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Abstract

In this paper, the Ritz theorem is expanded into the Stochastic variational method, and a
detailed study of the theoretical background is made. A lightweight implementation of the
stochastic variational method is made, using spherical gaussians only, and the algorithms
involved are discussed. The implementation uses the Cholesky-Jacobi eigensolver for solv-
ing the generalized eigenvalue problem, and Brent's method for testing the trial functions
needed for the stochastic variational method. The groundstate energy is calculated for the
�rst four atoms in the periodic table, all of which should be well descriped by the spherical
gaussian. The results are then compared with various other theoretical and experimen-
tal values, providing a guideline for the accuracy of the method and the viabillity of the
stochastic variational method calculations without the use of supercomputers.
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Chapter 1

Introduction

Numeric solutions to the Schröedinger equation has been sought almost since the invention
of quantum mechanics, and have been used with increasingly greater accuracy since the
1950's and the dawn of electronic computing. Many methods have been used, and even
more have been proposed, leading to solution of extreme accuracy, above and beyond what
can be obtained in experiments for the few-body system. Today the most successful meth-
ods are the Quantum Monte Carlo methods and the various variational based calculations.
Using these , modern physics have achieved theoretical bounds for the ground state energy
with a precision far beyond the best experiments. All these methods have a common goal:
To achieve the greatest accuracy possible, at the lowest computational cost possible wit
the greatest ease possible. Many fail in this, and many schemes that appear sound in the
world of exact arithmetic perform poorly in a limited precision context, needing more than
double precision �oating points to counter numeric instability, which will encumber any
computation, by a factor 10 or more. The most accurate models are often custom made
for a particular few body system, or are corrections to more general methods. In recent
years the variational methods based on an expansion of Gaussian functions have proven to
give reliable and accurate results, among these the stochastic variational method, which
has been used to calculate systems with 2-7 particles.

1.1 SVM

The stochastic variational method was originally invented by V. I. Kukulin and V M
Krasnopolsky in 1977[17], but was given relatively little attention at the time, mainly due
to lack of computational power needed for the method to be e�ective. It was not until K.
Varga and Y. Suzuki used the method in 1994[19]and later demonstrated the full potential
of the method in an article from 1995[14]that common use began. The book published in
1998[1]gave examples of its use in practically every type of few-body problem currently be-
ing studied, even subnuclear problems, using relativistic corrections to the kinetic energy
operator. With the exponential increase in the available computational power in recent
years, it has become possible to perform accurate calculations without the use of a super-
computer, making the method practical for use in everyday calculations of modest size
In this paper, a lightweight implementation of the stochastic variational method is made
using a high level functional language, using only spherical Gaussian, and tested on various
2-5 body atomic problems. The limits of this simple method is explored, using Beryllium
as the limit of what can reasonably be achieved without adding angular momentum com-
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1.1. SVM CHAPTER 1. INTRODUCTION

mutations and relativistic corrections.

The program is written in Haskell using Glasgow extensions and can be found at
http:\\www.phys.au.dk/~dch05/Bachelor/ .

All values given are in atomic units unless speci�cally stated otherwise.
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Chapter 2

Theory

The Ritz theorem, commonly known as the variational theorem, is one of the most use-
ful theorems of quantum mechanics. It states that, for any normalized function Ψ, the
following holds

< Ψ|Ĥ|Ψ >≥ E1 (2.1)

where Ĥ is the Hamiltonian of a given quantum mechanical system, and E1 the ground
state eigenenergy. A proof of this can be found in [2]. This can further be generalized
to the Mini-Max theorem, which states that for any Hermittian operator Ĥ with discrete
eigenvalues E1 ≤ E2 ≤ · · · , the eigenvalues ( ε1 ≤ ε2 ≤ · · · ≤ εk) of H in the restricted
subspace Vk of a linear combinations of K independent functions, the following holds:

Ei ≤ εi 1 ≤ i ≤ k (2.2)

a proof can be found in [8]. Equality only holds when the exact eigenfunctions of Ĥ are
contained in Vk.

