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Preface
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Chapter 1

Interpolation

1.1 Introduction
In practice one often meets a situation where the function of interest, f(x), is only
represented by a discrete set of tabulated points,

{xi, yi
.
= f(xi) | i = 1 . . . n} ,

obtained, for example, by sampling, experimentation, or extensive numerical calcula-
tions.

Interpolation means constructing a (smooth) function, called interpolating function
or interpolant, which passes exactly through the given points and hopefully approxi-
mates the tabulated function between the tabulated points. Interpolation is a specific
case of curve fitting in which the fitting function must go exactly through the data
points.

The interpolating function can be used for different practical needs like estimating
the tabulated function between the tabulated points and estimating the derivatives/in-
tegrals involving the tabulated function.

1.2 Polynomial interpolation
Polynomial interpolation uses a polynomial as the interpolating function. Given a table
of n points, {xi, yi}, where no two xi are the same, one can construct a polynomial
P (x) of the order n − 1 which passes exactly through the points: P (xi) = yi. This

1



2 CHAPTER 1. INTERPOLATION

polynomial can be intuitively written in the Lagrange form,

P (x) =

n∑
i=1

yi

n∏
k ̸=i

x− xk

xi − xk
. (1.1)

The Lagrange interpolating polynomial always exists and is unique.

Table 1.1: Polynomial interpolation in C
double pol interp ( int n , double ∗x , double ∗y , double z ) {

double s=0,p ;
for ( int i =0; i<n ; i++) {

p=1; for ( int k=0;k<n ; k++) i f (k!= i ) p∗=(z−x [ k ] ) / ( x [ i ]−x [ k ] ) ;
s+=y [ i ]∗p ; }

return s ; }

Higher order interpolating polynomials are susceptible to the Runge’s phenomenon:
erratic oscillations close to the end-points of the interval, see Figure 1.1.

−6 −4 −2 0 2 4 6

x

0

0.5

1

y

data points

polynomial

cubic spline

Figure 1.1: Lagrange interpolating polynomial, solid line, showing the Runge’s phe-
nomenon: large oscillations at the edges. For comparison the dashed line shows a cubic
spline.
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1.3 Spline interpolation
Spline interpolation uses a piecewise polynomial, S(x), called spline, as the interpolating
function,

S(x) = si(x) if x ∈ [xi, xi+1]
∣∣∣
i=1,...,n−1

, (1.2)

where si(x) is a polynomial of a given order k. Spline interpolation avoids the problem
of Runge’s phenomenon. Originally, “spline” was a term for elastic rulers that were
bent to pass through a number of predefined points. These were used to make technical
drawings by hand.

The spline of the order k ≥ 1 can be made continuous at the tabulated points,

si(xi) = yi , si(xi+1) = yi+1

∣∣∣
i=1,...,n−1

, (1.3)

together with its k − 1 derivatives,

s′i(xi+1) = s′i+1(xi+1) ,
s′′i (xi+1) = s′′i+1(xi+1) ,

...
s
(k−1)
i (xi+1) = s

(k−1)
i+1 (xi+1) .

∣∣∣∣∣∣∣∣∣ i = 1, . . . , n− 2 (1.4)

Continuity conditions (1.3) and (1.4) make kn + n − 2k linear equations for the
(n− 1)(k + 1) = kn+ n− k − 1 coefficients of n− 1 polynomials (1.2) of the order k.
The missing k − 1 conditions can be chosen (reasonably) arbitrarily.

The most popular is the cubic spline, where the polynomials si(x) are of third order.
The cubic spline is a continuous function together with its first and second derivatives.
The cubic spline has a nice feature that it (sort of) minimizes the total curvature of
the interpolating function. This makes the cubic splines look good.

Quadratic splines—continuous with the first derivative—are not nearly as good as
cubic splines in most respects. In particular they might oscillate unpleasantly when a
quick change in the tabulated function is followed by a period where the function is
nearly a constant. Cubic splines are somewhat less susceptible to such oscillations.

Linear spline is simply a polygon drawn through the tabulated points.

1.3.1 Linear interpolation
Linear interpolation is a spline with linear polynomials. The continuity conditions (1.3)
can be satisfied by choosing the spline in the (intuitive) form

si(x) = yi + pi(x− xi) , (1.5)
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where
pi =

∆yi
∆xi

, ∆yi
.
= yi+1 − yi , ∆xi

.
= xi+1 − xi . (1.6)

The linear spline can be easily differentiated,

s′i(x) = pi , (1.7)

and integrated, ∫ x<xi+1

xi

si(t)dt = yi(x− xi) + pi
(x− xi)

2

2
. (1.8)

Linear spline is continuous but its derivative is not.

Table 1.2: Linear interpolation in C
#include<asser t . h>
double l i n t e r p ( int n , double∗ x , double∗ y , double z ){

as se r t (n>1 && z>=x [ 0 ] && z<=x [ n−1]);
int i =0, j=n−1; /∗ binary search : ∗/
while ( j−i >1){int m=(i+j )/2 ; i f ( z>x [m] ) i=m; else j=m;}
double dy=y [ i+1]−y [ i ] , dx=x [ i+1]−x [ i ] ; a s se r t (dx>0);
return y [ i ]+dy/dx∗(z−x [ i ] ) ;

}

Note that the search of the interval [xi ≤ x ≤ xi+1] in an ordered array {xi} should
be done with the binary search algorithm (also called half-interval search): the point
x is compared to the middle element of the array, if it is less than the middle element,
the algorithm repeats its action on the sub-array to the left of the middle element, if it
is greater, on the sub-array to the right. When the remaining sub-array is reduced to
two elements, the interval is found (see Table 1.2). The average number of operations
for a binary search is O(log n).

1.3.2 Quadratic spline
Quadratic spline is made of second order polynomials, conveniently written in the form

si(x) = yi + pi(x− xi) + ci(x− xi)(x− xi+1)
∣∣∣
i=1,...,n−1

, (1.9)

which identically satisfies the continuity conditions

si(xi) = yi , si(xi+1) = yi+1

∣∣∣
i=1,...,n−1

. (1.10)
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Substituting (1.9) into the derivative continuity condition,

s′i(xi+1) = s′i+1(xi+1)
∣∣∣
i=1,...,n−2

, (1.11)

gives n− 2 equations for n− 1 unknown coefficients ci,

pi + ci∆xi = pi+1 − ci+1∆xi+1

∣∣∣
i=1,...,n−2

. (1.12)

One coefficient can be chosen arbitrarily, for example c1 = 0. The other coefficients
can now be calculated recursively from (1.12),

ci+1 =
1

∆xi+1
(pi+1 − pi − ci∆xi)

∣∣∣
i=1,...,n−2

. (1.13)

Alternatively, one can choose cn−1 = 0 and make the backward-recursion

ci =
1

∆xi
(pi+1 − pi − ci+1∆xi+1)

∣∣∣
i=n−2,...,1

. (1.14)

In practice, unless you know what your c1 (or cn−1) is, it is better to run both
recursions and then average the resulting c’s. This amounts to first running the forward-
recursion from c1 = 0 and then the backward recursion from 1

2cn−1.
The optimized form (1.9) of the quadratic spline can also be written in the ordinary

form suitable for differentiation and integration,

si(x) = yi + bi(x− xi) + ci(x− xi)
2 , where bi = pi − ci∆xi . (1.15)

An implementation of quadratic spline in C is listed in Table 1.3.2

1.3.3 Cubic spline
Cubic splines are made of third order polynomials,

si(x) = yi + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 . (1.16)

