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Abstract

In this thesis we consider the photodisintegration reaction of the deuteron. The re-

action is considered in the dipole approximation and the cross section is calculated

numerically using the correlated Gaussian method. It is investigated whether shifted

correlated Gaussians are a suitable choice for basis functions for electromagnetic re-

actions of this kind. Instead of considering the free particle state it was assumed that

the photon excites the deuteron to a p-wave state experiencing the harmonic oscilla-

tor potential. Initial calculation were done with only including states with projection

quantum number ml = 0 using a basis size of 300 Gaussians. Convergence of the cross

section was found at an oscillator potential of h̄ω = 0.35 MeV with slight deviation

from experimental data. An attempt at including all states and spin dependent forces

in the p-wave triplet was made using a basis size of 700 Gaussians which improved

the estimate in the region Eγ < 8 MeV however an estimate above 8 MeV was not

achieved as the degeneracy at the highly excited states is greatly increased by the

inclusion of all states and thus preventing us from reaching higher energies. The use

of shifted correlated Gaussians was found problematic at highly excited states as it

was difficult to reach convergence of the energy levels and cross section. However at

lower energies our estimate was in agreement with experimental data and thus found

suitable as basis functions for further work on other electromagnetic reactions.



Resume

I denne opgave betragter vi fotodisintegrations reaktionen af deuteron. Reaktionen

betragtes i dipole approksimationen og tværsnittet beregnes numerisk ved brug af

den korrelerede Gaussiska metode. Det undersøges om skiftede korrelerede Gauss-

funktioner er et passende brug af basis funktioner for elektromagnetiske reaktioner af

denne type. I stedet for at betragte den fri partikel tilstand antages det at fotonen

eksiterer deuteron til en p-bølge tilstand, hvor kernen oplever det harmoniske oscil-

lator potentiale. Tværsnittet estimeres først ved udelukkende at kigge p̊a tilstande

med projektions kvantetal ml = 0 i en basis størrelse af 300 Gaussfunktioner. Kon-

vergens af tværsnittet blev fudnet ved et oscillator potentiale med h̄ω = 0.35 MeV

med mindre afvigelse fra eksperimentelle resultater. Et forsøg p̊a at inddrage alle til-

stande og et spin-afhængig potentiale i p-bølge tilstanden øgede overensstemmelsen

med eksperimentelle værdier i regionen Eγ < 8 MeV men et estimate for tværsnittet

over Eγ < 8 MeV opn̊aes ikke da udartningen af energi niveauer øges i en s̊adan grad

at vi ikke n̊ar energiniveauer højere. Valget af skiftede Gaussfunktioner som basis

funktioner blev da fundet problematisk ved højt exciterede tilstande da det blev fun-

det svært at n̊a konvergens af tværsnittet og energiniveauerne. Ved lavere energier

opn̊aes resultater i overensstemmelse med eksperimentelle værdier og da egnede som

basisfunktioner til fotoodisintegrations reaktionen.
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Chapter 1

Introduction

As the deuteron is the simplest compound nucleus it has been subject to numerous

experimental and theoretical studies. The deuteron allows us to study simple nu-

clear processes such as the photo disintegration reaction where the nucleus absorbs

a gamma photon and decays by emitting a subatomic particle d + γ → p + n. In

this thesis we seek to employ the correlated Gaussian method to calculate the cross

section of the photo disintegration of the deuteron using a basis of shifted correlated

Gaussians. We consider the reaction in the dipole approximation and will use simple

potentials to approximate the nucleon interaction in both the initial and final state.

Firstly the correlated Gaussian method is introduced then we describe the deuteron

system and derive the photo disintegration cross section in the dipole approximation.

Finally the cross section is calculated numerically and evaluated with comparison to

experimental data and zero-range models.
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Chapter 2

The correlated Gaussian method

In this chapter we seek to introduce the correlated Gaussian method. The correlated

Gaussian method is a variational method to solve quantum mechanical few-body

problems with applications in molecular, atomic and nuclear physics. The following

chapter is, if not cited otherwise, based on Suzuki and Varga[1].

2.1 The variational method

The variational method is an approach to estimate both the ground state and excited

states of a quantum mechanical system using trial wave functions. We consider a

physical system with Hamiltonian Ĥ and discrete normalized eigenstates Φn with

corresponding eigenvalues En

ĤΦn = EnΦn n = 1, 2, ... (2.1)

The eigenvalues are ordered such that E1 ≤ E2 ≤ .... In general it is not easy to

solve equation 2.1 even though Ĥ is known. Instead of trying to solve the eigenvalue

problem directly one can get approximate results of Φn and En using a trial wave

function. Formulated in the Ritz theorem.
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Ritz Theorem. For and arbitrary function Ψ the expectation value of Hamiltonian

Ĥ in the state Ψ is such that

E =
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉

≥ E1, (2.2)

where the equality holds if and only if Ψ is an eigenstate of Ĥ with eigenvalue E1.