The practical o�spring of this is obvious. We can easily obtain an upper bound for
any eigenvalue we like, simply by making a guess. If a an upper bound close to the
actual eigenvalue is desired, this guess most obviously be quali�ed, and relatively close
to the true eigenfunction of the system. For small systems this is a simple task, and is
a common exercise in introductory courses in quantum mechanics, usually leading to the
correct answer within one or two percent using a simple modi�ed hydrogen wave-function
for each electron. To compete with the accuracy achieved in modern experiments, more
elaborate schemes must be used, with a larger set of functions better capable of describing
the eigenspace of the system. In this case, quali�ed guessing, involving functions made
speci�cally to describe some physical feature is no longer practical. Instead, a set of
functions known to describe the wave equations well is needed. The obvious choice of a
Fourier or Taylor series cannot easily be used, as the inner products do not, in general, yield
�nite number. This could (at least partially) be solved doing all integration numerically,
however this is a relatively expensive process (compared to a purely analytical approach),
and prone to errors or at least statistical uncertainty. Further more, since we cannot
(usually) perform our calculations on an in�nite number of functions, we have to choose
a subset which is a problem for any set of orthogonal functions, as we do not know which
ones will contribute the most to the accurate solution resulting in slow convergence.

Thus, we have a set of requirements for our basis set:
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2.1. THE BASIC PROBLEM CHAPTER 2. THEORY

• It must be overcomplete. This makes the choice of what particular subset we use
less important, greatly reducing the problem.

• The matrix elements involved in the calculations must be analytically calculable.
This provides us with machine-precision accuracy, and allows calculations to be done
fast and e�ciently.

• A subset of the set of functions must be able to describe the eigenfunctions well.

The correlated Gaussian basis [7] ful�lls all these requirements. The basis has not been
proven complete in general, only for various quantum mechanical systems [12] [13] but has
been used with considerable success in calculating various quantum mechanical systems,
making it perfectly suitable.

The simplest of the correlated gaussians is the spherical gaussian descried by

Ψ = c · exp

(
−1

2

N∑
j>i=1

αij(ri − rj)
2

)
(2.3)

For obvious reasons a set of these functions is not capable of fully describing a system with
angular momentum, such as larger atoms and molecules. It should,however, be perfectly
capable of describing the ground states and �rst few excited states of simpler systems,
such as small atoms, where the electrons are known to reside in s-orbitals.

2.1 The basic problem

In order to project the �rst K eigenfunctions of Ĥ onto our subspace VK , we must �rst
rephrase the problem:
For a given set of linear independent functions in the subspace VK we know that

Ĥ|Ψn >= εn|Ψn > (2.4)

where

Ψn =
K∑
j=1

cnjΨj (2.5)

thus we get that

K∑
j=1

Ĥ|cniΨj >=
K∑
j=1

εncni|Ψj > (2.6)

which leads to

K∑
j=1

< ΨiĤ|Ψj >=
K∑
j=1

εncni < Ψi|Ψj > (2.7)

If we let the matrices H and B be de�ned by

Hij =< Ψi|Ĥ|Ψj > Bij =< Ψi|Ψj > (2.8)
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2.2. MATRIX ELEMENTS CHAPTER 2. THEORY

where Hij refers to the element of H in the i'th row in the j'th column. we can write this
equation as

Hcn = εnBcn (2.9)

where cn is a vector. This is otherwise known as the generalized eigenvalue problem.
Several methods solving this problem are known, with the Lancoz and QZ algorithms
being the most widely used. As accuracy is a very important part of this algorithm,
another scheme will be used.
By using Cholesky decomposition, where B = LLT , where L is a lower triangular matrix,
the problem is reduced

Hcn = εnLLTcn ⇔ (2.10)

L−1Hcn = ε ·LTcn ⇔ (2.11)

L−1HLT−1LTcn = ε ·LTcn (2.12)

. leaving us with the regular eigenvalue problem for a symmetrical matrix, with LTcn as
the eigenvector. The true eigenvector can be reached by a simple matrix multiplication
with the inverse of L, L−1.

Cholesky decomposition requires that the matrix is semi-de�nite, meaning that for any
vector v the following holds:

vTBv ≥ 0 (2.13)

As B is the Gram-matrix of our set of linear independent functions, it is positive-
de�nite, and thus the Cholesky-decomposition an always be performed.

At this point, any of the myriad of eigenvalue algorithms created could be used to
solve our problem. The Jacobi-algorithm has proven itself as an extremely stable way of
computing the eigenvalue problem [6], and is thus very well suited for use in quantum
mechanics.