This form automatically satisfies the first half of continuity conditions (1.3): si(xi) = yi.
The second half of continuity conditions (1.3), si(xi+1) = yi+1, and the continuity of
the first and second derivatives (1.4) give a set of equations,

yi + bihi + cih
2
i + dih

3
i = yi+1 , i = 1, . . . , n− 1

bi + 2cihi + 3dih
2
i = bi+1 , i = 1, . . . , n− 2

2ci + 6dihi = 2ci+1 , i = 1, . . . , n− 2 (1.17)
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Table 1.3: Quadratic spline in C
#include <s t d l i b . h>
#include <asser t . h>
typedef struct { int n ; double ∗x , ∗y , ∗b , ∗c ;} qspl ine ;
qsp l ine ∗ qspl ine_al loc ( int n , double∗ x , double∗ y){ // bu i ld s qsp l ine

qspl ine ∗s = ( qspl ine ∗) malloc ( sizeof ( qspl ine ) ) ; // sp l ine
s−>b = (double∗) malloc ((n−1)∗sizeof (double ) ) ; // b_i
s−>c = (double∗) malloc ((n−1)∗sizeof (double ) ) ; // c_i
s−>x = (double∗) malloc (n∗sizeof (double ) ) ; // x_i
s−>y = (double∗) malloc (n∗sizeof (double ) ) ; // y_i
s−>n = n ; for ( int i =0; i<n ; i++){s−>x [ i ]=x [ i ] ; s−>y [ i ]=y [ i ] ; }
int i ; double p [ n−1] , h [ n−1]; //VLA from C99
for ( i =0; i<n−1; i++){h [ i ]=x [ i+1]−x [ i ] ; p [ i ]=(y [ i+1]−y [ i ] ) / h [ i ] ; }
s−>c [0 ]=0; //recursion up :
for ( i =0; i<n−2; i++)s−>c [ i +1]=(p [ i+1]−p [ i ]−s−>c [ i ]∗h [ i ] ) / h [ i +1];
s−>c [ n−2]/=2; //recursion down:
for ( i=n−3; i >=0;i −−)s−>c [ i ]=(p [ i+1]−p [ i ]−s−>c [ i +1]∗h [ i +1])/h [ i ] ;
for ( i =0; i<n−1; i++)s−>b [ i ]=p [ i ]−s−>c [ i ]∗h [ i ] ;
return s ; }

double qspline_eval ( qspl ine ∗s , double z ){ // evaluates s ( z )
asse r t ( z>=s−>x [ 0 ] && z<=s−>x [ s−>n−1]);
int i =0, j=s−>n−1; //binary search :
while ( j−i >1){int m=(i+j )/2 ; i f ( z>s−>x [m] ) i=m; else j=m;}
double h=z−s−>x [ i ] ;
return s−>y [ i ]+h∗( s−>b [ i ]+h∗s−>c [ i ] ) ; }// inerpo lat ing polynomial

void qspl ine_free ( qspl ine ∗s ){ // free the a l loca ted memory
f r e e ( s−>x ) ; f r e e ( s−>y ) ; f r e e ( s−>b ) ; f r e e ( s−>c ) ; f r e e ( s ) ; }

where hi
.
= xi+1 − xi.

The set of equations (1.17) is a set of 3n−5 linear equations for the 3(n−1) unknown
coefficients {ai, bi, ci | i = 1, . . . , n−1}. Therefore two more equations should be added
to the set to find the coefficients. If the two extra equations are also linear, the total
system is linear and can be easily solved.

The spline is called natural if the extra conditions are given as vanishing second
derivatives at the end-points,

S′′(x1) = S′′(xn) = 0 , (1.18)

which gives

c1 = 0 ,

cn−1 + 3dn−1hn−1 = 0 . (1.19)
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Solving the first two equations in (1.17) for ci and di gives1

cihi = −2bi − bi+1 + 3pi ,

dih
2
i = bi + bi+1 − 2pi , (1.20)

where pi
.
= ∆yi/hi. The natural conditions (1.19) and the third equation in (1.17) then

produce the following tridiagonal system of n linear equations for the n coefficients bi,

2b1 + b2 = 3p1 ,

bi +

(
2

hi

hi+1
+ 2

)
bi+1 +

hi

hi+1
bi+2 = 3

(
pi + pi+1

hi

hi+1

) ∣∣∣
i=1,...,n−2

,

bn−1 + 2bn = 3pn−1 , (1.21)

or, in the matrix form,
D1 Q1 0 0 . . .
1 D2 Q2 0 . . .
0 1 D3 Q3 . . .
...

... . . . . . . . . .
. . . . . . 0 1 Dn




b1
...
...
bn

 =


B1

...

...
Bn

 (1.22)

where the elements Di at the main diagonal are

D1 = 2 , Di+1 = 2
hi

hi+1
+ 2

∣∣∣
i=1,...,n−2

, Dn = 2 , (1.23)

the elements Qi at the above-main diagonal are

Q1 = 1 , Qi+1 =
hi

hi+1

∣∣∣
i=1,...,n−2

, (1.24)

and the right-hand side terms Bi are

B1 = 3p1 , Bi+1 = 3

(
pi + pi+1

hi

hi+1

) ∣∣∣
i=1,...,n−2

, Bn = 3pn−1 . (1.25)

This system can be solved by one run of Gauss elimination and then a run of
back-substitution. After a run of Gaussian elimination the system becomes

D̃1 Q1 0 0 . . .

0 D̃2 Q2 0 . . .

0 0 D̃3 Q3 . . .
...

... . . . . . . . . .
. . . . . . 0 0 D̃n




b1
...
...
bn

 =


B̃1

...

...
B̃n

 , (1.26)

1introducing an auxiliary coefficient bn.
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where
D̃1 = D1 , D̃i = Di −Qi−1/D̃i−1

∣∣∣
i=2,...,n

, (1.27)

and
B̃1 = B1 , B̃i = Bi − B̃i−1/D̃i−1

∣∣∣
i=2,...,n

. (1.28)

The triangular system (1.26) can be solved by a run of back-substitution,

bn = B̃n/D̃n , bi = (B̃i −Qibi+1)/D̃i

∣∣∣
i=n−1,...,1

. (1.29)

A C-implementation of cubic spline is listed in Table 1.3.3

1.3.4 Sub-splines
Sub-splines are—like splines—piecewise polynomials. However, unlike splines the sub-
splines dispense with the demand of maximal differentiability of the spline—hence the
name. Instead of maximal differentiability the sub-splines use one (or more) of their
free parameters to achieve some other goals. Typically the sub-splines try to minimize
the unpleasant wiggles that splines are prone to when the interpolated data contain a
sub-set of points that are close to a line or an outlier.

Akima sub-spline [1] is an interpolating function in the form of a piecewise cubic
polynomial, similar to the cubic spline,

S(x)
∣∣∣
x∈[xi,xi+1]

= ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 .
= Ai(x) . (1.30)

However, unlike the cubic spline, Akima sub-spline dispenses with the demand of maxi-
mal differentiability of the spline—in this case, the continuity of the second derivative—
hence the name sub-spline. Instead of achieving maximal differentiability Akima sub-
splines try to reduce the wiggling which the ordinary splines are typically prone to (see
Figure 1.2).

First let us note that the coefficients {ai, bi, ci, di} in eq. (1.30) are determined
by the values of the derivatives S′

i
.
= S′(xi) of the sub-spline through the continuity

conditions for the sub-spline and its first derivative,

Ai(xi) = yi, A
′
i(xi) = S′

i, Ai(xi+1) = yi+1, A
′
i(xi+1) = S′

i+1. (1.31)

Indeed, inserting (1.30) into (1.31) and solving for the coefficients gives

ai = yi, bi = S′
i, ci =

3pi − 2S′
i − S′

i+1

∆xi
, di =

S′
i + S′

i+1 − 2pi

(∆xi)2
, (1.32)

where pi
.
= ∆yi/∆xi, ∆yi

.
= yi+1 − yi, ∆xi

.
= xi+1 − xi.
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Figure 1.2: A cubic spline (solid line) showing the typical wiggles, compared to the
Akima sub-spline (dashed line) where the wiggles are essentially removed.

In the ordinary cubic spline the derivatives S′
i are determined by the continuity

condition of the second derivative of the spline. Sub-splines do without this continuity
condition and can instead use the derivatives as free parameters to be chosen to satisfy
some other condition.

Akima suggested to minimize the wiggling by choosing the derivatives as linear
combinations of the nearest slopes,

S′
i =

wi+1pi−1 + wi−1pi
wi+1 + wi−1

, if wi+1 + wi−1 ̸= 0 , (1.33)

S′
i =

pi−1 + pi
2

, if wi+1 + wi−1 = 0 , (1.34)

where the weights wi are given as

wi = |pi − pi−1| . (1.35)

The idea is that if three points lie close to a line, the sub-spline in this vicinity has to
be close to this line. In other words, if |pi − pi−1| is small, the nearby derivatives must
be close to pi.

