
1 Ordinary least-squares problem
1.1 Introduction
An ordinary least-squares problem (also called linear least-squares problem) is the
problem of minimization of the (squared) norm of a vector (hence the name, least
squares) where the minimization parameters enter the vector linearly. Reformu-
lation of a given problem in terms of an ordinary least-squares problem is often
called the least-squares method. Ordinary least-squares problems can be usually
solved using linear algebra methods – a great asset that ensures their extensive
applications in science end engineering.

In signal processing least-squares methods are used for smoothing, prediction,
deconvolution, error recovery, and de-clipping. In physics it is used, in particu-
lar, in fitting a theoretical model to experimental data with uncertainties, and in
deconvolution of the detected signal from the detector response.

1.2 Overdetermined linear systems
A system of linear equations is considered overdetermined if there are more equa-
tions than unknown variables. If all equations of an overdetermined system are
linearly independent, the system has no exact solution. However, it is usually
possible to find an approximate solution to an overdetermined system using the
least-squares method.

Consider a linear system
Ac = b , (1)

where A is a n×m matrix, c is an m-component vector of unknown variables and b
is an n-component vector of the right-hand side terms. If the number of equations
n is larger than the number of unknowns m, the system is overdetermined and
generally has no solution. However, it is still possible to find an approximate
solution — the one where Ac is only approximately equal b — in the sense that
the Euclidean norm of the difference between Ac and b is minimized,

c : min
c

∥Ac− b∥2 . (2)

The problem (2) is an example of an ordinary least-squares problem. The vector
c that minimizes ∥Ac− b∥2 is usually called the least-squares solution.

Theoretically, the solution to this minimization problem is given by the equa-
tion

∂

∂cT

(
(cTAT − bT)(Ac− b)

)
= 2

(
(ATA)c−ATb

)
= 0 , (3)

with the solution
c = (ATA)−1ATb . (4)

However in practice one should instead use QR-decomposition or SVD as described
below.
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1.2.1 Least-squares solution via QR-decomposition

The linear least-squares problem can be solved by QR-decomposition. The matrix
A is factorized as A = QR, where Q is n ×m matrix with orthonormal columns,
QTQ = 1, and R is an m ×m upper triangular matrix. The matrix Q is a semi-
orthonormal matrix whose columns span the range (column space) of matrix A.

The matrix QQT is the projector on the range of matrix A and (1 − QQT) is
the corresponding orthogonal projector. Indeed,

(1−QQT)QQT = QQT(1−QQT) = 0 . (5)

The vector Ac−b can be represented as a sum of two orthogonal components,
the one within the range of the matrix and the orthogonal one,

Ac− b = QQT(Ac− b) + (1−QQT)(Ac− b) . (6)

The Euclidean norm ∥Ac − b∥2 is then given as the sum of the norms of the
two orthogonal components,

∥Ac− b∥2 = ∥QQT(Ac− b)∥2 + ∥(1−QQT)(Ac− b)∥2 . (7)

The second term,

∥(1−QQT)(Ac− b)∥2 = ∥(1−QQT)b∥2 , (8)

is the norm of the range-orthogonal component of the right-hand-side b: it is
independent of the variables c and can not be reduced by their variations. However,
the first term

∥QQT(Ac− b)∥2 = ∥(Rc−QTb)∥2 , (9)
can be reduced down to zero by solving the m×m system of linear equations

Rc = QTb . (10)

The system is right-triangular and can be readily solved by back-substitution.
Thus the solution to the ordinary least-squares problem (2) is given by the

solution of the triangular system (10).

1.2.2 Least-squares solution via SVD

Under the thin singular value decomposition we shall understand a representation
of a tall n×m (n > m) matrix A in the form

A = USVT , (11)

where U is a semi-orthonormal (UTU = 1) n ×m matrix that spans the range of
matrix A, S is a square m × m diagonal matrix with non-negative real numbers
(called singular values) on the diagonal, and V is a square m × m orthonormal
matrix (VTV = VVT = 1).
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Singular value decomposition can too be used to solve the least squares problem
Ac ≈ b the same way as with QR-decomposition only using the U matrix for the
projection of the equation on the column-space of the matrix. Specifically,

UT(Ac− b) = 0 ⇒ SVTc = UTb ⇒ c = VS−1UTb , (12)

where one should not build the S−1 matrix but should rather divide by the corre-
sponding singular values the components of the vector it acts upon.