An alternative to using Cholesky decomposition is to simply create a set of orthogonal
functions (φ1, φ2, · · · , φK) from the basis set using the Gram-Schmidt formula:

φK+1 =
ΨK −

∑K
i=1 φi < φi|ΨK >√

< ΨK |ΨK > −
∑K

i=1 < φi|ΨK >2

(2.14)

This would make B equal to the unity matrix, and thus reduce the problem to the normal
eigenvalue problem. Like the Cholesky decomposition this could be updated in O(K2)
time. The cost is thus very similar. While the Gram-Schmidt method does not require a
matrix multiplication, the evaluation of the H matrix elements takes equally longer time.

2.2 Matrix elements

In order to separate center of mass motion, we use the center of mass coordinates, which
are related to the inter-particle coordinates by a linear transformation U:

xi =
N∑
j=1

(Uijrj) (i = 1, .., N) (2.15)
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2.2. MATRIX ELEMENTS CHAPTER 2. THEORY

where

UJ =


1 −1 0 · · · 0
m1

m12

m2

m12
−1 · · · 0

...
...

. . . · · · . . .
m1

m12···N−1

m2

m12···N−1
· · · · · · −1

m1

m12···N

m2

m12···N−1
· · · · · · 1

 (2.16)

In these coordinates, the momentum pi can be given in terms of the operator πj =
−ı~ ∂

∂xj
:

pi =
N∑
j=1

Ujiπj (2.17)

The center of mass kinetic energy is then given by Tcm =
π2

N

m12···N
This gives us the

kinetic energy operator as

N∑
i=1

p2
i

2mi

− Tcm =
1

2

N−1∑
i=1

N−1∑
j=1

Λijπi ·πj (2.18)

where Λ is a matrix given by

Λij =
N∑
k=1

UikUjk
1

mk

(i, j = 1, · · · , N − 1) (2.19)

In terms of x, the interparticle-distance needed to calculate the potential energy is
given by

ri − rj =
N−1∑
k=1

(
(U−1)ik − (U−1)jk

)
k
≡ w̃(ij)x (2.20)

This leads us to a new representation of our spherical gaussian basis function:

Ψ = c · exp

(
−1

2
x̃Ax

)
(2.21)

where A is a positive de�nite matrix, and the relationship between A and the α is given
by

Akl =
N∑

j>i=1

αijw
(ij)
k w̃

(ij)
l (2.22)

In this notation the overlap of the spherical gaussians is given by

< ΨA′|ΨA >=

(
(2π)N−1

det(A+ A′)

) 3
2

(2.23)

The kinetic energy is given by

< ΨA′|
N∑
i=1

p2
i

2mi

− Tcm|ΨA >=
3

2
~2Tr

(
A(A+ A′)−1A′Λ

)
< ΨA′ |ΨA > (2.24)
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2.2. MATRIX ELEMENTS CHAPTER 2. THEORY

The matrix element of any two-body potential is given by

< ΨA′|V (ri − rj)|ΨA >=< ΨA′ |ΨA >
(cij

2π

) 3
2

∫
V (r)e−

1
2
cijr

2

dr (2.25)

where
1

cij
= w̃(ij)(A+ A′)−1w(ij) (2.26)

This gives us that the matrix element of the coulomb potential is given by

< ΨA′|
1

4πε0

qi · qj
|ri − rj|

|ΨA >=
qiqj
4πε0

√
2cij
π

< ΨA′ |ΨA > (2.27)

, the matrix elements of the distance to the center of mass operator is given by

< ΨA′ |ri − xN |ΨA >= 2

√
2

ciπ
< ΨA′ |ΨA > (2.28)

where ci is de�ned like cij with the di�erence that

w̃(i)x =
N−1∑
k=1

(U−1)ikxk (2.29)

The same operator, squared gives us

< ΨA′ |(ri − xN)2|ΨA >=
3

ci
< ΨA′|ΨA > (2.30)

An extremely useful property of the spherical gaussians is that for any transformation
T x = Tx

T ΨA = exp

(
−1

2
T̃AT

)
(2.31)

This allows us to easily ensure proper symmetry of the wave equation. The symmetry
of a given wavefunction is given by the operator P̂ so the actual basis function becomes

Ψk = ck · P̂ · e−
1
2
x̃Akx (2.32)

The symmetry of fermions is most easily assured by letting

P =
1√
N !