The first two and the last two points need a special prescription, for example
(naively) one can simply use

S′
1 = p1, S

′
2 =

1

2
p1 +

1

2
p2, S

′
n = pn−1, S

′
n−1 =

1

2
pn−1 +

1

2
pn−2. (1.36)

Table (1.5) shows a C-implementation of this algorithm.



10 CHAPTER 1. INTERPOLATION

1.4 Rational function interpolation
As the name suggests, the rational interpolation uses a rational function (a ratio of two
polynomials) as the interpolant,

rkm(x) =
p0 + p1x+ · · ·+ pkx

k

q0 + q1x+ · · ·+ qmxm
, (1.37)

where m > 0. The rational interpolants are (generally) not susceptible to Runge
phenomenon and are infinitely differentiable.

One popular family of rational function interpolants is the so called univariate
barycentric interpolation. One example of this can be illustrated as follows. Suppose
the table to interpolate contains only two points, (x0, y0) and (x1, y1). Then the (linear)
interpolant can be intuitively written as

F (x) =
x1 − x

x1 − x0
y0 +

x− x0

x1 − x0
y1 . (1.38)

In order to generalize this approach to larger tables one can rewrite it as

F (x) =
(x− x1)y0 − (x− x0)y1

−(x1 − x0)
=

(x− x1)y0 − (x− x0)y1
(x− x1)− (x− x0)

. (1.39)

Now we divide both the numerator and denominator by (x− x0)(x− x1),

F (x) =

1

x− x0
y0 −

1

x− x1
y1

1

x− x0
− 1

x− x1

=

1∑
i=0

(−1)i

x− xi
yi

1∑
i=0

(−1)i

x− xi

(1.40)

Now, the generalization to a table with n + 1 points seems as easy as changing the
summation limit from 1 to n (first suggested by Berrut in 1988 [5]),

B1(x) =

n∑
i=0

(−1)i

x− xi
yi

n∑
i=0

(−1)i

x− xi

. (1.41)

In order to see that B1 indeed goes through the tabulated points we can calculate the
limit,

lim
x→xi

B1(x) =

(−1)i

x− xi
yi

(−1)i

x− xi

= yi . (1.42)
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One can show that B1(x) is indeed a rational function (of the order of at most n by n)
by multiplying both the numerator and the denominator by

∏
i(x− xi). One can also

show that B1(x) has no poles on the real axis as the denominator never vanishes for
real arguments. Indeed suppose that x ∈ [x0, x1]. The denominator is then given as

n∑
i=0

(−1)i

x− xi
=

(
1

x− x0

)
+

(
1

x1 − x
− 1

x2 − x

)
+

(
1

x3 − x
− . . .

)
+ . . . (1.43)

which is always larger than zero since every term in parentheses is larger than zero (the
proof is similar if x falls in any other sub-interval).

Berrut has also suggested a slightly different rational interpolant,

B2(x) =

1

x− x0
y0 + 2

n−1∑
i=1

(−1)i

x− xi
yi +

(−1)n

x− xn
yn

1

x− x0
+ 2

n−1∑
i=1

(−1)i

x− xi
+

(−1)n

x− xn

. (1.44)

Berrut interpolants are as slow to evaluate as the Lagrange interpolating polynomial—
O(n) operations—but are more stable, see the illustration on Figure (1.3).

1.5 Multivariate interpolation
Interpolation of a function in more than one variable is called multivariate interpolation.
The function of interest is represented as a set of discrete points in a multidimensional
space. The points may or may not lie on a regular grid.

1.5.1 Nearest-neighbor interpolation
Nearest-neighbor interpolation approximates the value of the function at a non-tabulated
point by the value at the nearest tabulated point, yielding a piecewise-constant inter-
polating function. It can be used for both regular and irregular grids.

1.5.2 Piecewise-linear interpolation
Piecewise-linear interpolation is used to interpolate functions of two variables tabulated
on irregular grids. The tabulated 2D region is triangulated – subdivided into a set of
non-intersecting triangles whose union is the original region. Inside each triangle the
interpolating function S(x, y) is taken in the linear form,

S(x, y) = a+ bx+ cy , (1.45)

where the three constants are determined by the three conditions that the interpolating
function is equal the tabulated values at the three vertexes of the triangle.
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Figure 1.3: Polynomial interpolant showing the Runge’s phenomenon (large oscilla-
tions at the edges) compared to rational Berrut interpolant where the oscillations are
significantly reduced.
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1.5.3 Bi-linear interpolation
Bi-linear interpolation is used to interpolate functions of two variables tabulated on
regular rectilinear 2D grids. The interpolating function B(x, y) inside each of the grid
rectangles is taken as a bilinear function of x and y,

B(x, y) = a+ bx+ cy + dxy , (1.46)

where the four constants a, b, c, d are obtained from the four conditions that the in-
terpolating function is equal the tabulated values at the four nearest tabulated points
(which are the vertexes of the given grid rectangle).
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Table 1.4: Cubic spline in C
#include<s t d l i b . h>
#include<asser t . h>
#include<stdio . h>
typedef struct { int n ; double ∗x ,∗y ,∗b ,∗ c ,∗d ;} cubic_spline ;
cubic_spline∗ cubic_spline_alloc ( int n , double ∗x , double ∗y)
{// bu i ld s natural cubic sp l ine

cubic_spline∗ s = ( cubic_spline ∗) malloc ( sizeof ( cubic_spline ) ) ;
s−>x = (double∗) malloc (n∗sizeof (double ) ) ;
s−>y = (double∗) malloc (n∗sizeof (double ) ) ;
s−>b = (double∗) malloc (n∗sizeof (double ) ) ;
s−>c = (double∗) malloc ((n−1)∗sizeof (double ) ) ;
s−>d = (double∗) malloc ((n−1)∗sizeof (double ) ) ;
s−>n = n ; for ( int i =0; i<n ; i++){s−>x [ i ]=x [ i ] ; s−>y [ i ]=y [ i ] ; }
double h [ n−1] ,p [ n−1]; // VLA
for ( int i =0; i<n−1; i++){h [ i ]=x [ i+1]−x [ i ] ; a s se r t (h [ i ] >0);}
for ( int i =0; i<n−1; i++) p [ i ]=(y [ i+1]−y [ i ] ) / h [ i ] ;
double D[ n ] , Q[ n−1] , B[ n ] ; // bui ld ing the tr id iagona l system :
D[0]=2; for ( int i =0; i<n−2; i++)D[ i +1]=2∗h [ i ]/h [ i +1]+2; D[ n−1]=2;
Q[0]=1; for ( int i =0; i<n−2; i++)Q[ i+1]=h [ i ]/h [ i +1];
for ( int i =0; i<n−2; i++)B[ i +1]=3∗(p [ i ]+p [ i +1]∗h [ i ]/h [ i +1]);
B[0]=3∗p [ 0 ] ; B[ n−1]=3∗p [ n−2]; //Gauss el imination :
for ( int i =1; i<n ; i++){ D[ i ]−=Q[ i −1]/D[ i −1]; B[ i ]−=B[ i −1]/D[ i −1]; }
s−>b [ n−1]=B[ n−1]/D[ n−1]; //back−subs t i tu t ion :
for ( int i=n−2; i >=0;i −−) s−>b [ i ]=(B[ i ]−Q[ i ]∗ s−>b [ i +1])/D[ i ] ;
for ( int i =0; i<n−1; i++){

s−>c [ i ]=(−2∗s−>b [ i ]−s−>b [ i +1]+3∗p [ i ] ) / h [ i ] ;
s−>d [ i ]=(s−>b [ i ]+s−>b [ i +1]−2∗p [ i ] ) / h [ i ]/h [ i ] ;

}
return s ;

