
1 Minimization
1.1 Introduction
Minimization (maximization) is the problem of finding the minimum (maximum)
of a given—generally non-linear—real valued function ϕ(x) of an n-dimensional
argument x

.
= {x1, . . . , xn}. The function is often called the objective function or

the cost function.
Minimization is a simpler case of a more general poblem—optimization—which

includes finding the best available values of the objective function within a given
domain and/or subject to given constrains.

Minimization is not unrelated to root-finding: at the minimum all partial
derivatives of the objective function vanish,

∂ϕ

∂xi
= 0

∣∣∣∣
i=1...n

, (1)

and one can alternatively solve this system of (non-linear) equations.

1.2 Local minimization
Local minimization refers to a group of algorithms that move from one candi-
date solution to another candidate solution by applying local changes and moving
“downhill” until a solution deemed optimal is found (or the alotted time is elapsed).

1.2.1 Newton’s method

Newton’s method is based on the quadratic approximation of the objective function
ϕ(x) in the vicinity of the suspected minimum,

ϕ(x+∆x) ≈ ϕ(x) +∇ϕ(x)T∆x+
1

2
∆xTH(x)∆x , (2)

where the vector ∇ϕ(x) is the gradient of the objective function at the point x,

∇ϕ(x) .
=

{
∂ϕ(x)

∂xi

}
i=1...n

, (3)

and H(x) is the Hessian matrix – a square matrix of second-order partial derivatives
of the objective function at the point x,

H(x)
.
=

{
∂2ϕ(x)

∂xi∂xj

}
i,j∈1...n

. (4)

The minimum of the quadratic form (2), as function of ∆x, is found at the point
where its gradient with respect to ∆x vanishes,

∇ϕ(x) + H(x)∆x = 0 . (5)
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This gives an approximate step towards the minimum, called the Newton’s step,

∆x = −H(x)−1∇ϕ(x) . (6)

The original Newton’s method is simply the iteration,

xk+1 = xk −H(xk)
−1∇ϕ(xk) , (7)

where at each iteration the full Newton’s step is taken and the Hessian matrix is
recalculated. In practice, instead of calculating H−1 one rather solves the linear
equation (5).

Usually the Newton’s method is modified to take a smaller step s,

s = λ∆x, (8)

with 0 < λ < 1. The factor λ can be found by a backtracking algoritm similar
to that in the Newton’s method for root-finding. One starts with λ = 1 and than
backtracks, λ← λ/2, until the Armijo condition,

ϕ(x+ s) < ϕ(x) + αsT∇ϕ(x) , (9)

is satisfied (or the minimal λ (say, 1/1024) is reached, in which case the step is
taken unconditionally). The parameter α can be chosen as small as 10−4.

1.2.2 Numerical calculation of gradient and Hessian matrix

The forward finite-difference approximation to the derivative f ′(x) of a function
f(x) is given as

f ′(x) ≈ f(x+ δx)− f(x)

δx
, (10)

where δx is usually chosen as |x|
√
ϵ where ϵ is the machine precision (for ”double”

numbers
√
ϵ = 2−26). This gives the following approximation for the gradient,

∇ϕ(x)i =
∂ϕ(x)

∂xi
=

ϕ(x1, . . . , xi + δxi, . . . , xn)− ϕ(x1, . . . , xn)

δxi
, (11)

where δxi = |xi|
√
ϵ.

The Hessian matrix in the same approximation is given as

∂2ϕ

∂xi∂xj
=

∂

∂xi
∇ϕj =

∇ϕ(x1, . . . , xi + δxi, . . . , xn)j −∇ϕ(x1, . . . , xn)j
δxi

(12)

The central (possibly better) finite difference formula for the first derivative is
given as,

f ′(x) ≈ f(x+ δx)− f(x− δx)

2δx
. (13)
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This gives the following approximation for the gradient,

∇ϕ(x)i =
∂ϕ(x)

∂xi
=

ϕ(x1, . . . , xi + δxi, . . . , xn)− ϕ(x1, . . . , xi − δxi, . . . , xn)

2δxi
,

(14)
and the following approximation for the Hessian matrix,

Hjk = ∂2ϕ
∂xj∂xk

≈
ϕ(x+δxk+δxj)−ϕ(x+δxk−δxj)−ϕ(x−δxk+δxj)+ϕ(x−δxk−δxj)

4δxkδxj
. (15)

where δxk is a vector in the direction k with the length δxk = |xk|
√
ϵ where ϵ is

the machine epsilon. In practice the calculation of the gradient should reuse the
ϕ-values from the calculation of the Hessian matrix.