∑
p

P̂ · (−1)p (2.33)

where P̂ is the permutation operator, such that ri → rpi
, interchanging particle indices of

identical particles, over every possible permutation p. In single particle coordinates, this
operator is particular simple, becoming

P̂r = TP r (2.34)

where

(TP )ij = δjPi
(i, j = 1, · · · , N) (2.35)
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2.3. OPTIMIZING THE PARAMETERS CHAPTER 2. THEORY

In center of mass coordinates this changes to

(TP )ij =
N∑
k=1

Uik(U
−1)Pkj (i, j = 1, · · · , N) (2.36)

which results in

P̂Ψk = ck · e−
1
2
x̃T̃PAkTP x (2.37)

As the number of identical particles rises, the number of particle interchanges needed
to assure the symmetry rises exponentially, making it a practical impossibility to calculate
large systems, without approximations to the behavior of the particles.

2.3 Optimizing the parameters

The problem of optimizing the individual parameters of our basis functions is anything but
trivial. For a simple system of 5 particles in a basis of size K = 200, 2000 parameters need to
be optimized. While this is by no means impossible (if impractical, as each evaluation of the
expectation value of the energy is possibly a O(K3) operation unless great care is taken),
we have the chance of encountering a local minima, rather than a global, and are thus
extremely likely to �nd an exited state rather than the basis state of the system. Various
stochastic methods exist that solve this problem, however such schemes are computational
expensive, and a full and accurate optimization is not needed: The basis is overcomplete,
meaning that no single function is irreplaceable. The the simplest stochastic optimization
scheme imaginable can be used: trial and error.

Various schemes of quasi-random numbers have been used in quantum mechanics. None
of these are very suited for the current purpose however, as all of them tend to include
points that add little or nothing to the approximation of the wave function, and thus lead
to an extremely large basis size. Instead, pseudo-random numbers in a physical interval are
chosen, as this has been shown to give the fastest convergence[9]. The Portable Combined
Random Generator of L'Ecuyer[10]is used, which has a period of roughly 2.30584 · 1018.

The physical interval from which the basis functions are chosen, is vital for the con-
vergence. It is noted that the expectation value relevant to distance is given by < r >=√

4/(πα, which provides a good starting point for a guess, as bounds for the expected
distance between particles in the system can often be estimated.

The scheme can be further improved by simply choosing a number of trial functions,
from which the best is chosen to to go into the basis. As will be show later, comparing
the trial functions is considerably faster than adding a function to the basis, making it
possible to choose from a rather large set of trial functions.

The main disadvantage over a fully random progression scheme is that it is harder to
make reasonable assumption as to the required basis size for a given convergence, and that
any hope of interpolating the expectation energy must be abandoned.

2.4 The not so few body problem

As with any other algorithm for calculating a full quantum mechanical system, the sym-
metry requirements for an N-body problem result in a O(N !) time dependency, on top of
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2.5. A LOWER BOUND CHAPTER 2. THEORY

the O(N2) time from calculating the inter-particle potentials. Thus, any algorithm hoping
to simulate systems of 10 or more particles, must be easily distributable. This can easily
be done with the SVM method, as practically every part of the algorithm is separable from
the others. The individual matrix elements and trial functions could easily be distributed,
as could the diagonalization of the matrix. This also makes the SVM well suited for cal-
culations on GPU's, that are inherently parallel in nature. All major GPU manufacturers
have SDKs for deploying software on their hardware platforms, and the new generations of
GPU's have double precision numerics, allowing for fast, high precision. As the GPU's are
inherently designed for linear algebra, they are an order of magnitude faster than normal
CPU's, allowing normal computers to perform calculations on a relatively large number of
particles.