}
double cubic_spline_eval ( cubic_spline ∗s , double z ){

as se r t ( z>=s−>x [ 0 ] && z<=s−>x [ s−>n−1]);
int i =0, j=s−>n−1;// binary search for the in t e rva l for z :
while ( j−i >1){int m=(i+j )/2 ; i f ( z>s−>x [m] ) i=m; else j=m; }
double h=z−s−>x [ i ] ; // ca lcu la te the inerpo lat ing sp l ine :
return s−>y [ i ]+h∗( s−>b [ i ]+h∗( s−>c [ i ]+h∗s−>d [ i ] ) ) ;

}
void cubic_spline_free ( cubic_spline ∗s ){ // free the a l loca ted memory

f r e e ( s−>x ) ; f r e e ( s−>y ) ; f r e e ( s−>b ) ; f r e e ( s−>c ) ; f r e e ( s−>d ) ; f r e e ( s ) ; }
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Table 1.5: Akima sub-spline in C
#include<asser t . h>
#include<s t d l i b . h>
#include<math . h>
typedef struct { int n ; double ∗x ,∗y ,∗b ,∗ c ,∗d ;} akima_spline ;
akima_spline∗ akima_spline_alloc ( int n , double ∗x , double ∗y){

asse r t (n>2); double h [ n−1] ,p [ n−1]; /∗ VLA ∗/
for ( int i =0; i<n−1; i++){h [ i ]=x [ i+1]−x [ i ] ; a s se r t (h [ i ] >0);}
for ( int i =0; i<n−1; i++) p [ i ]=(y [ i+1]−y [ i ] ) / h [ i ] ;
akima_spline ∗s = ( akima_spline ∗) malloc ( sizeof ( akima_spline ) ) ;
s−>x = (double∗) malloc (n∗sizeof (double ) ) ;
s−>y = (double∗) malloc (n∗sizeof (double ) ) ;
s−>b = (double∗) malloc (n∗sizeof (double ) ) ;
s−>c = (double∗) malloc ((n−1)∗sizeof (double ) ) ;
s−>d = (double∗) malloc ((n−1)∗sizeof (double ) ) ;
s−>n = n ; for ( int i =0; i<n ; i++){s−>x [ i ]=x [ i ] ; s−>y [ i ]=y [ i ] ; }
s−>b [ 0 ] =p [ 0 ] ; s−>b [ 1 ] =(p[0]+p [ 1 ] ) / 2 ;
s−>b [ n−1]=p [ n−2]; s−>b [ n−2]=(p [ n−2]+p [ n−3])/2;
for ( int i =2; i<n−2; i++){

double w1=fabs (p [ i+1]−p [ i ] ) , w2=fabs (p [ i −1]−p [ i −2]);
i f (w1+w2==0) s−>b [ i ]=(p [ i −1]+p [ i ] ) / 2 ;
else s−>b [ i ]=(w1∗p [ i −1]+w2∗p [ i ] ) / (w1+w2) ;

}
for ( int i =0; i<n−1; i++){

s−>c [ i ]=(3∗p [ i ]−2∗s−>b [ i ]−s−>b [ i +1])/h [ i ] ;
s−>d [ i ]=(s−>b [ i+1]+s−>b [ i ]−2∗p [ i ] ) / h [ i ]/h [ i ] ;

}
return s ;

}
double akima_spline_eval ( akima_spline ∗s , double z ){

as se r t ( z>=s−>x [ 0 ] && z<=s−>x [ s−>n−1]);
int i =0, j=s−>n−1;
while ( j−i >1){int m=(i+j )/2 ; i f ( z>s−>x [m] ) i=m; else j=m;}
double h=z−s−>x [ i ] ;
return s−>y [ i ]+h∗( s−>b [ i ]+h∗( s−>c [ i ]+h∗s−>d [ i ] ) ) ;

}
void akima_spline_free ( akima_spline ∗s ){

f r e e ( s−>x ) ; f r e e ( s−>y ) ; f r e e ( s−>b ) ; f r e e ( s−>c ) ; f r e e ( s−>d ) ; f r e e ( s ) ; }



Chapter 2

Systems of linear equations

2.1 Introduction
A system of linear equations (or linear system) is a collection of linear equations involv-
ing the same set of unknown variables. A general system of n linear equations with m
unknowns can be written as

A11x1 + A12x2 + · · · + A1mxm = b1
A21x1 + A22x2 + · · · + A2mxm = b2

...
...

...
...

An1x1 + An2x2 + · · · + Anmxm = bn

, (2.1)

where x1, x2, . . . , xm are the unknown variables, A11, A12, . . . , Anm are the (constant)
coefficients, and b1, b2, . . . , bn are the (constant) right-hand side terms.

The system can be equivalently written in the matrix form,

Ax = b , (2.2)

where A
.
= {Aij} is the n×m matrix of the coefficients, x .

= {xj} is the size-m column-
vector of the unknown variables, and b

.
= {bi} is the size-n column-vector of right-hand

side terms.
A solution to a linear system is a set of values for the variables x which satisfies all

equations.
Systems of linear equations occur quite regularly in applied mathematics. Therefore

computational algorithms for finding solutions of linear systems are an important part
of numerical methods. A system of non-linear equations can often be approximated by
a linear system – a helpful technique (called linearization) in creating a mathematical
model of an otherwise a more complex system.

15
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If m = n the matrix A is called square. A square system has a unique solution if A
is invertible.

2.2 Triangular systems
An efficient algorithm to solve numerically a square system of linear equations is to
transform the original system into an equivalent triangular system,

Ty = c , (2.3)

where T is a triangular matrix – a special kind of square matrix where the matrix
elements either below (upper triangular) or above (lower triangular) the main diagonal
are zero.

Indeed, an upper triangular system Uy = c can be easily solved by back-substitution,

yi =
1

Uii

(
ci −

n∑
k=i+1

Uikyk

)
, i = n, n− 1, . . . , 1 , (2.4)

where one first computes yn = bn/Unn, then substitutes back into the previous equation
to solve for yn−1, and repeats through y1.

Here is a Csharp implementation of the in-place1 back-substitution:

static void backsub ( matrix U, vector c ){
for ( int i=c . s i ze −1; i >=0; i −−){

double sum=0;
for ( int k=i +1; k<c . s i z e ; k++) sum+=U[ i , k ]∗ c [ k ] ;
c [ i ]=(c [ i ]−sum)/U[ i , i ] ; } }

For a lower triangular system Ly = c the equivalent procedure is called forward-
substitution,

yi =
1

Lii

(
ci −

i−1∑
k=1

Likyk

)
, i = 1, 2, . . . , n . (2.5)

2.3 Reduction to triangular form
Popular algorithms for reducing a square system of linear equations to a triangular
form are LU-decomposition and QR-decomposition.

1here in-place means the right-hand side c is replaced by the solution y.
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2.3.1 QR-decomposition
QR-decomposition is a factorization of a matrix into a product of an orthogonal matrix
Q, such that QTQ = 1, where T denotes transposition, and a right triangular matrix
R, such that

A = QR . (2.6)
QR-decomposition can be used to convert (by multiplying with QT from the left) a
linear system Ax = b into the triangular form,

Rx = QTb , (2.7)

which can be solved directly by back-substitution.
QR-decomposition can also be performed on non-square matrices with few long

columns. Generally speaking a rectangular n × m matrix A can be represented as a
product, A = QR, of an orthogonal n×m matrix Q, QTQ = 1, and a right-triangular
m×m matrix R.

QR-decomposition of a matrix can be computed using several methods, such as
Gram-Schmidt orthogonalization, Householder transformation [17], or Givens rota-
tion [13].

Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization is an algorithm for orthogonalization of a set of vectors
in a given inner product space. It takes a linearly independent set of vectors A =
{a1, . . . , am} and generates an orthogonal set Q = {q1, . . . ,qm} which spans the same
subspace as A. The algorithm is given as

for i = 1 to m :
qi ← ai/∥ai∥
for j = i+ 1 to m : aj ← aj − ⟨qi|aj⟩qi

where ⟨a|b⟩ is the inner product of two vectors, and ∥a∥ .
=
√
⟨a|a⟩ is the vector’s norm.

This variant of the algorithm, where all remaining vectors aj are made orthogonal to qi

as soon as the latter is calculated, is considered to be numerically stable and is referred
to as stabilized or modified.