Thus by using a trial wave function the Ritz theorem yields an upper bound of the

ground state energy. The trial wave functions may be chosen arbitrarily, however to

reach accurate results with estimates as close to the true eigen state as possible a

suitable choice of basis functions is important. The Ritz theorem can be extended to

excited states as well. Formulated in the Mini-max Theorem.

Mini-Max Theorem. Let Ĥ be a Hermitian operator with discrete eigenvalues

E1 ≤ E2 ≤ ... Let ε1 ≤ ε2 ≤ ... ≤ ek be the eigenstates of Ĥ restricted to the subspace

VK of a linearly independent set of K functions Ψ(α1), ...,Ψ(αk). Then

E1 ≤ ε1, E2 ≤ ε2, ..., EK ≤ εK (2.3)

Hence restricting our basis to a subspace VK of linearly independent functions allows

us to estimate the estimate the ground state and K − 1 excited states for a K-

dimensional basis size. As trial wave functions we shall consider a linear combination

|ψ〉 =
K∑
i=1

ci |i〉 (2.4)

of a set of basis functions |i〉 and reformulate the eigenvalue problem. This is consid-

ered in the following section.

2.2 The Generalized Eigenvalue problem

In the correlated Gaussian method one uses Gaussians as basis functions. Gaus-

sians are not mutually orthogonal allowing us to formulate the eigenvalue problem

differently. Again we consider a system with time-independent Hamiltonian Ĥ and
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discrete eigenvalues of Ĥ. We are interested in finding the eigen energies ε and the

corresponding eigenstates. The Schrödinger equation reads:

Ĥ |ψ〉 = ε |ψ〉 . (2.5)

We now write our wave function ψ as a linear combination of a set of basis functions

and insert into the Schrödinger equation

Ĥ
K∑
i=1

ci |i〉 = ε

K∑
i=1

ci |i〉 (2.6)

Taking inner product on a basis function |k〉 yields

K∑
i=1

ci 〈k| Ĥ |i〉 = ε

K∑
i=1

ci 〈k|i〉 , (2.7)

or in matrix notation

Hc = εNc (2.8)

Where H and N are respectively the Hamiltonian and overlap matrices with the

matrix elements:

Hkj = 〈k| Ĥ |i〉 , N = 〈k|i〉 (2.9)

Equation 2.8 is called the generalized eigenvalue problem. If the basis function were

orthogonal it would reduce to the normal eigenvalue problem, however as we use

Gaussians this is not the case. The generalized eigenvalue problem can be solved

through Cholesky decomposition [4] if the overlap matrix is positive definite. The

overlap N is written as the product of a lower triangular matrix and its transposed

N = LLT (2.10)

Rewriting the generalized eigenvalue problem of equation 2.8 gives

L−1H(LT )−1LTc = εLTc, (2.11)

switching notation yields

H′c′ = εc′ (2.12)

and the generalized eigenvalue problem reduces to the normal eigenvalue problem.
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2.3 Basis functions

As stated by the Ritz theorem one can use an arbitrary function as trial wave func-

tions. When choosing basis functions one should consider which the properties of

the functions and whether they fit the system of interest. Firstly Gaussians are

advantageous because they are easily generalized for an N-body system and the ma-

trix elements of equation 2.9 are all analytical. A possible choice are the correlated

Gaussians

exp
(
−xTAx

)
= exp

(
−

N−1∑
i=1

N−1∑
i=j

Aijxixj

)
, (2.13)

where the matrix elements Aij are non-linear parameters and x the coordinates of

the system (see section . However these functions are spherical and wont allow us to

describe states with quantum numbers different from l = 0. To describe non-spherical

states on has to multiply the basis function by a orbital angular function

|g : A〉 = θl,m (r) exp
(
−xTAx

)
, (2.14)

where θl,m is a spherical harmonic function. Trial wave functions projected on a

spherical harmonic function have the advantage that on can pre-define the angular

momentum of the desired states. The calculation of matrix elements however becomes

easier if one chooses a generating function. A generating function that generates

correlated Gaussians of the type in equation 2.14 are the shifted correlated Gaussians

|g : A, s〉 = exp
(
−xTAx + sTx

)
(2.15)

The shifted correlated Gaussians contain additional variational parameters in the

form of a shift vector s allowing one to describe non-spherical states. That is if

one does not put restrictions on the shift vectors the function |g : A, s〉 generates

states of all angular momenta. The shifted Gaussians are not eigenfunctions of the

square of the total orbital angular momentum operator, however using a large set of

basis functions with sufficient variational flexibility results in a wave function that

approaches the correct symmetry because the Hamiltonian commutes with symmetry

operators[2]. Gaussians with prefactors have previously been used to calculate the

8



cross section of the deuteron photo disintegration with good results [3]. In this thesis

we use shifted correlated Gaussians and investigate whether this is a suitable choice

of basis functions or not.

2.4 Coordinates

To describe intrinsic excitations of the system it is important to separate the center

of mass motion from the intrinsic motion of the system. This is done by introducing a

suitable set of relative coordinates. In the following we refer to the laboratory frame

coordinates as r̃ = (r1, ..., rN) for a system containing N particles and to the relative

coordinate set as x̃ = (x1, ...,xN), where xN is the center of mass coordinate. The

two coordinate sets are related by a linear transformation

x̃ = U r̃. (2.16)

The transformation matrix U depends of the choice of relative coordinate set. We

choose the Jacobi coordinate set in which the transformation matrix is given as

U =


1 −1 0 · · · 0

m1

m1+m2

m2

m1+m2
−1 · · · 0

...
...