1.2.3 Quasi-Newton methods

Quasi-Newton methods are variations of the Newton’s method which attempt to
avoid recalculation of the Hessian matrix at each iteration, trying instead certain
updates based on the analysis of the gradient vectors. The update δH is usually
chosen to satisfy the condition

∇ϕ(x+ s) = ∇ϕ(x) + (H + δH)s , (16)

called secant equation, which is the Taylor expansion of the gradient.
The secant equation is under-determined in more than one dimension as it

consists of only n equations for the n2 unknown elements of the update δH. Various
quasi-Newton methods use different choices for the form of the solution of the
secant equation.

In practice one typically uses the inverse Hessian matrix (often—but not always—
denoted as B) and applies the updates directly to the inverse matrix thus avoiding
the need to solve the linear equation (5) at each iteration.

For the inverse Hessian matrix the secant equation (16) reads

(B + δB)y = s , (17)

or, in short,
δBy = u , (18)

where B
.
= H−1, y .

= ∇ϕ(x+ s)−∇ϕ(x), and u
.
= s− By.

One usually starts with the identity matrix as the zeroth approximation for
the inverse Hessian matrix and then applies the updates.

If the minimal λ (say, 1/1024) is reached during the bactracking line-search—
which might be a signal of lost precision in the approximate (inverse) Hessian
matrix—it is advisable to reset the current inverse Hessian matrix to identity
matrix.

Table 1.2.3 lists one possible algorithm of the quasi-newton method with up-
dates.
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Table 1: Quasi-newton minimisation algorithm with updates.
set the inverse Hessian matrix to unity, B = 1
repeat until converged (e.g. ∥∇ϕ∥ < tolerance) :

calculate the Newton's step ∆x = −B∇ϕ
do linesearch starting with λ = 1 :

if ϕ(x+ λ∆x) < ϕ(x) accept the step and update B:
x = x+ λ∆x
update B = B+ δB
break linesearch

λ = λ/2
if λ < 1

1024 accept the step and reset B:
x = x+ λ∆x
B = 1
break linesearch

continue linesearch

Broyden’s update The Broyden’s update is chosen in the form

δB = csT . (19)

where the vector c is found from the condition (18),

c =
u

sTy
. (20)

Sometimes the dot-product sTy becomes very small or even zero which results
in serious numerical difficulties. One can avoid this by only performing update if
the condition |sTy| > ϵ is satisfied where ϵ is a small number, say 10−6.

Symmetric Broyden’s update The Broyden’s update (19) is not symmetric
(while the Hessian matrix should be) which is an obvious drawback. Therefore a
beter approximation might be the symmetric Broyden’s update,

δB = asT + saT . (21)

The vector a is again found from the condition (18),

a =
u− γs

sTy
, (22)

where γ = (uTy)/(2sTy).
Again one only performs the update if |sTy| > ϵ.
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SR1 update The symmetric-rank-1 update (SR1) in chosen in the form

δB = vvT , (23)

where the vector v is again found from the condition (16), which gives

δB =
uuT

uTy
. (24)

Again, one only performs the update if denominator is not too small, that is,
|uTy| > ϵ.

Other popular updates The wikipedia article “Quasi-Newton method” list
several other popular updates.

1.2.4 Downhill simplex method

The downhill simplex method [1] (also called “Nelder-Mead” or “amoeba”) is a
commonnly used minimization algorithm where the minimum of a function in an
n-dimensional space is found by transforming a simplex—a polytope with n+1
vertexes—according to the function values at the vertexes, moving it downhill
until it converges towards the minimum.

The advantages of the downhill simplex method is its stability and the lack
of use of derivatives. However, the convergence is realtively slow as compared to
Newton’s methods.

