from a few

million stochastic trials are shown in table 4.2. The energies are quite
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Reduced mass Electron mass

𝐸 Δ𝐸 𝐸 Δ𝐸

−13.597 08 eV 0.001206 −13.604 99 eV 0.000705

Table 4.2: Comparison of the lowest simulated energy using both the

reduced mass and the regular electron mass. The Δ𝐸 denotes the difference

with the masses from (4.1) and (4.2).

close to the analytic values, however for the reduced mass the result

is only accurate down to 4 digits. This is worrying when considering

that the relativistic shift to be calculated later is expected to lie in the

10−4 range. This will be discussed further in later sections.

4.2.2 Radial wave function
Using the basis and eigenvectors associated with the simulated ground

state, it is possible to depict the radial wave function as seen in figure

4.1. The analytical ground state is depicted on top indicating that the

simulated state fits the expected quite well, which is to be expected

given that the energy difference is so low compared to the size of the

wave function.

4.2.3 Harmonic oscillator potential
The ground state is also found in the harmonic oscillator potential.

This is done primarily to check the model since the harmonic oscil-

lator potential is expected to work very well with a gaussian basis. In

fact the analytical solutions to the Hamiltonian with the harmonic

oscillator is exactly a gaussian wave function. As expected the results

match the ground state exactly down to the precision of python float-

ing point. The ground state energy is
3
2ℏ𝜔 for the three dimensional

harmonic oscillator.

4.3 Relativistic kinetic energy
The approximate expected value of the relativistic can be calculated

using a perturbation as done in [4]. Using the reduced mass results in
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Figure 4.1: The simulatedwave function is depicted on top of the theoretical

normalized ground state wave function.

the following value:

𝐸(1)
𝑟𝑒𝑙 = −

5(𝐸1)2

2𝜇𝑒𝑝𝑐2
= −9.051 59 × 10−4 eV (4.3)

AS previously mentioned the energy of the simulated ground state is

quite far off the perturbation energy, relative to the expected relativ-

istic shift, which could mean that the relativistic energy difference

would be lost. To investigate this, a large amount of simulations

with different amounts of trials have been carried out inspired by

resampling methods from statistics. By making grouped simulations

with either 10000 trials or 500000 trials it was possible to determine

whether information about the relativistic shift is still present without

being within the effect size of the true energy. A visual examination of

this can be seen in figure 4.2. Here it is seen, within some uncertainty,

that simulations with more or less accurate classical ground states still

find a similar relativistic shift. These simulations were also calculated

for the Taylor approximation of the relativistic shift. This is seen in

table 4.3.

In both models the relativistic shift settles somewhat consistently

to a value without an unreasonable uncertainty, as estimated by the
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Figure 4.2: The two groups of 104 trials and 5 × 105 trials with the sample

mean and the sample standard deviation. The vertical line denotes the

analytic classical ground state energy.

Full model Taylor Approximation

105 trials 5 × 105 trials 105 trials 5 × 105 trials

𝜇 −8.521 × 10−4 −8.564 × 10−4 −8.540 × 10−4 −8.582 × 10−4

𝜎 1.874 × 10−5 1.108 × 10−5 1.977 × 10−5 1.158 × 10−5

Table 4.3: The table displays the sample mean and sample standard devi-

ation for the 104 group and the 5 × 105 group in both the full model using

the numerically calculated matrix element and in the Taylor approximation

model.

sample standard deviation. The group with the more accurate classical

energy however has a somewhat greater shift which could indicate

that the true shift is even lower. This would be consistent with the

analytical calculation of the Taylor approximation which landed on

a value about 5 × 10−5 lower than what was found. It is possible that

through more simulations a group of data could be used to extrapolate

into the energy range where the classical approximation is better and

find a relativistic shift closer to the perturbation calculation. Especially

for the data gathered in the Taylor model. It is also important to note

however that adding further terms to the Taylor expansion will also
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affect the result. Ultimately the simulated method is comparable to a

simple perturbation calculation and even for a less accurate ground

state, the method will give an arguably useful estimate of the shift.



Chapter 5

Conclusion

The hydrogen atom has been examined using a correlated gaussian

basis whose matrix elements have been developed. Through complete

stochastic variation the ground state of the system has been found

within 0.000 705 eV of the analytical ground state. Despite this not

being within the 104 digit range, the simulation of the relativistic shift

has been carried out. Using methods inspired by statistical resampling,

the relativistic shift has been estimated to −8.564 × 10−4 eV which

is quite close to the value of −9.051 59 × 10−4 eV as estimated by a

perturbation calculation. Through statistical extrapolation it might

be possible to get a value even closer. Ultimately stochastic variation

with correlated gaussians was found to be a comparable method to

perturbation calculations and even giving a good estimate despite

being far away from the ground state energy which could be useful

for systems where the ground state is harder to approach.

24
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