Stabilized Gram-Schmidt orthogonalization can be used to compute QR-decom-
position of a matrix A by orthogonalization of its column-vectors ai with the inner
product

⟨a|b⟩ = aTb ≡
n∑

k=1

(a)k(b)k , (2.8)

where n is the length of column-vectors a and b, and (a)k is the kth element of the
column-vector,
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for i = 1 to m :
Rii =

√
aTi ai ; qi = ai/Rii

for j = i+ 1 to m :
Rij = qT

i aj ; aj = aj − qiRij .

After orthogonalization the matrices Q = {q1 . . .qm} and R are the sought orthogonal
and right-triangular factors of matrix A. A Csharp implementation might look like
this,
matrix Q=A. copy ( ) , R=new matrix (m,m) ;
for ( int i =0; i<m; i++){

R[ i , i ]=Q[ i ] . norm ( ) ; /∗ Q[ i ] points to the i−th columb ∗/
Q[ i ]/=R[ i , i ] ;
for ( int j=i +1; j<m; j++){

R[ i , j ]=Q[ i ] . dot (Q[ j ] ) ;
Q[ j ]−=Q[ i ]∗R[ i , j ] ; } }

The factorization is unique under requirement that the diagonal elements of R are
positive. For a n×m matrix the complexity of the algorithm is O(m2n).

Gram-Schmidt decomposition with column pivoting

Pivoted decomposition differs from the ordinary Gram-Schmidt in that at each iteration
it takes the largest of the remaining columns and thus introduces the permutation
matrix P,

AP = QR , (2.9)
that is (generally) chosen so that the diagonal elements of the R-matrix are decreasing,

|R11| ≥ |R22| ≥ · · · ≥ |Rmm| . (2.10)

Pivoted QR-decomposition can be used when matrix A is rank deficient or its rank
is in doubt. With exact arithmetics if rank(A) = k then the sub-matrix of R with rows
and columns from k+1 to m would be zero. Numerical determination of rank requires
a criterion for deciding when a small diagonal element of R should be treated as zero
– a practical choice that depends on both the matrix and the application.

Householder transformation

A square matrix H of the form

H = 1− 2

uTu
uuT (2.11)

is called Householder matrix, where the vector u is called a Householder vector. House-
holder matrices are symmetric and orthogonal,

HT = H , HTH = 1 . (2.12)



2.3. REDUCTION TO TRIANGULAR FORM 19

The transformation induced by the Householder matrix on a given vector a,

a→ Ha , (2.13)

is called a Householder transformation or Householder reflection. The transformation
changes the sign of the affected vector’s component in the u direction, or, in other words,
makes a reflection of the vector about the hyper-plane perpendicular to u, hence the
name.

Householder transformation can be used to zero selected components of a given
vector a. For example, one can zero all components but the first one, such that

Ha = γe1 , (2.14)

where γ is a number and e1 is the unit vector in the first direction. The factor γ can
be easily calculated,

∥a∥2 .
= aTa = aTHTHa = (γe1)

T(γe1) = γ2 , (2.15)

⇒ γ = ±∥a∥ . (2.16)
To find the Householder vector, we notice that

a = HTHa = HTγe1 = γe1 −
2(u)1
uTu

u , (2.17)

⇒ 2(u)1
uTu

u = γe1 − a , (2.18)

where (u)1 is the first component of the vector u. One usually chooses (u)1 = 1 (for
the sake of the possibility to store the other components of the Householder vector in
the zeroed elements of the vector a) and stores the factor

2

uTu
≡ τ (2.19)

separately. With this convention one readily finds τ from the first component of equa-
tion (2.18),

τ = γ − (a)1 . (2.20)
where (a)1 is the first element of the vector a. For the sake of numerical stability the
sign of γ has to be chosen opposite to the sign of (a)1,

γ = −sign ((a)1) ∥a∥ . (2.21)

Finally, the Householder reflection, which zeroes all component of a vector a but the
first, is given as

H = 1− τuuT , τ = −sign((a)1)∥a∥ − (a)1 , (u)1 = 1 , (u)i>1 = −1

τ
(a)i . (2.22)
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Now, a QR-decomposition of an n × n matrix A by Householder transformations
can be performed in the following way:

1. Build the size-n Householder vector u1 which zeroes the sub-diagonal elements
of the first column of matrix A, such that

H1A =


⋆ ⋆ . . . ⋆
0
... A1

0

 , (2.23)

where H1 = 1−τ1u1u
T
1 and where ⋆ denotes (generally) non-zero matrix elements.

In practice one does not build the matrix H1 explicitly, but rather calculates
the matrix H1A in-place, consecutively applying the Householder reflection to
columns the matrix A, thus avoiding computationally expensive matrix-matrix
operations. The zeroed sub-diagonal elements of the first column of the matrix A
can be used to store the elements of the Householder vector u1 while the factor
τ1 has to be stored separately in a special array. This is the storage scheme used
by LAPACK and GSL.

2. Similarly, build the size-(n − 1) Householder vector u2 which zeroes the sub-
diagonal elements of the first column of matrix A1 from eq. (2.23). With the
transformation matrix H2 defined as

H2 =


1 0 · · · 0
0
... 1− τ2u2u

T
2

0

 . (2.24)

the two transformations together zero the sub-diagonal elements of the two first
columns of matrix A,

H2H1A =


⋆ ⋆ ⋆ · · · ⋆
0 ⋆ ⋆ · · · ⋆
0 0
...

... A3

0 0

 , (2.25)

3. Repeating the process zero the sub-diagonal elements of the remaining columns.
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For column k the corresponding Householder matrix is

Hk =

 Ik−1 0

0 1− τkuku
T
k

 , (2.26)

where Ik−1 is an identity matrix of size k− 1, uk is the size-(n-k+1) Householder
vector that zeroes the sub-diagonal elements of matrix Ak−1 from the previous
step. The corresponding transformation step is

Hk . . .H2H1A =

[
Rk ⋆
0 Ak

]
, (2.27)

where Rk is a size-k right-triangular matrix.
After n−1 steps the matrix A will be transformed into a right triangular matrix,

Hn−1 · · ·H2H1A = R . (2.28)

4. Finally, introducing an orthogonal matrix Q = HT
1H

T
2 . . .HT

n−1 and multiplying
eq. (2.28) by Q from the left, we get the sought QR-decomposition,

A = QR . (2.29)

In practice one does not build explicitly the Q matrix but rather applies the
successive Householder reflections stored during the decomposition.

Givens rotations

A Givens rotation is a transformation in the form

A→ G(p, q, θ)A , (2.30)

where A is the object to be transformed—matrix of vector—and G(p, q, θ) is the Givens
rotation matrix (also known as Jacobi rotation matrix): an orthogonal matrix in the
form

G(p, q, θ) =



1 · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · cos θ · · · sin θ · · · 0
...

... . . . ...
...

0 · · · − sin θ · · · cos θ · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · 1


← row p

← row q
. (2.31)
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When a Givens rotation matrix G(p, q, θ) multiplies a vector x, only elements xp and
xq are affected. Considering only these two affected elements, the Givens rotation is
given explicitly as[

x′
p

x′
q

]
=

[
cos θ sin θ
− sin θ cos θ

] [
xp

xq

]
=

[
xp cos θ + xq sin θ
−xp sin θ + xq cos θ

]
. (2.32)

Apparently the rotation can zero the element x′
q, if the angle θ is chosen as

tan θ =
xq

xp
⇒ θ = atan2(xq, xp) . (2.33)

A sequence of Givens rotations,

G =

m∏
n≥q>p=1

G(p, q, θqp) , (2.34)

(where n × m is the dimension of the matrix A) can zero all elements of a matrix
below the main diagonal if the angles θqp are chosen to zero the elements with indices
q, p of the partially transformed matrix just before applying the matrix G(p, q, θqp).
The resulting matrix is obviously the R-matrix of the sought QR-decomposition of the
matrix A where G = QT.