...
. . .

...

m1

m1+...+mN

m2

m1+...+mN
· · · · · · mN

m1+...+mN

 . (2.17)

To separate the kinetic energy of the center of mass motion we first express the

momentum in the relative coordinate set. The momentum pi corresponding to the

relative coordinates can be found by applying the inverse transformation of 2.17 to

the laboratory momenta qi.

pi =
N∑
j=1

U−1
ij qj, (2.18)

The kinetic energy operator can be written

T =
1

2

N−1∑
i,j=1

pi · pj + Tc.m., (2.19)
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which without the center of mass kinetic energy Tc.m. is

=
1

2

N−1∑
i=1

N−1∑
j=1

Λijπiπj, (2.20)

where Λ is the (N − 1)× (N − 1) matrix with elements

Λij =
N∑
k=1

UikUjk
1

mk

(i, j = 1, ..., N − 1). (2.21)

To evaluate potential energy matrix elements the inter particle distance between two

particles with coordinates ri and rj in terms of the relative coordinate set is

ri − rj =
N−1∑
k=1

((
U−1

)
ik
−
(
U−1

))
xk = wijx (2.22)

2.5 Basis optimization

When one has chosen a suitable set of basis functions one has to optimize the trial

wave function with respect to the variational parameters to reach convergence to

the true eigen state. Optimization strategies can be divided into two categories:

deterministic optimization and stochastic optimization. Deterministic optimization

strategies follow a well-defined strategy and given a starting point always reach the

same minimum, they have the disadvantage that they however have a tendency to

converge towards the first local minimum that they encounter. Stochastic optimiza-

tion strategies omit this problem by using a random trial and error procedure. The

parameters are chosen randomly until the function appears to have converged towards

the global minimum. In this thesis stochastic optimization is chosen and in the follow

it is explained how it has been implemented in Matlab. Our program starts by gener-

ating a K-dimensional set of basis functions that each depend on a set of variational

parameters. The program calculates the K ×K Hamiltonian and overlap matrices of

the generalized eigenvalue problem equation 2.8 and solves it through Cholesky de-

composition. This is done using the Matlab function ”eig(H,N,’chol’)” which, given
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the H and N matrices, solves the generalized eigenvalue problem through Cholesky

decomposition and returns eigenvalues and corresponding eigen vectors.

Various optimization strategies are possible from here. It is wished to lower

the eigenvalues of the desired state retrieved from the generalized eigenvalue problem

as close to the true eigenstate as possible. One can choose to enlarge the size of the

basis or refine the parameters of an existing basis or a combination of the two. When

enlarging a basis one increases the basis size from K to K+1. The parameter set for

the K+1 basis function is proposed stochastically and the new matrix elements of

the Hamiltonian and overlap matrices are calculated. The eigenvalues of the K+1

dimensional basis are calculated. If the enlargement of the basis has reduced energy

of the desired state(s) the K+1 basis function is kept, if not it is discarded and a new

set of parameters is proposed for the K+1 basis function. This process is repeated

until a good estimate for the desired state(s) has been reached. An advantage of

enlarging the size of the basis is that one cannot worsen the calculation of the other

eigenvalues making it a suitable strategy of reaching convergence of multiple excited

states at once.

When refining the parameters the basis size is kept fixed. Instead one pro-

poses a new set of randomly parameters for one of the existing basis functions. If

the new set of parameters lowers the eigen energy of the desired state the new set of

parameters is kept and the old set discarded. If the new set does not lower the energy,

a new set is proposed. This process is repeated for all basis functions until the eigen

energy has converged close to the desired state(s). In our program a combination

of refining the parameters of the basis and enlargement of the basis size has been

implemented.
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Chapter 3

Deuteron photo-disintegration

3.1 The deuteron system

The deuteron is the simplest of all nucleon bound states consisting of one proton

and one neutron. The deuteron has ground state energy −2.224575 MeV and root-

mean-square radius rd = 1.971 fm [9]. The ground state consists mostly of a l = 0

spin-triplet state 3S1 with a 4 % chance of finding the deuteron in the 3D1 state.