An additional step can be taken in order to improve performance considerably when
calculating the matrix elements. If in a given trial function, only a single element αij is
changed to αij + λ, it is possible to compute the change in the inverse and determinant
using the Sherman-Morrison formula:

The changes in the matrix A is given by A → A + λw(ij) ˜w(ij), where w(ij) is given by
formula 2.20. The inverse and determinant of the matrix B given by B = A + A′ is then
changed via the formulas

(B + λw(ij) ˜w(ij))−1 = B−1 − λ

1 + λ ˜w(ij)B−1w(ij)
B−1w(ij) ˜w(ij)B−1 (2.38)

and
det(B + λw(ij) ˜w(ij)) = (1 + λ ˜w(ij)B−1w(ij))det(B) (2.39)

This changes the complexity of calculating the determinant and B (both used extensively
in calculating the matrix elements) from O((N − 1)3) to O((N − 1)2) for an N particle
system, allowing more trial functions to be tested. This is, however, a somewhat limited
way of changing the basis functions, and is mainly desirable in larger (4 or more particles)
systems, where the evaluation of the matrix elements is the primary computational cost.

2.5 A lower bound

While the Ritz theorem gives us an upper bound for the ground state energy, having a
lower bound would be equally desirable, as it would provide the ability to estimate the
error of the calculated ground state energy. The variance of the energy expectation value
is given by

σ2 =
< Ψ|H2|Ψ >

< Ψ|Ψ >
− E2 (2.40)

where E is the expectation value of the upper bound. It is then known that there is at
least one exact eigenvalue in the interval [E − σ,E + σ], according to [8]. The problem
with the lower bound is that there is no guarantee that the value inside the bounds is not
an excited eigenstate, and thus not the ground state we're looking for. This is especially
problematic with the higher excited states where the eigenvalues are often very close to
each other. The systems in this paper are already very well theoretically known, and these
values will provide the lower bound. When expending a basis that is already reasonably
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2.6. THE IMPLEMENTATION CHAPTER 2. THEORY

close to the ground state, it may be advantageous to minimize the variance rather than
the energy, although this requires the computation of more matrix elements.

2.6 The implementation

Requiring a full diagonalization every time the energy of the basis, expended with a new
trial ,function is to be calculated would make this method far too cumbersome for compu-
tation of large basis sizes on a regular computer within a reasonable time frame. Instead,
it is noted that given the matrix L−1HL−1T

of size K x K (which shall henceforth be de-
noted H ′K), where L is the Cholesky-decomposition of B given by formula 2.8, the diagonal
matrix DK containing the eigenvalues of H ′K in the diagonal, and the matrix QK where
H ′K = QKDKQ̃K , calculating the eigenvalues of H ′K+1, created by expanding the basis
with the function ΨK can be done as follows: Let QK+1 be the matrix QK expanded by
having zeros in the K+1'th row and column, kept in the last of the diagonal, where we
put a one. The matrix QT

K+1H
′
K+1QK+1 will then be almost diagonal:
ε1 0 · · · 0 h1

0 ε2 · · · 0 h2
...

...
. . .

...
...

0 0 · · · εK hK
h1 h2 · · · hK hK+1

 (2.41)

with the eigenvalues given as the solutions E to the equation

E − hk+1 =
K∑
i=1

h2
i

E − εi
(2.42)

Notice that, since we already know QT
KH

′
KQK , it is possible to calculate Q

T
K+1H

′
K+1QK+1

in O((K + 1)2) time, thus allowing us to calculate the energy for each trial function in
O((K + 1)2) time, a dramatic improvement over a full diagonalization in each step.

From the de�nition of the Cholesky decomposition, it is obvious that when expanding
the basis, it is possible to also update the cholesky decomposition L of B in time O((K +
1)2), and its inverse L−1 as well. It is slightly less obvious that if we also save the previous
iteration of L−1H, it is also possible to update L−1HL−1T

within this time frame, thus
allowing us to test a trial function in O((K + 1)2) time, as opposed to the O((K + 1)3)
time it takes to do a full diagonalization.

Brent's method[11] is used as the root�nding algorithm of choice for solving 2.42.
When updating the basis, we use the Jacobi Method. This is not the fastest of the

eigenvalue algorithms, but holds several advantages to other, faster, methods. First of
all it is easily modi�ed to yield the matrix of eigenvectors Q. Second, it is highly stable
and extremely accurate. Thirdly, fast parallel algorithms exist, allowing one to distribute
almost all parts of the stochastic variational method. It should however be noted that while
the Jacobi algorithm is generally a good choice, the used implementation converges when
the root-mean-square of the o�-diagonal elements is below 10−6, a bound that could be
improved, allowing the Jacobi method to reach accuracy close to machine precision. While
the check for orthogonality ensures that B is generally well-conditioned, the addition of a
re�nement procedure would allow the method to deal with less well-conditioned matrices,
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2.6. THE IMPLEMENTATION CHAPTER 2. THEORY

and thus reduce our demand of non-orthogonality. In order to assure that A is positive
de�nite, it is diagonalized by the Jacobi method, and the eigenvalues are tested to be
positive.
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Chapter 3