In order to introduce the algorithm we need the following definitions:

• Simplex: a figure (polytope) represented by n+1 points, called vertexes,
{p1, . . . ,pn+1} (where each point pk is an n-dimensional vector).

• Highest point: the vertex, phi, with the highest value of the function: ϕ(phi) =
maxk ϕ(pk).

• Lowest point: the vertex, plo, with the lowest value of the function: ϕ(plo) =
mink ϕ(pk).

• Centroid: the center of gravity of all points, except for the highest: pce =
1
n

∑
(k ̸=hi) pk

The simplex is moved downhill by a combination of the following elementary
operations:

1. Reflection: the highest point is reflected against the centroid, phi → pre =
pce + (pce − phi).

2. Expansion: the highest point reflects and then doubles its distance from the
centroid, phi → pex = pce + 2(pce − phi).
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Table 2: Downhill simplex (Nelder-Mead) algorithm
REPEAT :

f ind highest , lowest , and centroid points of the simplex
try r e f l e c t i o n
IF ϕ(reflected) < ϕ(lowest) :

try expansion
IF ϕ(expanded) < ϕ(reflected) :

accept expansion
ELSE :

accept r e f l e c t i o n
ELSE :

IF ϕ(reflected) < ϕ(highest) :
accept r e f l e c t i o n

ELSE :
try contract ion
IF ϕ(contracted) < ϕ(highest) :

accept contract ion
ELSE :

do reduction
UNTIL converged ( e . g . s i z e ( simplex)<tolerance )

3. Contraction: the highest point halves its distance from the centroid, phi →
pco = pce +

1
2 (phi − pce).

4. Reduction: all points, except for the lowest, move towards the lowest points
halving the distance. pk ̸=lo → 1

2 (pk + plo).

Table 2 shows one possible algorithm for the downhill simplex algorithm.

1.2.5 Gauss-Newton algorithm

The Gauss-Newton algorithm is designed to minimize an objective function ϕ(c)
that is given as a sum of squares of several (non-linear) functions ri(c),

ϕ(c) =

n∑
i=1

r2i (c) , (25)

where {ck=1...m} is the set of parameters of the objective function. In particular,
the algorithm can be used to solve a non-linear least squares curve fitting problem
where the function to minimize is given as

χ2(c) =

n∑
i=1

(
f(c, xi)− yi

δyi

)2

, (26)

where {xi, yi ± δyi} is the set of data to fit and f(c, x) is the fitting function that
depends on a set of parameters c.
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The algorithm can also be used to find an approximate solution to an overde-
termined (if n > m) system of non-linear equations

r(c) = 0 . (27)

Just like the Newton’s method the algorithm relies on the Taylor expansion of
the objective function in the vicinity of the suspected minimum,

ϕ(c+∆c) ≈ ϕ(c) + gT∆c+
1

2
∆cTHc , (28)

where the (size-m) gradient g is given as

gk = 2

n∑
i=1

ri
∂ri
∂ck

(29)

and the (square m×m) Hessian matrix H is given as

Hjk = 2

n∑
i=1

(
∂ri
∂cj

∂ri
∂ck

+ ri
∂2ri

∂cj∂ck

)
. (30)

Now, in the Gauss-Newton method one ignores the second-derivative term in (30)
which results in the following approximation for the Hessian matrix,

Hjk ≈ 2JTJ , (31)

where J is the (tall n×m) Jacobian matrix of the {ri} functions,

Jik =
∂ri
∂ck

. (32)

The approximation (31) may be valid in two cases,

1. The functions ri are small in the vicinity of the minimum;

2. The functions ri are only slightly non-linear such that the second derivatives
are small in magnitude.

Using the Jacobian matrix the gradient of ϕ can be written as

g = 2JTr . (33)

From here the algorithm proceeds as in the usual Newton’s method: one finds
the Newton’s step,

∆c = −H−1g ≈ −
(
JTJ

)−1
(JTr) , (34)

and then does the backtracking line-search.
Note that

(
JTJ

)−1
JT is the left pseudo-inverse of the matrix J. Therefore the

Newton’s step of the Gauss-Newton method for the objective function
∑n

i=1 r
2
i

is equivalent to the step of the root-finding Newton’s method for the system of
equations r(c) = 0.
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1.3 Uncertainties of nonlinear least squares fit parameters
The non-linear least squares fit is the process of fitting a curve (a mathematical
function, f(c, x), where c is the set of fitting parameters) to a set of data points
with uncertainties, {xi, yi ± δyi}. However, unlike the ordinary least squares fit,
where the fitting parameters enter linearly, in the non-linear least squares fit the
parameters enter essentially non-linearly.