In practice one does not explicitly builds the G matrix but rather stores the θ angles
in the places of the corresponding zeroed elements of the original matrix:
for ( int p=0;p<A. s i z e2 ; p++){

for ( int q=p+1;q<A. s i z e1 ; q++){
double theta=Atan2(A[ q , p ] ,A[ p , p ] ) ;
double c=Cos( theta ) , s=Sin ( theta ) ;
for ( int k=q ; k<A. s i z e2 ; k++){

double xp=A[ p , k ] , xq=A[ q , k ] ;
A[ p , k]= xp∗c+xq∗s ;
A[ q , k]=−xp∗s+xq∗c ; }

A[ q , p]=theta ; } }

When solving the linear system Ax = b one transforms it into the equivalent trian-
gular system Rx = Gb where one calculates Gb by successively applying the individual
Givens rotations with the stored θ-angles:
for ( int p=0;p<G. s i z e2 ; p++){

for ( int q=p+1;q<G. s i z e1 ; q++){
double theta = G[ q , p ] ;
double c=Cos( theta ) , s=Sin ( theta ) ;
double bp=b [ p ] , bq=b [ q ] ;
b [ p]=+bp∗c+bq∗s ;
b [ q]=−bp∗s+bq∗c ; } }
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The triangular system Rx = Gb is then solved by the ordinary back-substitution.
If one needs to build the Q-matrix explicitly, one uses

Qij = eTi Qej = eTj Q
Tei , (2.35)

where ei is the unit vector in the direction i and where again one can use the successive
rotations to calculate QTei,

Since each Givens rotation only affects two rows of the matrix it is possible to apply
a set of rotations in parallel. Givens rotations are also more efficient on sparse matrices.

2.3.2 LU-decomposition
LU-decomposition is a factorization of a square matrix A into a product of a lower
triangular matrix L and an upper triangular matrix U,

A = LU . (2.36)

The linear system Ax = b after LU-decomposition of the matrix A becomes LUx =
b and can be solved by first solving Ly = b for y and then Ux = y for x with two runs
of forward and backward substitutions.

If A is an n× n matrix, the condition (2.36) is a set of n2 equations,
n∑

k=1

LikUkj = Aij

∣∣
i,j=1...n

, (2.37)

for n2 + n unknown elements of the triangular matrices L and U. The decomposition
is thus not unique.

Usually the decomposition is made unique by providing extra n conditions e.g. by
the requirement that the elements of the main diagonal of the matrix L are equal one,

Lii = 1 , i = 1 . . . n . (2.38)

The system (2.37) with the extra conditions (2.38) can then be easily solved row
after row using the Doolittle’s algorithm,

for i = 1 . . . n :
Lii = 1
for j = i . . . n : Uij = Aij −

∑
k<i LikUkj

for j = i+ 1 . . . n : Lji =
1

Uii

(
Aji −

∑
k<j LjkUki

)
In a slightly different Crout’s algorithm it is the matrix U that has unit diagonal

elements,
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for i = 1 . . . n :
Uii = 1
for j = i . . . n : Lji = Aji −

∑
k<i LjkUki

for j = i+ 1 . . . n : Uij =
1

Lii

(
Aji −

∑
k<j LjkUki

)
Without a proper ordering (permutations) in the matrix, the factorization may fail.

For example, it is easy to verify that A11 = L11U11. If A11 = 0, then at least one of L11

and U11 has to be zero, which implies either L or U is singular, which is impossible if A is
non-singular. This is however only a procedural problem. It can be removed by simply
reordering the rows of A so that the first element of the permuted matrix is nonzero
(or, even better, the largest in absolute value among all elements of the column below
the diagonal). The same problem in subsequent factorization steps can be removed in
a similar way. Such algorithm is referred to as partial pivoting. It requires an extra
integer array to keep track of row permutations.

2.3.3 Cholesky decomposition

The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposi-
tion in the form

A = LL† , (2.39)

where L is a lower triangular matrix with real and positive diagonal elements, and L†

is the conjugate transpose of L.
For real symmetric positive-definite matrices the decomposition reads

A = LLT , (2.40)

where L is real.
The decomposition can be calculated using the following in-place algorithm,

Ljj =

√√√√Ajj −
j−1∑
k=1

L2
jk , Lij =

1

Ljj

(
Aij −

j−1∑
k=1

LikLjk

)∣∣∣∣∣
i>j

. (2.41)

The expression under the square root is always positive if A is real and positive-
definite.

When applicable, the Cholesky decomposition is about twice as efficient as LU-
decomposition for solving systems of linear equations.
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2.4 Determinant of a matrix
LU- and QR-decompositions allow O(n3) calculation of the determinant of a square
matrix. Indeed, for the LU-decomposition,

detA = det LU = det L detU = detU =

n∏
i=1

Uii . (2.42)

For the Gram-Schmidt QR-decomposition

detA = detQR = detQdetR . (2.43)

Since Q is an orthogonal matrix (detQ)2 = 1,

| detA| = | detR| =

∣∣∣∣∣
n∏

i=1

Rii

∣∣∣∣∣ . (2.44)

With Gram-Schmidt method one arbitrarily assigns positive sign to diagonal elements
of the R-matrix thus removing from the R-matrix the memory of the original sign of
the determinant.

However with Givens rotation method the determinant of the individual rotation
matrix—and thus the determinant of the total rotation matrix—is equal one, therefore
for a square matrix A the QR-decomposition A = GR via Givens rotations allows
calculation of the determinant with the correct sign,

detA = detR ≡
n∏

i=1

Rii (2.45)

2.5 Matrix inverse
The inverse A−1 of a square n × n matrix A can be calculated by solving n linear
equations

Axi = ei

∣∣∣
i=1,...,n

, (2.46)

where ei is the unit-vector in the i-direction: a column where all elements are equal
zero except for the element number i which is equal one. Thus the set of columns
{ei}i=1,...,n form the identity matrix. The matrix made of columns xi is apparently
the inverse of A.
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Chapter 3

Ordinary least-squares
problem

3.1 Introduction
An ordinary least-squares problem (also called linear least-squares problem) is the prob-
lem of minimization of the (squared) norm of a vector (hence the name, least squares)
where the minimization parameters enter the vector linearly. Reformulation of a given
problem in terms of an ordinary least-squares problem is often called the least-squares
method. Ordinary least-squares problems can be usually solved using linear algebra
methods – a great asset that ensures their extensive applications in science end engi-
neering.

In signal processing least-squares methods are used for smoothing, prediction, de-
convolution, error recovery, and de-clipping. In physics it is used, in particular, in
fitting a theoretical model to experimental data with uncertainties, and in deconvolu-
tion of the detected signal from the detector response.

3.2 Overdetermined linear systems
A system of linear equations is considered overdetermined if there are more equations
than unknown variables. If all equations of an overdetermined system are linearly
independent, the system has no exact solution. However, it is usually possible to find
an approximate solution to an overdetermined system using the least-squares method.

Consider a linear system
Ac = b , (3.1)

27
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where A is a n ×m matrix, c is an m-component vector of unknown variables and b
is an n-component vector of the right-hand side terms. If the number of equations n
is larger than the number of unknowns m, the system is overdetermined and generally
has no solution. However, it is still possible to find an approximate solution — the one
where Ac is only approximately equal b — in the sense that the Euclidean norm of the
difference between Ac and b is minimized,

c : min
c
∥Ac− b∥2 . (3.2)

The problem (3.2) is an example of an ordinary least-squares problem. The vector c
that minimizes ∥Ac− b∥2 is usually called the least-squares solution.

Theoretically, the solution to this minimization problem is given by the equation

∂

∂cT

(
(cTAT − bT)(Ac− b)

)
= 2
(
(ATA)c−ATb

)
= 0 , (3.3)

with the solution
c = (ATA)−1ATb . (3.4)

However in practice one should instead use QR-decomposition or SVD as described
below.

3.2.1 Least-squares solution via QR-decomposition
The linear least-squares problem can be solved by QR-decomposition. The matrix A is
factorized as A = QR, where Q is n×m matrix with orthonormal columns, QTQ = 1,
and R is an m × m upper triangular matrix. The matrix Q is a semi-orthonormal
matrix whose columns span the range (column space) of matrix A.