This admixture can be explained by the tensor components of the nucleon-nucleon

interaction[5]. In this thesis we neglect tensor components of the N-N interaction and

assume the ground state is purely an S-state. The deuteron may undergo photodisin-

tegration by absorbing a gamma photon and enter an excited state and immediately

decay by emitting a neutron

d+ γ → p+ n. (3.1)

To estimate the cross section of the photo-disintegration reaction we need to evaluate

transition matrix elements of the form

Mif = 〈ψf | ˆVint |ψi〉 , (3.2)

where V̂int is the interaction operator, ψf and ψi are the final- and initial state wave

function. To estimate the states using the correlated Gaussian method it is needed
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to introduce appropriate potentials for the ground and excited state. In the ground

state we neglect spin-dependent forces and use the two-body potential from Jensen,

Johansen and Hansen [6]

Vgs = Vk exp

(
−r

2

b2

)
, (3.3)

where the parameters Vk and b are adjusted until a potential which reproduces the

ground state energy and root-mean radius of the deuteron is reached. As it is in

general hard to describe the wave function of multiple free particles instead of de-

scribing the proton and neutron in the final state as free particles it is assumed that

the photon excites the deuteron to a p-wave state

3S1 → 3PJ , J = 0, 1, 2. (3.4)

In this excited state we assume that the deuteron in addition to the nucleon-nucleon

interaction experiences the harmonic oscillator potential

Vexc =
1

2
kr2 + Vk exp

(
−r

2

b2

)
. (3.5)

where the parameters b and Vk adjusted to the ground state are kept fixed. The

oscillator potential is then expanded until it shows continuum-like behaviour of the

energy spectrum and convergence in the cross section. The nucleon interaction is of

short range hence we expect our energy spectrum in the excited state to resemble

that of the harmonic oscillator. A single particle in an isotropic harmonic oscillator

potential has known analytical solution therefore in the following we review some

properties of the oscillator potential to get an idea of the expected energy spectrum

of the deuteron in the excited state. If we consider the deuteron in a single relative

coordinate r with reduced mass µ. The Hamiltonian in the excited state takes the

form

H = − h̄
2

2µ
∇2 +

1

2
kr2. (3.6)

The system is spherical symmetric and by separation of variables the energy levels

can be found as[7]

En = h̄ω(n+
3

2
), n = 1, 2, 3... (3.7)
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with n = 2k + l. As k is a non negative integer for every even n we have l =

0, 2, .., n − 2, n and for odd n we have l = 1, 3, ..., n − 2, n. For every value of l we

have (2l+1) values of ml and thus the degeneracy of the n’th energy level is:∑
l=,...n−2,n

(2l + 1) =
(n+ 1)(n+ 2)

2
(3.8)

where the sum starts from 0 if n is even and from 1 if n is odd. As we use shifted

correlated Gaussians as basis functions we expect to accommodate states of all angular

momenta and therefore expect a highly degenerate spectrum in the excited state.

3.2 Photo disintegration cross section in the dipole

approximation

In this section the photodisintegration reaction is considered in the dipole approxi-

mation and the cross section is derived. The description of the electromagnetic field

is based on Cappelaro [10]. We derive the cross section starting from Fermi’s golden

rule[5]

w =
2π

h̄
|Mfi|2ν, (3.9)

where w is the reaction rate and ν the density of states in the final state. The reaction

rate relates to the cross section σ as

w =
σ · c
V

, (3.10)

where c is the speed of light and V is the spatial volume occupied by the photon. The

cross section is then, using 3.9 and 3.10

σ =
2π

h̄c
|Mfi|2 · ν ·V. (3.11)

If the transition matrix elements are known the cross section can be calculated using

equation 3.11. We consider the photo disintegration reaction in the dipole approxi-

mation where the interaction operator is

V̂int = −d̂ · Ê(0), (3.12)
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where Ê the electric field and d̂ the dipole moment operator

d̂ = qr̂. (3.13)

with q = e, the elementary charge. The electromagnetic field is considered in the

coulomb gauge where the vector potential satisfies

∇ ·A = 0, (3.14)

and describe the field using quantum mechanical operators with âkλ being the an-

nihilation operator and â†kλ the creation operator where. The operators follow the

commutation relations:

[âkλ, â
†
kλ] = δk′kδλ′,λ (3.15)

where λ = 1, 2 denotes the two polarizations of light and k is the wave vector. The

Hamiltonian is

Ĥ =
∑
λ=1,2

∑
k

h̄ωk

(
â†kλâkλ +

1

2

)
, (3.16)

hence we describe the electromagnetic field as a collection of independent harmonic

oscillators with each mode described by a polarization λ and a wave vector k. The

creation operator excites the field from the vacuum state |0〉

â†kα |0〉 = |1kλ〉 (3.17)

to a state corresponding to a single photon. Correspondingly the annihilation operator

deexcites the field from a single photon state to the vacuum state

âkα |1kλ〉 = |0〉 . (3.18)

Using the annihilation and creation operators the vector potential can be written

A(r) =
∑
λ=1,2

∑
k

√
2πh̄

V ωk

ekλ

(
âkλe

−ikr + â†kλe
ikr
)
, (3.19)

with ekλ a unit vector orthogonal on k. The electric field is

E(r) =
∑
λ=1,2

∑
k

√
2πh̄ωk

V
ekλ

(
âkλe

−ikr − â†kλe
ikr
)
. (3.20)
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which in the dipole approximating yields Ê(0) as eikr ≈ 1 for kr� 1

Ê(0) = i
∑
λ=1,2

∑
k

√
2πh̄ωk
V

ekλ

(
âkλ − â†kλ

)
. (3.21)