Practicalities

The number of trial functions used in the calculation is a �ne balance. With enough
trial functions, convergence will be faster, and a smaller basis is needed. Too many trial
functions leads to redundant calculations, and a slower implementation. This becomes even
more important when the evaluation of matrix elements become the dominant performance
drain. With more particles the �sweet spot� between basis size and number of trial functions
is changed, and for many-particle systems it will be advantageous to stop using trial
functions at all. In the following tests, we are using the Ps- ion as an example, with a
basis size of 100.

We notice that while there is an immediate gain in accuracy by using trial functions,
using more than 100 seems redundant, compared to the cost of simply increasing the basis
size.

In order to ensure convergence, a trial size of 200 is used in all calculations.

13



Chapter 4

Results

In order to prove (or at least plausify) the corectness of the implementation, several exam-
ples have been made. It should be noted, that given the correlated nature of the gaussians
and the large variance on the < r > operator, it is not immediatly possible to visual-
ize the wave functions of the various systems. What can, however, be visualized are the
uncorrelated interpartile wavefunctions Ψij =

∑N
k=1 ck · e−

1
2
αij

4.1 proof of concept: Positronium

The various electron-positron systems have been the source of much attention over the
years, and many theoretical calculations have been made. This makes positronium a good
benchmark for comparing the SVM with other numeric methods, as have indeed been done
by K. Varga and Y Suzuki[14]. Here, it is used mainly to demonstrate the correctness of
the implementation.

System Energy < r >
√
< r2 >

Ps −0.25 1.732 1.5
Orig −0.25 1.732

Ps+ −0.262005(0) 4.378973 5.106183
Orig −2620004 4.592

Ps2 −0.515769 3.181038 3.578653
Orig −0.515989 3.608

The reference values are the SVM calculations made in [14] There is excellent agreement
between the results and the reference values, although in the case of Ps+ the

√
<r2 >

value appears somewhat larger than the result obtained in the orignal.

4.2 Hydrogen

Hydrogen is well known both from experiments and actual measurements. It is one of the
few quantummechanical systems for which a pure analytical solution has been found, which
makes it somewhat uninterresting in our case, kept as a benchmark for our calculations.
Measurements place this energy to be -0.499732 Hartree. Even using a small basis of
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4.3. HELIUM CHAPTER 4. RESULTS

merely 30 basis states we get a value -0.4997278, which is in excellet agreement with the
experimental value, and almost within the limits of the hyper�ne splitting.
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Figure 4.1: Calculated wave function of

hydrogen vs. experimental value

4.3 Helium

Accurate theoretical models for the hydrogen atom have been available for the past 50
years, has not been considered a releant problem for quite some time.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  5  10  15  20  25  30  35  40  45  50
r [a0]

Ψ13
Ψ23
Ψ13

Figure 4.2: Non-correlated wave functions

of He
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Figure 4.3: Energy convergence of He

Energy <r1> <r2>
√
< r12 >

√
< r22 >

−2.903195(0) 0.9295 0.9295 1.09253 1.09253

The non-relativistic groundstate of helium is −2.9037244 Hartree[18], and thus the value
achieved is accurate to within 2%�. The < r > values are smaller than those of hydrogen,
as expected due to the larger charge of helium, and the fact that both electrons are in the
samel shell. It is curious to note that the non-correlated wavefunctions between the two
electrons (Ψ13 and Ψ23) and the core show in 4.2 are very similar to the 2s wave function
of hydrogen, and the wavefunction between the electrons (Ψ12) is very similar to 1p wave
function.
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4.4. LITHIUM CHAPTER 4. RESULTS