The matrix QQT is the projector on the range of matrix A and (1 − QQT) is the
corresponding orthogonal projector. Indeed,

(1−QQT)QQT = QQT(1−QQT) = 0 . (3.5)

The vector Ac− b can be represented as a sum of two orthogonal components, the
one within the range of the matrix and the orthogonal one,

Ac− b = QQT(Ac− b) + (1−QQT)(Ac− b) . (3.6)

The Euclidean norm ∥Ac− b∥2 is then be given as a sum of the norms of the two
orthogonal components,

∥Ac− b∥2 = ∥QQT(Ac− b)∥2 + ∥(1−QQT)(Ac− b)∥2 . (3.7)
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The second term,

∥(1−QQT)(Ac− b)∥2 = ∥(1−QQT)b∥2 , (3.8)

is the norm of the range-orthogonal component of the right-hand-side b: it is indepen-
dent of the variables c and can not be reduced by their variations. However, the first
term

∥QQT(Ac− b)∥2 = ∥(Rc−QTb)∥2 , (3.9)

can be reduced down to zero by solving the m×m system of linear equations

Rc = QTb . (3.10)

The system is right-triangular and can be readily solved by back-substitution.
Thus the solution to the ordinary least-squares problem (3.2) is given by the solution

of the triangular system (3.10).

3.2.2 Least-squares solution via SVD
Under the thin singular value decomposition we shall understand a representation of a
tall n×m (n > m) matrix A in the form

A = USVT , (3.11)

where U is a semi-orthonormal (UTU = 1) n×m matrix that spans the range of matrix
A, S is a square m×m diagonal matrix with non-negative real numbers (called singular
values) on the diagonal, and V is a square m×m orthonormal matrix (VTV = VVT =
1).

Singular value decomposition can too be used to solve the least squares problem
Ac ≈ b the same way as with QR-decomposition only using the U matrix for the
projection of the equation on the column-space of the matrix. Specifically,

UT(Ac− b) = 0 ⇒ SVTc = UTb ⇒ c = VS−1UTb , (3.12)

where one should not build the S−1 matrix but should rather divide by the correspond-
ing singular values the components of the vector it acts upon.

Notice that VS−1UT is the pseudo-inverse A− of the matrix A. Therefore the
solution to the least squares problem can be (theoretically) written as

c = A−b . (3.13)
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3.3 Signal smoothing
Least squares method can be use to smooth a noisy signal – a sequence of numbers
represented by a vector, y. The idea is to find a new signal, x, that is similar to the
noisy signal y but smoother. The smoothness of the signal can be measured by the
smallness of its second derivative (indeed a signal with vanishing second derivative is a
straight line – the smoothest possible signal). The smoothers based on minimization of
the second derivative are the most common in the literature although other derivatives
can also be used.

The second derivative of a discrete signal x can be approximated by its second-order
difference, Dx, where the matrix D is given as

D =



1 -2 1
1 -2 1

1 -2 1
...

1 -2 1
1 -2 1


. (3.14)

The smooth signal x can then be obtained as a solution to the following least-squares
problem,

x : min
x

(
∥x− y∥2 + λ∥Dx∥2

)
, (3.15)

where λ > 0 is the smoothing parameter: when λ → 0 there is no smoothing and
x converges to y; when λ → ∞ the second derivative is infinitely penalized and x
converges to a linear fit to the data.

The minimum of the form (3.15) is located where its partial derivatives vanish,

∂

∂xT

(
(x− y)T(x− y) + λxTDTDx

)
= 2
(
(I + λDTD)x− y

)
= 0 , (3.16)

(where I is the identity matrix) which gives the (least-squares) solution

x = (I + λDTD)−1y . (3.17)

Of course in practice one should not explicitly calculate the inverse matrix but rather
solve the linear equation

(I + λDTD)x = y . (3.18)
The matrix in this linear equation is banded (has only few non-zero diagonals) therefore
in order to make the method efficient one has to take advantage of this fact (rather
than use generic linear solvers).

And example of smoothing using this algorithm is given at Figure (3.1).
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Figure 3.1: Noisy signal smoothing using the least-squares algorithm (3.15).
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3.4 Signal extrapolation (prediction)
Least-squares method can also be used to find patterns (correlations) in a given signal
(sequence of numbers) and then use these patterns for signal extrapolation.

Suppose the signal {xi}i=1...N is correlated such that the term xk can be predicted
by the n preceding terms,

xk = xk−1an + xk−2an−1 + · · ·+ xk−na1 . (3.19)

Applying this anzats (often called linear prediction) to the subset {xn+1, xn+2, . . . , xN}
of the signal gives the system of equations

x1 x2 . . . xn

x2 x3 . . . xn+1

...
...

...
...

...
...

...
...

xN−n xN−n+1 . . . xN−1




a1
a2
...
an

 =



xn+1

xn+2

...

...
xN

 . (3.20)

This is an overdetermined system the least-squares solution of which determines the
correlation parameters {a1, . . . , an} which allow extrapolation of the sequence beyond
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Figure 3.2: Signal extrapolation (prediction) using the linear prediction anzats (3.19)
with n = 6.
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the last term, xN ,

xN+1 = a1xN−n+1 + a2xN−n+2 + · · ·+ anxN (3.21)
xN+2 = a1xN−n+2 + a2xN−n+3 + · · ·+ anxN+1 (3.22)

... . (3.23)

An illustration of this method is given at figure (3.2) where the six correlation pa-
rameters where determined from the first 50 values of the signal and then extrapolated
to the next 50 values (and compared with the exact values). The signal is

xk = 2 sin

(
0.9

2πk

N − 1

)
− sin

(
2.1

2πk

N − 1

)
+

1

2
sin

(
3.1

2πk

N − 1

)
, (3.24)

where N = 50.

3.5 Missing data recovery (error concealment)
Sometimes one can have a signal at hand where several entries are lost due to some
sort of data corruption, for example transmission errors (packet loss). Among the
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Figure 3.3: Least-squares missing data recovery
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techniques to recover the missing data in a corrupted signal (often referred to as error
concealment techniques) there is one based on the least-squares method.

Let us assume that in a received signal, y, n entries (out of the total N) at positions
m1,m2, . . . ,mn have been lost and have been replaced with zeros. If one knew the
missing entries, {z1 . . . zn}

.
= z, the recovered signal x would be given as

x = y +Mz , (3.25)

where M is the matrix that inserts the elements of z into the missing positions of y. It
is an N × n matrix with all elements equal zero except for the elements

Mmk,k

∣∣
k=1,...,n

= 1 . (3.26)

Like in signal smoothing the unknown entries z can be estimated from the condition
that the recovered signal is smooth,

z : min
z
∥Dx∥2 = min

z
∥D(y +Mz)∥2 . (3.27)

The solution is given by the least-squares solution to the overdetermined system

DMz = −Dy . (3.28)
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Figure 3.4: Least-squares data declipping
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3.6 Signal declipping

A problem very similar to missing data recovery is signal declipping. Here the corrupted
signal misses those samples, the absolute value of which are larger than certain cutoff
(for example, the detector threshold). The recovery is similar to missing data, however
in this particular case one minimizes the third derivative, rather than second, forcing
the declipped signal to be in the form of a parabola. The corresponding matrix is given
by the third order finite difference formulae,

D =



-1 3 -3 1
-1 3 -3 1

-1/2 1 0 -1 1/2
-1/2 1 0 -1 1/2

...
-1/2 1 0 -1 1/2
-1 3 -3 1

-1 3 -3 1


. (3.29)

Figure (3.4) shows an example of least-squares declipping.
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3.7 Ordinary least-squares curve fitting
Ordinary least-squares curve fitting is a problem of fitting n (experimental) data points
{xi, yi ±∆yi}i=1,...,n, where ∆yi are experimental errors, by a linear combination, Fc,
of m functions {fk(x)}k=1,...,m ,

Fc(x) =

m∑
k=1

ckfk(x) , (3.30)

where the coefficients ck are the fitting parameters.
The objective of the least-squares fit is to minimize the square deviation, called χ2,

between the fitting function Fc(x) and the experimental data [4],

χ2 =

n∑
i=1

(
F (xi)− yi

∆yi

)2

. (3.31)

where the individual deviations from experimental points are weighted with their in-
verse errors in order to promote contributions from the more precise measurements.