Notice that VS−1UT is the pseudo-inverse A− of the matrix A. Therefore the
solution to the least squares problem can be (theoretically) written as

c = A−b . (13)

1.3 Signal smoothing
Least squares method can be use to smooth a noisy signal – a sequence of numbers
represented by a vector, y. The idea is to find a new signal, x, that is similar to
the noisy signal y but smoother. The smoothness of the signal can be measured
by the smallness of its second derivative (indeed a signal with vanishing second
derivative is a straight line – the smoothest possible signal). The smoothers based
on minimization of the second derivative are the most common in the literature
although other derivatives can also be used.

The second derivative of a discrete signal x can be approximated by its second-
order difference, Dx, where the matrix D is given as

D =



1 -2 1
1 -2 1

1 -2 1
...

1 -2 1
1 -2 1


. (14)

The smooth signal x can then be obtained as a solution to the following least-
squares problem,

x : min
x

(
∥x− y∥2 + λ∥Dx∥2

)
, (15)

where λ > 0 is the smoothing parameter: when λ → 0 there is no smoothing and
x converges to y; when λ → ∞ the second derivative is infinitely penalized and x
converges to a linear fit to the data.

The minimum of the form (15) is located where its partial derivatives vanish,

∂

∂xT

(
(x− y)T(x− y) + λxTDTDx

)
= 2

(
(I + λDTD)x− y

)
= 0 , (16)

(where I is the identity matrix) which gives the (least-squares) solution

x = (I + λDTD)−1y . (17)
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Figure 1: Noisy signal smoothing using the least-squares algorithm (15).

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

original signal
signal with random noise

least squares filtered signal

si
g

n
a
l

time

Of course in practice one should not explicitly calculate the inverse matrix but
rather solve the linear equation

(I + λDTD)x = y . (18)

The matrix in this linear equation is banded (has only few non-zero diagonals)
therefore in order to make the method efficient one has to take advantage of this
fact (rather than use generic linear solvers).

And example of smoothing using this algorithm is given at Figure (1).

1.4 Signal extrapolation (prediction)
Least-squares method can also be used to find patterns (correlations) in a given
signal (sequence of numbers) and then use these patterns for signal extrapolation.

Suppose the signal {xi}i=1...N is correlated such that the term xk can be pre-
dicted by the n preceding terms,

xk = xk−1an + xk−2an−1 + · · ·+ xk−na1 . (19)

Applying this anzats (often called linear prediction) to the subset {xn+1, xn+2, . . . , xN}
of the signal gives the system of equations

x1 x2 . . . xn

x2 x3 . . . xn+1

...
...

...
...

...
...

...
...

xN−n xN−n+1 . . . xN−1




a1
a2
...
an

 =



xn+1

xn+2

...

...
xN

 . (20)
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Figure 2: Signal extrapolation (prediction) using the linear prediction anzats (19)
with n = 6.
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This is an overdetermined system the least-squares solution of which determines
the correlation parameters {a1, . . . , an} which allow extrapolation of the sequence
beyond the last term, xN ,

xN+1 = a1xN−n+1 + a2xN−n+2 + · · ·+ anxN (21)
xN+2 = a1xN−n+2 + a2xN−n+3 + · · ·+ anxN+1 (22)

... . (23)

An illustration of this method is given at figure (2) where the six correlation
parameters where determined from the first 50 values of the signal and then ex-
trapolated to the next 50 values (and compared with the exact values). The signal
is

xk = 2 sin

(
0.9

2πk

N − 1

)
− sin

(
2.1

2πk

N − 1

)
+

1

2
sin

(
3.1

2πk

N − 1

)
, (24)

where N = 50.

1.5 Missing data recovery (error concealment)
Sometimes one can have a signal at hand where several entries are lost due to some
sort of data corruption, for example transmission errors (packet loss). Among the
techniques to recover the missing data in a corrupted signal (often referred to as
error concealment techniques) there is one based on the least-squares method.
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Figure 3: Least-squares missing data recovery
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Let us assume that in a received signal, y, n entries (out of the total N) at
positions m1,m2, . . . ,mn have been lost and have been replaced with zeros. If one
knew the missing entries, {z1 . . . zn}

.
= z, the recovered signal x would be given as

x = y +Mz , (25)

where M is the matrix that inserts the elements of z into the missing positions of
y. It is an N × n matrix with all elements equal zero except for the elements

Mmk,k

∣∣
k=1,...,n

= 1 . (26)

Like in signal smoothing the unknown entries z can be estimated from the condition
that the recovered signal is smooth,

z : min
z

∥Dx∥2 = min
z

∥D(y +Mz)∥2 . (27)

The solution is given by the least-squares solution to the overdetermined system

DMz = −Dy . (28)

1.6 Signal declipping
A problem very similar to missing data recovery is signal declipping. Here the
corrupted signal misses those samples, the absolute value of which are larger than
certain cutoff (for example, the detector threshold). The recovery is similar to
missing data, however in this particular case one minimizes the third derivative,
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Figure 4: Least-squares data declipping
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rather than second, forcing the declipped signal to be in the form of a parabola.
The corresponding matrix is given by the third order finite difference formulae,

D =



-1 3 -3 1
-1 3 -3 1

-1/2 1 0 -1 1/2
-1/2 1 0 -1 1/2

...
-1/2 1 0 -1 1/2
-1 3 -3 1

-1 3 -3 1


. (29)

Figure (4) shows an example of least-squares declipping.