4.4 Lithium

The unrelativistic lithium groundstate is known theoreticly within 1n hartree, giving the
value −7.478060326(10), using a hybrid of variational calculations in Hylleraas coordinates
and the superposition of correlated con�gurations method [16]. The used implementation
of the SVM cannot hope to reach such accurate results as it is simply beynd the precision
achievable with the used eigenvalue and root�nding algorithms.
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Figure 4.4: Non-correlated wave functions

of Lithium

Energy <r1> <r2> <r3>
√
< r12 >

√
< r22 >

√
< r32 >

−7.4768004(8) 2.2066 0.5753 2.2066 2.9902 0.6714 2.9902

The energy is in excellent agreement with the result optained in [16], and correct within
60µHartree. The expectation value for the distance to the center of mass does however
seem to reveal a curious fact. The ground state of lithium is known to be 1s22s. The
distances seen here seems to suggest a 1s2s2 state, though such a state is not known to
exists, nor is there room in the energy to allow for an excited state. The values themselves
are however perfectly valid. The normal size of the Lithium atom is around 2.87a0, and
thus within the bounds of the expectation value. A calculation of Li+ does indeed show
two core electrons in the same shell, with values of < r >

√
< r2 corresponding to the

values of < r2 > and
√
< r2

2 > of Li.
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Figure 4.5: Convergence of Li and Li+
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Energy <r1> <r2>
√
< r12 >

√
< r22 >

−7.2791703(2) 0.5728 0.5728 0.6681 0.6681

The di�erence between these two calculations yields a net ionisation energy of 0.19763616
a.u., which is in excellent agreement with the experiemntal result of 0.19814 a.u..It is also
a little on the low side, which is to be expected as fewer basis states are needed to acieve
high accuracy when there are fewer particles involved. As could be expected, the uncorre-
lated wave functions for Li+ seen on �gure 4.6, are virtually the same as those for helium,
though somewhat more contacted due to the higher charge. They are, however very dif-
ferent from the wave functions of the neutral Lithium atom. This is presumably an e�ect
of the symmetrization, as the two identical particles (referred to as particle 1 and 3) have
extremely similar uncorrelated wave functions.

4.5 Berylium

The berylium groundstate has previously been calculated to an accuracy of (10 ± 50)µ
hartree [15], giving the value -14.667353(2) This was achieved using a very extensive
multicon�guration Hartree-Fock calculation, with a Dirac-Fock-Breit relativistc correc-
tion. While no direct experimental result exists, the �rst two excitation levels are known
with great precision, and adding these to a theoretical calculation of the helium-like Be2+

for which extremely accurate theoretical values exists, it is possible to gain a a semi-
experimental value of −14.6693324. This is far beyond the scope of what this article hopes
to achieve, and also, in terms of computation far beyond what will be needed. First of all,
the relativistic corrections to the Schröedinger equation are not included though this is
only around 3m hartree [15]. The lack of angular momentum means that the expected con-
vergence is slower than what we could reasonably expect if we were using a more advanced
form of gaussian, it also means that Berylium is the largest atom for which a reasonable
groundstate can be with spherical gaussians. This, combined with a limited computation
time and basis size, means that a more fair comparison of the SVM capabillities is the
Hartree-Fock energy of −14.5730230.
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Figure 4.7: Convergence of Be and Be+
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Figure 4.9: Non-correlated electron-

electron wave functions of Be

System Energy < r1 > < r2 > < r3 > < r4 >

Be −14.58502(8) 1.6794 1.6199 1.6794 1.6199
Be+ −14.31360(0) 1.3604 0.4169 1.3604√

< r2
1 >

√
< r2

2 >
√
< r2

3 >
√
< r2

4 >

Be 2.3410 2.2469 2.3410 2.2469
Be+ 1.8016 0.4851 1.8016

The energy found is somewhat than what was predicted by the Hartree-Fock method,
and judging by the convergence, a larger basis size may in fact have given a substantially
better value. Several memory leaks in the program used had not been removed at the
time of writing, and thus a larger basis was not possible due to the memory and time
limitations. The expectation values of the distance to the center of mass are within a
very reasonable spectrum, as we see two pairs with di�erent expectation values with could
correspond to the two shells in beryllium. The actual values are reasonable, the normal
size of the Beryllium atom is around 2.1165a0 which corresponds very nicely with what we
have found.