The fit is achieved by minimizing the sum of squares (hence the name) of the
deviations of the curve from the data (called χ2 in physics),

χ2(c) =

n∑
i=1

(
f(c, xi)− yi

δyi

)2

≡
n∑

i=1

r2i (c) , (35)

where
ri(c)

.
=

f(c, xi)− yi
δyi

(36)

are the (weighted) residuals.
The χ2 can be minimized in the space of the fitting parameters either using

any of the general minimization algorithms or using the Gauss-Newton algortithm
which is specifically designed for an objective function in the form of the sum of
squares of some residuals.

The uncertainties of the fitting parameters can be estimated by i) Taylor ex-
pansion of χ2 around the minimum; ii) linearizing the problem; iii) calculating the
uncertainties using the same technique as for the ordinary least squares fit. In
other words, we apply the Newton’s method to find the solution of the minimiza-
tion problem and then determine the uncertainties of the fitting parameters from
the last Newton’s step (the one that brings us to the minimum).

1.3.1 Linearization of nonlinear problem at minimum

The Newton’s step ∆c toward the minimum is found from the second order Taylor
expansion of χ2,

χ2(c+∆c) ≈ χ2(c) + gT∆c+
1

2
∆cTH∆c , (37)

where the gradient g is given as

gk =
∂χ2

∂ck
=

n∑
i=1

2ri
∂ri
∂ck

. (38)

and the Hessian matrix H is given as

Hjk =
∂2χ2

∂cj∂ck
=

n∑
i=1

(
2
∂ri
∂cj

∂ri
∂ck

+ 2ri
∂2ri

∂cj∂ck

)
. (39)
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Close to the minimum the term with the second derivative can be (hopefully)
neglected (since at the minimum f(c, xi) ≈ yi).

Introducing the (tall n×m) Jacobian matrix J of the residuals,

Jij =
∂ri
∂cj

=
1

δyi

∂f(c, xi)

∂cj
, (40)

one can rewrite the gradient as
g = 2JTr (41)

and the Hessian matrix as
H = 2JTJ . (42)

The corresponding Newton’s step is determined by the equation

H∆c = −g , (43)

or
JTJ∆c = −JTr , (44)

which gives the Newton’s step to the minimum as

∆c = −J−1r (45)

where
J−1 = (JTJ)−1JT (46)

is the pseudo-inverse of the matrix J.

1.3.2 Uncertainties of the fit parameters

Equation (45) defines ∆ck=1...m as function of yi=1...n. The question is, if yi are
determined with uncertainties δyi, what are the uncertainties of ∆ck?

The answer is given by the propagation of uncertainty rule which says that the
(co)variances δckδcj are given as

δckδcj =
∑
i

∂∆ck
∂yi

∂∆cj
∂yi

δyiδyi =
∑
i

(J−1)ki(J
−1)ji . (47)

In matrix notation the covariance matrix Σkj = δckδcj is given as

Σ = J−1J−T = (JTJ)−1 . (48)

The uncertainties of the fitting parameters are then given as the square roots
of the diagonal elements of the covariance matrix,

δck =
√
Σkk . (49)
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Notice that within the approximation (42) (that should work well at the min-
imum) the covariance matrix is given via the inverse of the Hessian matrix, H−1,
at the minimum,

Σ = (JTJ)−1 = 2H−1 , (50)

which is the canonical texbook result. It can also be obtained from the Taylor
expansion of the variation of χ2 with respect to fit parameters at the minimum,
where the gradient is zero,

δχ2 =
1

2
δcTHδc = trace

(
1

2
ΣH

)
. (51)

The uncertainties of fit parameters are determined by a unit variation of χ2 per
degree of freedom (that is, per fit parameter). That is, the matrix inside the trace
operator must be the unit m×m matrix. This gives

Σ = 2H−1 . (52)
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