1.7 Ordinary least-squares curve fitting
Ordinary least-squares curve fitting is a problem of fitting n (experimental) data
points {xi, yi ±∆yi}i=1,...,n, where ∆yi are experimental errors, by a linear com-
bination, Fc, of m functions {fk(x)}k=1,...,m ,

Fc(x) =

m∑
k=1

ckfk(x) , (30)

where the coefficients ck are the fitting parameters.
The objective of the least-squares fit is to minimize the square deviation, called

χ2, between the fitting function Fc(x) and the experimental data [?],
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χ2 =

n∑
i=1

(
F (xi)− yi

∆yi

)2

. (31)

where the individual deviations from experimental points are weighted with their
inverse errors in order to promote contributions from the more precise measure-
ments.

Minimization of χ2 with respect to the coefficient ck in (30) is apparently
equivalent to the least-squares problem (2) where

Aik =
fk(xi)

∆yi
, bi =

yi
∆yi

. (32)

1.7.1 Variances and correlations of fitting parameters

Suppose δyi is a small deviation of the measured value of the physical observable at
hand from its exact value. The corresponding deviation δck of the fitting coefficient
is then given as

δck =
∑
i

∂ck
∂yi

δyi . (33)

In a good experiment the deviations δyi are statistically independent and dis-
tributed normally with the standard deviations ∆yi. The deviations (33) are then
also distributed normally with variances

⟨δckδck⟩ =
∑
i

(
∂ck
∂yi

∆yi

)2

=
∑
i

(
∂ck
∂bi

)2

. (34)

The standard errors in the fitting coefficients are then given as the square roots of
variances,

∆ck =
√
⟨δckδck⟩ =

√√√√∑
i

(
∂ck
∂bi

)2

. (35)

The variances are diagonal elements of the covariance matrix, Σ, made of co-
variances,

Σkq ≡ ⟨δckδcq⟩ =
∑
i

∂ck
∂bi

∂cq
∂bi

. (36)

Covariances ⟨δckδcq⟩ are measures of to what extent the coefficients ck and cq
change together if the measured values yi are varied. The normalized covariances,

⟨δckδcq⟩√
⟨δckδck⟩⟨δcqδcq⟩

(37)

are called correlations.
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static ( vector , matrix ) l s f i t
(Func<double , double>[] fs , vector x , vector y , vector dy){

int n = x . s ize , m=f s . Length ;
var A = new matrix (n ,m) ;
var b = new vector (n ) ;
for ( int i =0; i<n ; i++){

b [ i ]=y [ i ]/ dy [ i ] ;
for ( int k=0;k<m; k++)A[ i , k]= f s [ k ] ( x [ i ] ) / dy [ i ] ;
}

vector c = A. so lve (b ) ; // so lves | |A∗c−b||−>min
matrix AI = A. inverse ( ) ; // ca l cu la t e s pseudoinverse
matrix Σ = AI∗AI .T;
return ( c , Σ ) ;
}

Table 1: A Csharp implemetation of the ordinary least-squares fit.

Using c = A−b the covariance matrix can be calculated as

Σ =

(
∂c

∂b

)(
∂c

∂b

)T

= A−A−T = (ATA)−1 . (38)

The square roots of the diagonal elements of this matrix provide the estimates of
the errors ∆c of the fitting coefficients,

∆ck =
√
Σkk

∣∣∣
k=1...m

, (39)

and the (normalized) off-diagonal elements provide the estimates of their correla-
tions.

With SVD the covariance matrix (38) can be calculated as

Σ = (ATA)−1 = (VS2VT)−1 = VS−2VT . (40)

With QR-decomposition the covariance matrix (38) can be calculated as

Σ = (ATA)−1 = (RTR)−1 = R−1(R−1)T . (41)

Table 1.7.1 shows how a Csharp implementation of the ordinary least squares
fit via QR decomposition could look like. An illustration of a fit is shown on
Figure 5 where a polynomial is fitted to a set of data.
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