While the non-correlated wave functions between the eletrons are, pairwise, very sim-
ilar, no such symmetry can be found in the funtions between the electron and the core.
Given a larger basis size, it is likely that a greater similarity between the wavefunctions of
the electrons residing in the same shells would have been observed.
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Figure 4.10: Non-correlated wave func-

tions of Be+

Like Lithium, the < r > values do not seem to follow the Shell model. For both Be
and Be+ it is clearly seen that Be is smaller than Lithium whcih is to be expected, as the
core charge of BE is higher than that of Li, and thus likely to bind the elctrons closer.
The experimental ionisation energy of Be is 0.34261 [5], which is somewhat higher than
the 0.28470 estimate from the SVM. As with lithium, this is mainly due to the fact that
a higher number of basis states were needed for an accuracte estimate of the groundstate
of Be.

As expected the uncorrelated wave functions of Be+ are very similar to those of
Lithium.
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Chapter 5

Improvements of the SVM

A full study of the convergence rate of the Stochastic variational method has not yet
been made, and would provide valuable information as to whether it would be suitable for
computation of more-body-systems using either large scale distributed computing, or the
computing power presumed available in the future.

SVM

The used implementation of the SVM could easily be improved. Adding a re�nement cycle
would improve convergence dramatically.

Consider an already established basis of size K. While the trial functions have en-
sured that these functions independently are reasonable estimates of the optimal added
parameter, we have no guarantee that previously added basis functions are still reasonably
optimal. A re�nement cycle could then be added, in which a number of trial functions
were created and tested against the functions already in the basis. This could be done
reasonably inexpensive, as matrix elements fr the trial functions would only have to be
created once, and calculations of the expectation energy when testing the trial functions
could be made in O(N2), as shown earlier. This has proven to greatly contribute to the
convergence as better accuracy is made without a direct increase in basis size.

There is another problem with the used implementation of the SVM. Both Brent's
method and the Jacobi eigenvalue algorithm are iterative algorithms, containing within
them an accuracy parameter determining when to converge. In the previous calculations
this has been set to 10−6, as further decreasing this parameter gave an undesirable increase
in computation time. With proper attention it would be possible to implement this to
an accuracy comparable to the one achieved in modern experiments, however such an
implementation would require more computational power, and would probably be better
suited for use in a distributed environment.

It is obvious that the addition of angular momentum would allow the used imple-
mentation to cover a much broader range of problems, covering (in theory) every known
atom and its various excitations. Additionally, by changing the exponential term to
exp(−1

2
x̃Ax − s ·x) with the vector being an additional stochastic parameter s, it would

be possible to describe molecules. Both these additions would increase the computation
time required, but greatly increase convergence in the respective systems.

The greatest advantage of the SVM is also its greatest disadvantage. In it's general
form, it does not bene�t from much of the physical knowledge we may have of a system.
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In the study of Beryllium, for instance, it is known that there are two shells, and that
the electrons in each shell will be exactly the same in the non-relativistic approximation,
which could greatly reduce computation time and increase convergence. The advantage
here is of course that no such assumption ever enters into the calculations, which may lead
to new and indeed surprising results.

The used implementation is not well suited for excited states as no optimization of the
excited wave-functions every take place. After a rough basis optimization to the ground
state, a number of functions could be added to optimize the desired excited state (provided
the basis set is su�ciently large to allow for calculation of the wanted excited state). This
makes the SVM capable of accurately determining spectra as commonly used in atomic
and molecular spectroscopy.

With the addition of relativistic energy and the various relativistic corrections, it is
possible to determine atomic spectra with great precision, using various realistic potentials,
and thus even study subnuclear phenomena.
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Chapter 6

Conclusion

In this paper, the theoretical framework behind the the stochastic variational method
has been described in great detail along with it's relation to the generalized eigenvalue
problem, and various improvements to the basic approach have been suggested. It has been
futher shown that a lightwieght implementation, using only speherical gaussians is perfectly
capable of describing various few body systems with a reasonable accuracy, yielding various
expectation values with considerable ease. It was also shown, that although reasonable
accuracy was obtained, the simple implementation used was not able to compete with the
accuracy of the best theoretical values found using ther methods. Given the amount of
computational power becoming available with the advent of general purpose computing
on graphics processing units, making performance available on desktop computers that
were previously only available on cluster computers, the stochastic variational method
should be ideal for describing larger systems of 8 or more particles, although nano-Hartree
precision will probably require greater than double precision �oating points. A further
sutdy could include the combination of the correlated gaussians with correlated hydrogen
wave functions, possibly allowing for faster convergence what is currently experienced.
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