We now calculate the transition matrix elements of equation 3.11. During the photo

disintegration reaction a single photon is absorbed, we write the initial state as |Ψi〉 =

|ψi〉 |1kλ〉 and the final state |Ψf〉 = |ψf〉 |0〉. The matrix element is

Mfi = 〈0| 〈ψf | − d̂ · Ê(0) |ψi〉 |1kλ〉 = −ie
√

2πh̄ωk
V

ekλdfi, (3.22)

as the the modes of the electromagnetic field are orthogonal this is the only lasting

term. Here dfi short for

dfi = 〈ψf |
r

2
|ψi〉 . (3.23)

Inserting into 3.11 yields

σ =
4π2e2ωkh̄

h̄c
|ekλ · dfi|2ν, (3.24)

where α = e2

h̄c
is the fine structure constant in our system of units (see section 3.4). If

we assume that all directions of dfi and ekλ are equally probable the average is [13]

〈
|ekλ · dfi|2

〉
=

1

3
|dfi|2. (3.25)

Inserting into equation 3.24 yields the total cross section

σ =
4

3
π2h̄ωkα|dfi|2ν. (3.26)

where the energy of the absorbed photon is Eγ = h̄ωk. To calculate the cross section

of the photo disintegration of the deuteron we need to find the transition dipole

matrix element |dfi| and the density of states function ν. We find the dipole matrix

elements using the initial and final state wave functions from the correlated Gaussian

method. The density of states function is calculated by the retrieved spectrum of

eigen energies. How this is done is described in the following section.
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3.3 The density of states function

In the previous section we derived the total cross section for the photo disintegration

of deuteron in the dipole approximation. The total cross section depends on the

density of states function which we calculate from the spectrum of eigen energies in

the final state. The density of states is defined as the number of available states to be

occupied per energy interval. We consider an available state, as a state which gives

non-zero transition matrix element from equation 3.23. According to the selection

rules for electromagnetic transitions the only allowed transitions are those between

states with ∆l = ±1 where l is the orbital angular momentum [13]. That is, only

p-wave states should give transition matrix elements to the ground state. We consider

the spectrum of available states with energy levels

εn, n = 1, 2, 3... (3.27)

Each state of energy εn corresponds to the absorption of a photon with energy Eγ =

εn−Egs where Egs is the ground state energy. If the energy level of an available state

is εn we calculate the density of states as

ν(εn) =
2

εn+1 − εn−1

, (3.28)

which is the reciprocal of the energy interval around εn. Every energy level is expected

to be a p-state and hence threefold degenerate. If we denote the energy levels εnj with

j = 1, 2, 3 for the threefold degeneracy and n for the energy level. The three states

should be of equal energy however due to numerical imprecision this might not be

completely true. The energy level at n is calculated as the mean of the energy of the

three degenerate states

εn =
3∑
j=1

εnj
3
, (3.29)

Finally we calculate the total cross section by summing over the contribution from

each of the three states at energy level n.

σ(εn) =
3∑
j=1

σ(εnj) (3.30)
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3.4 Unit system and parameter optimization

Unit system

To simplify our numerical calculations it is advantageous to introduce a suitable set

of units. In the deuteron system convenient scales of length and energy are MeV and

fm which we set to unity along with the reduced Planck constant. Thus in nuclear

units (n.u.) we have

1 MeV = 1 fm = h̄ = 1 n.u. (3.31)

As a consequence of the fore mentioned unit system the mass of the proton and

neutron in our unit system is mp = 0.02411 n.u. and the fine structure constant

α = e2

h̄c
.

Parameter optimization

As described in section 2.5 we use stochastic optimization with respect to the varia-

tional parameters of the trial wave function. The parameters are chosen stochastically

however from an exponential distribution to speed up the optimization process. As

we are dealing with a two-body problem in reduced coordinates each basis function

depends on a three component shift vector s and a (N − 1)× (N − 1) matrix which

is just a single parameter. As mentioned in section 2.8 the overlap matrix N has

to be positive definite in order to solve the generalized eigenvalue problem through

Cholesky decomposition. As N is an overlap matrix this is condition is satisfied how-

ever only if each component of the trial wave function are not too alike. To assure

positive definiteness we put restrictions on each set of proposed parameters so that

for all components of the wave function

〈ψi|ψj〉√
〈ψi|ψi〉 〈ψj|ψj〉

< T, i 6= j, (3.32)

where T is some threshold 0 < T < 1. The magnitude of T depends on the amount

of variational parameters and the size of the basis.
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Chapter 4

Results

In this section we present the results produced using the correlated Gaussian method.

First the results of the deuteron ground state is presented and then the energy spec-

trum in the excited state. Finally we expand our oscillator potential to reach conver-

gence of the photo-disintegration cross section. The expectation values of a superpo-

sition state with operator Ô have been calculated calculated as〈
Ô
〉

= cTkOck, (4.1)

where O is a matrix with elements Oki = 〈k| Ô |i〉 and ck is the eigenvector belonging

to the k’th eigenstate. Here the wave functions are normalized so that cTkNck = 1 for

all k with N being the overlap matrix. All matrix elements used in the calculations

can be found in the Appendix.

4.1 The deuteron ground state

In section 3.1 it was assumed that the nucleon-nucleon potential could be approxi-

mated as

V = Vk exp

(
−r

2

b2

)
. (4.2)
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Table 4.1: Estimate the ground state energy and root mean square radius of the

deuteron from the correlated Gaussian method.

Exp. value Result

Egs [MeV] -2.224575 -2.224571

rd [fm] 1.971 1.970

L2 0 0.000

The parameters b and Vk were adjusted until the experimental data of the deuteron

ground state was reproduced. The parameters

Vk = 61.4925 MeV, b = 1.635 fm, (4.3)

were found to reproduce the ground state of the deuteron. A trial wave function of 50

components was used while allowing the shift vectors to point in all directions. The

ground state energy Egs, root-mean-square radius rd and orbital angular momentum

produced using this potential can be seen in table 4.1. For all further calculations we

use this wave function of this section as our ground state.

4.2 Excited state and cross section

As we expect a highly degenerate spectrum in the excited state to reduce computa-

tions we restrict our calculations to include only states with the projection quantum

number ml = 0. To account for the threefold degeneracy of the p-states the retrieved

cross section is then multiplied by three. To accommodate only ml = 0 states in

our spectrum we restrict our shift vectors to only have non-zero components in the

z-direction. The matrix element of the Lz operator is [1]

〈g|Lz |g′〉 = −i
∑
ij

(
B−1

)
ij

(s× s′)zM. (4.4)

If all shift vectors have only z-components the cross product is zero and all matrix

elements of the Lz-operator are equal to zero, hence we expect to accommodate only
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Figure 4.1: Estimate of the first 20 energy levels in the harmonic oscillator potential

with h̄ω = 1 MeV using a basis size of 300 Gaussians. The figure shows the mean

value of the degenerate states with quantum number ml = 0 at each energy level.

states with ml = 0. To do initial tests on our method we see if we can produce

the expected energy spectrum of the harmonic oscillator potential. For the oscillator

potential we set h̄ω = 1 MeV and use a trial wave function of 300 components. The

overlap threshold is set at T = 0.975 and we optimize the basis through refinement.

The convergence of the first 20 energy levels can be seen in figure 4.1 and the numerical

results in table 4.2. It is seen that we are able to produce the expected spectrum of

eigen energies in the oscillator potential. The energies converge close to the true

value at the first 15 energy levels, at highly excited states we note that there is some

deviation from the expected values. It is also noted that by restricting our shift

vectors to have only z-components the degeneracy has been reduced as expected.

Now the potential is altered by including our estimate of nucleon-nucleon

potential from the ground state in addition to the oscillator potential. As an initial

estimate the basis size is kept at K = 300 and the overlap threshold set to T = 0.975.

We start with h̄ω = 1 MeV and lower h̄ω until convergence in the cross section is

achieved. The retrieved cross sections can be seen in figure 4.2. In spite of altering
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Table 4.2: Estimates of the first 20 energy levels of the harmonic oscillator potential

with h̄ω = 1 MeV. The table shows the mean value of the degenerate states with

quantum number ml = 0 at each energy level.

Exact [MeV] Result [MeV] Exact [MeV] Result [MeV]

1.5 1.500 11.5 11.50

2.5 2.500 12.5 12.52

3.5 3.500 13.5 13.54

4.5 4.500 14.5 14.59

5.5 5.500 15.5 15.67

6.5 6.500 16.5 16.8

7.5 7.500 17.5 17.92

8.5 8.500 18.5 18.97

9.5 9.500 19.5 20.28

10.5 10.50 20.5 21.56
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Figure 4.2: Convergence of the deuteron photo disintegration cross section by lowering

h̄ω of the oscillator potential in a basis of 300 Gaussians.
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the potential the retrieved spectrum resembles that of the harmonic oscillator, the

energy levels are approximately spaced h̄ω and the degeneracy at each energy level

is equal to the possible values of l. For the first 16 energy levels non-zero transition

matrix elements are spaced 2h̄ω and all other states give 0 transition matrix elements

to the ground state in agreement with the selection rules of electromagnetic transi-

tions. However at highly excited states we see non-zero transition matrix elements

at multiple degenerate energy levels. As we wish to use all states that give non-zero

transition matrix elements in our calculation, for degenerate states with non-zero

transition matrix elements we add the contribution from the states in order to avoid

division with zero when calculating the density of states and use the mean of the

energy levels. In the region Eγ < 10 MeV the cross section seems to have converged

at h̄ω = 0.35MeV. At highly excited states it could seem the problem with reaching

convergence of the energy levels in the oscillator potential is redundant in our altered

potential and thus in our calculation of the cross section.

In order to try to improve convergence in the higher energy region we increase

our basis size to from K = 300 to = 650 Gaussians demanding each basis function

to lower the energy of one or more of the highly excited states. The result can be

seen in figure 4.3 along with experimental data from Arenhövel, H. and Sanzone, M

[12]. It is seen that expanding the size of our trial wave function has improved our

estimate noticeably however convergence of the highly excited states is still not fully

achieved. One could try to expand the wave function even further however significant

improvements were not found above K = 600. Lower values of h̄ω and close to

h̄ω = 0.35 MeV were also tried but did not improve the results. The current estimate

is slightly too high around 5 MeV and too low above 16 MeV. The present model

does take into account the d-state admixture of the deuteron ground state or spin

dependent forces. In the following section we try to implement the latter.
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Figure 4.3: Total cross section of the deuteron photo disintegration in a basis size of

650 Gaussians. The estimate is plot along with experimental data from [12].

4.3 Inclusion of spin

In this section we seek to include spin dependent forces on the nucleon-nucleon po-

tential in the excited state. The deuteron ground state is a spin triplet the possible

spin configurations are

|↑↑〉 , |↓↓〉 , 1√
2

(↑↓ + ↓↑) , (4.5)

which in the dipole approximation does not change in the transition to the excited

state. To include the spin dependent forces in the p-wave stat we now consider the

two-body potential from Garrido, Fedorov and Jensen[8] which has been used to

describe a triplet p-wave nucleon-nucleon potential

Vnn =
(
Vc + Vssŝ1 · ŝ2 + VsoL̂ · Ŝ

)
exp

{
− r2

b2
nn

}
, (4.6)

where ŝ1 and ŝ2 are the spins of each nucleon, Ŝ is the total spin operator and L̂ is the

relative orbital momentum operator. Vc, Vss and Vso are strength parameters. The
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parameters of the potential are

Vc = 2.92 MeV, Vss = 45.22 MeV, Vso = −12.08 MeV, bnn = 1.8 fm. (4.7)

The expectation values of the spin operators 〈χb| Ŝ |χa〉 and 〈χb| ŝ1 · ŝ2 |χa〉 have been

calculated using the Pauli spin matrices[13]. To include the new spin dependent

potential we average over the three spin triplet states. In addition we also allow

our shift vectors to take all directions. When allowing our shift vectors to take any

direction the degeneracy of each energy level is that of equation 3.8 with spacing

approximately equal to h̄ω. The eigenvalues εn are ordered such that ε1 ≤ and

ε2, ...,≤ εn and for a K-dimensional basis we get at most K-eigenvalues. It is apparent

that with h̄ω = 0.35 MeV one would need a very large basis size to receive eigenvalues

in the range up to 20 MeV. Using a basis size of K = 700 we were able to estimate the

cross section in the range 2 MeV ≤ Eγ ≤ 8 MeV. The result can be seen in figure 4.4.

One could try to implement spin dependent forces for only ml = 0 states but the spin-

orbit term would vanish as the matrix element involves the cross-product between the

shift vectors see 5.8 in the Appendix and has therefore not been attempted.

It seems that our inclusion of spin in the final state potential has slightly

increased our estimates agreement with the experimental data, however as we were

not able to calculate the cross section above 8 MeV this is not conclusive in the

full range. The Garrido, Fedorov, Jensen contains a tensor term as well which was

neglected in our calculations. Further work improvements to our current estimate in

the range up to 8MeV would be to include tensor components in the excited state

potential as well taking into account the d-state admixture.

In this project is was chosen to use shifted Gaussians as basis functions, this

choice as basis functions have been found to produce good results when the degeneracy

of the desired states is not too high. For highly excited states it was found hard to

reach convergence of the energy levels and the cross section. For a spectrum with

continuum-like behaviour using basis functions with predefined angular momentum

might be more suitable as one accommodates only the states of interest and wont
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Figure 4.4: Estimate of the deuteron photo disintegration cross section with and

without a spin dependent interaction in the excited state. Blue data points are the

same as in figure 4.3.
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have to worry about convergence of all the other states. In general it is hard to

reproduce highly excited states with a Gaussian basis set [2]. The problem has been

alleviated in [14] by Hiyama, Kino and Kaminura by using variational parameters

with a complex phase A = a+ ib where numerical tests have shown to give orders of

magnitude better estimate of highly excited states in the harmonic oscillator. Such

types of basis functions could be subject to further work.

In [3] the cross section was calculated using prefactored Gaussians as basis

functions and convergence was reached at a much lower h̄ω ≈ 0.03 MeV. Using h̄ω

of this magnitude gives more data points and convergence was achieved better for

the highly excited states. Using such low h̄ω was not found possible in our use of

shifted correlated Gaussians as the degeneracy is highly increasing at each energy level

and the difficulty of reaching convergence as well. Compared to our use of shifted

Gaussians they do not seem advantageous over prefactored Gaussians for a reaction

of this type involving states with continuum like behaviour.

4.4 Deuteron photo-disintegration cross section in

the zero range approximation

In this section we compare the results of our Gaussian model with the cross section

calculated in the zero-range approximation. The following theory is based on[12]. In

the zero-range approximation it is assumed that the nucleon-nucleon interaction can

be described using a delta function potential

V (r) = −V0δ(r). (4.8)

This force acts only in the S-state and has the bound state solution

ψi =
1√
4π

u0(r)

r
. (4.9)

For the final state wave function of the transition matrix element we use a plane wave

ψf = Ae−ipr, (4.10)
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where A is a normalization constant and p is the final state relative momentum

between the proton and the neutron. The differential cross section in the dipole

approximation is
dσ

dΩ
= 2π2e2ωkM

∣∣dfi · ε2∣∣, (4.11)

where M is the average nucleon mass and ε is the photon polarization vector. Aver-

aging over the photon polarizations and using the bound state solution of the delta

function potential for the initial state wave function and the plane wave for the final

state yields the total cross section

σ(γ) =
8π

3

e2

α2

(γ − 1)3/2

γ3
, (4.12)

where γ = h̄ω
ε

with h̄ω being the energy of the photon and ε the ground state energy

of the deuteron. The constant α is related to the deuteron binding energy by

α =
√
Mε, (4.13)

In figure 4.5 we plot the cross section in the photon energy range 2 MeV < Eγ <

20 MeV. It is seen that the retrieved cross section agrees well in shape however

compared to experimental data it is approximately larger by a factor of 1.7. The un-

derestimation is related to the finite size of the zero-range nucleon-nucleon interaction.

Comparing with the cross section of our Gaussian model it is seen that our estimate

agrees better in terms of magnitude however our model has difficulties reaching the

correct shape at higher energies.
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Figure 4.5: The estimated cross section in the zero range approximation blue curve

plot along with experimental data from [9].
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Chapter 5

Conclusion

In this thesis we employed the correlated Gaussian method to estimate the photo

disintegration cross section of the deuteron. Using shifted correlated Gaussians as

basis functions we were able to estimate the cross section in the dipole approximation

with small deviation from experimental data when using ony ml = 0 states. An

implementation of spin did seem to improve our estimate of the total cross section

however as we were only able to estimate states in up to 8 MeV this is not conclusive

in the full range. Our choice of basis functions produced good results in the low

energy range but had the drawback of accommodating states of all angular momenta

which increases the computational load and the difficulty of reaching convergence in

the highly excited states. Basis functions with a predefined angular momentum may

be more suitable for reactions with continuum states as it leaves less states to worry

about. Throughout our calculations the d-state admixture of the ground state as well

as tensor components of the p-wave nucleon interaction were neglected which could

both form the basis for further work. Finally our estimate was compared to the cross

section calculated in the zero-range approximation, it was found that our estimate

agrees better with experiment in terms of magnitude.
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Appendix

In this appendix we list the matrix elements used in the numerical computations.

The matrix elements have all been taken from Fedorov [11] except from the total

angular momentum operator L2 which is from Suzuki and Varga [1]. The matrix

elements are presented in general form for a system of N-particles with coordinates r =

(r1, r2, ..., rn). All matrix elements have been implemented in the relative coordinates

as described in section 2.4 which for a two-body system reduces to that of a single

relative coordinate. In the following the basis function is denoted as

|g〉 = e−r
TAr+sT r (5.1)

where A is a size-N square matrix. The overlap matrix element for two basis functions

|g〉 and |g′〉 is given as

〈g′|g〉 = e
1
4
vTB−1v

(
πN

det (B)

)3/2

≡M. (5.2)

where B = A+A′, v = s + s′ and u = 1
2
B−1v. The kinetic energy matrix element is

〈g′| − 1

2

∂

∂r
Λ

∂

∂rT
|g〉 =

1

2

(
6 tr

(
A′ΛAB−1

)
+ (s′ − 2A′u)

T
Λ(s− 2Au

)
M (5.3)

where Λ is the matrix of 2.21. For the deuteron ground state a potential with a

Gaussian form factor was chosen V
(
wT r

)
∝ eγr

TwwT r. The matrix element is

〈g′| eγrTwwT r |g〉 = e
1
4
vTB′−1v

(
πN

det (B′)

)3/2

(5.4)

where w is a size-N coloumn with all entrances equal to zero except wi = −wj = 1

for a two-body potential. B′ is the matrix B′ = B + γwwT . The oscillator potential
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was used for the deuteron in the excited state, it has the matrix element

〈g′| rTwwT r |g〉 =

(
3

2
wTB−1w + uTwwTu

)
M (5.5)

which was also used to calculate the root-mean-square radius of the deuteron. The

total angular momentum L2 matrix element is

〈g′|L2 |g〉 =
(
2s′T (2B)−1 s−

(
(2B)−1 s′ × s

))2
M (5.6)

To calculate the transition dipole moment we need the matrix element

〈g′| r |g〉 = uM. (5.7)

In the excited state the Garrido, Fedorov and Jensen potential included a spin-orbit

term. The orbital angular momentum operator can be written L = −i
2

(
wT r× wT ∂

∂rT

)
.

The spin-orbit matrix element with a Gaussian form factor is

−i
2
〈χ′| 〈g′| e−γrTwwT r

(
wT r× wT ∂

∂rT

)
· Ŝ |g〉 |χ〉 =

−i
4
wTB′−1v ×

(
wT s− wTAB′−1v

)
M 〈χ′| Ŝ |χ〉 (5.8)

where Ŝ is the total spin operator and |χ〉 is the spin wave function.
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