Minimization of χ2 with respect to the coefficient ck in (3.30) is apparently equiv-
alent to the least-squares problem (3.2) where

Aik =
fk(xi)

∆yi
, bi =

yi
∆yi

. (3.32)

3.7.1 Variances and correlations of fitting parameters
Suppose δyi is a small deviation of the measured value of the physical observable at
hand from its exact value. The corresponding deviation δck of the fitting coefficient is
then given as

δck =
∑
i

∂ck
∂yi

δyi . (3.33)

In a good experiment the deviations δyi are statistically independent and distributed
normally with the standard deviations ∆yi. The deviations (3.33) are then also dis-
tributed normally with variances

⟨δckδck⟩ =
∑
i

(
∂ck
∂yi

∆yi

)2

=
∑
i

(
∂ck
∂bi

)2

. (3.34)

The standard errors in the fitting coefficients are then given as the square roots of
variances,

∆ck =
√
⟨δckδck⟩ =

√√√√∑
i

(
∂ck
∂bi

)2

. (3.35)
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The variances are diagonal elements of the covariance matrix, Σ, made of covari-
ances,

Σkq ≡ ⟨δckδcq⟩ =
∑
i

∂ck
∂bi

∂cq
∂bi

. (3.36)

Covariances ⟨δckδcq⟩ are measures of to what extent the coefficients ck and cq change
together if the measured values yi are varied. The normalized covariances,

⟨δckδcq⟩√
⟨δckδck⟩⟨δcqδcq⟩

(3.37)

are called correlations.
Using c = A−b the covariance matrix can be calculated as

Σ =

(
∂c

∂b

)(
∂c

∂b

)T

= A−A−T = (ATA)−1 . (3.38)

The square roots of the diagonal elements of this matrix provide the estimates of the
errors ∆c of the fitting coefficients,

∆ck =
√
Σkk

∣∣∣
k=1...m

, (3.39)

and the (normalized) off-diagonal elements provide the estimates of their correlations.
With SVD the covariance matrix (3.38) can be calculated as

Σ = (ATA)−1 = (VS2VT)−1 = VS−2VT . (3.40)

With QR-decomposition the covariance matrix (3.38) can be calculated as

Σ = (ATA)−1 = (RTR)−1 = R−1(R−1)T . (3.41)

Table 3.7.1 shows how a Csharp implementation of the ordinary least squares fit
via QR decomposition could look like. An illustration of a fit is shown on Figure 3.5
where a polynomial is fitted to a set of data.
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static ( vector , matrix ) l s f i t
(Func<double , double>[] fs , vector x , vector y , vector dy){

int n = x . s ize , m=f s . Length ;
var A = new matrix (n ,m) ;
var b = new vector (n ) ;
for ( int i =0; i<n ; i++){

b [ i ]=y [ i ]/ dy [ i ] ;
for ( int k=0;k<m; k++)A[ i , k]= f s [ k ] ( x [ i ] ) / dy [ i ] ;
}

vector c = A. so lve (b ) ; // so lves | |A∗c−b||−>min
matrix AI = A. inverse ( ) ; // ca l cu la t e s pseudoinverse
matrix Σ = AI∗AI .T;
return ( c , Σ ) ;
}

Table 3.1: A Csharp implemetation of the ordinary least-squares fit.
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data
Fc(x) = c0+c1x+c2x2

Fc+Δc(x)
Fc-Δc(x)

y

x

Least-squares fit

Figure 3.5: Ordinary least squares fit of Fc(x) = c1+c2x+c3x
2 to a set of data. Shown

are fits with optimal coefficiens c as well as with c+∆c and c−∆c.
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Chapter 4

Eigenvalues and eigenvectors

4.1 Introduction
A non-zero column-vector v is called the eigenvector of a matrix A with the eigenvalue
λ, if

Av = λv . (4.1)

If an n× n matrix A is real and symmetric, AT = A, then it has n real eigenvalues
λ1, . . . , λn, and its (orthogonalized) eigenvectors V = {v1, . . . ,vn} form a full basis,

VVT = VTV = 1 , (4.2)

in which the matrix is diagonal,

VTAV =


λ1 0 · · · 0

0 λ2

...
... . . .
0 · · · λn

 ≡ D . (4.3)

Matrix diagonalization means finding all eigenvalues and (optionally) eigenvectors
of a matrix. Once all eigenvalues and eigenvectors are found, the Eigenvalue Decom-
position (EVD) of the matrix is given as

A = VDVT . (4.4)

Eigenvalues and eigenvectors enjoy a multitude of applications in different branches
of science and technology.

39
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4.2 Similarity transformations
Orthogonal transformations,

A→ QTAQ , (4.5)

where QTQ = 1, and, generally, similarity transformations,

A→ S−1AS , (4.6)

preserve eigenvalues and eigenvectors. Therefore one of the strategies to diagonalize a
matrix is to apply a sequence of similarity transformations (also called rotations) which
(iteratively) turn the matrix into diagonal form.

4.2.1 Jacobi eigenvalue algorithm
Jacobi eigenvalue algorithm is an iterative method to calculate the eigenvalues and
eigenvectors of a real symmetric matrix by a sequence of Jacobi rotations.

Jacobi rotation is an orthogonal transformation which zeroes a pair of the off-
diagonal elements of a (real symmetric) matrix A,

A→ A′ = J(p, q)TAJ(p, q) : A′
pq = A′

qp = 0 . (4.7)

The orthogonal matrix J(p, q) which eliminates the element Apq is called the Jacobi
rotation matrix. It is equal identity matrix except for the four elements with indices
pp, pq, qp, and qq,

J(p, q) =



1
. . . 0

cos θ · · · sin θ
... . . . ...

− sin θ · · · cos θ

0
. . .

1


← row p

← row q
. (4.8)

Or explicitly,

J(p, q)ij = δij ∀ ij /∈ {pq, qp, pp, qq} ;
J(p, q)pp = cos θ = J(p, q)qq ;

J(p, q)pq = sin θ = −J(p, q)qp . (4.9)



4.2. SIMILARITY TRANSFORMATIONS 41

After a Jacobi rotation, A→ A′ = JTAJ, the matrix elements of A′ become

A′
ij = Aij ∀ i ̸= p, q ∧ j ̸= p, q

A′
pi = A′

ip = cApi − sAqi ∀ i ̸= p, q ;

A′
qi = A′

iq = sApi + cAqi ∀ i ̸= p, q ;

A′
pp = c2App − 2scApq + s2Aqq ;

A′
qq = s2App + 2scApq + c2Aqq ;

A′
pq = A′

qp = sc(App −Aqq) + (c2 − s2)Apq , (4.10)

where c ≡ cos θ, s ≡ sin θ. The angle θ is chosen such that after rotation the matrix
element A′

pq is zeroed,

tan(2θ) =
2Apq

Aqq −App
⇒ A′

pq = 0 , θ =
1

2
atan2(2Apq, Aqq −App) , (4.11)

where the atan2 correctly deals with the cases where one or two arguments are equal
zero.

A side effect of zeroing a given off-diagonal element Apq by a Jacobi rotation is
that other off-diagonal elements are changed. Namely, the elements of the rows and
columns with indices p and q. However, after the Jacobi rotation the sum of squares of
all off-diagonal elements is reduced. The algorithm repeatedly performs rotations until
the off-diagonal elements become sufficiently small.

The convergence of the Jacobi method can be proved for two strategies for choosing
the order in which the elements are zeroed:

1. Classical method: with each rotation the largest of the remaining off-diagonal
elements is zeroed.

2. Cyclic method: the off-diagonal elements are zeroed in strict order, e.g. row after
row.

Although the classical method allows the least number of rotations, it is typically
slower than the cyclic method since searching for the largest element is an O(n2) op-
eration. The count can be reduced by keeping an additional array with indexes of the
largest elements in each row. Updating this array after each rotation is only an O(n)
operation.

A sweep is a sequence of Jacobi rotations applied to all non-diagonal elements.
Typically the method converges after a small number of sweeps. The operation count
is O(n) for a Jacobi rotation and O(n3) for a sweep.

The typical convergence criterion is that the diagonal elements have not changed
after a sweep. Other criteria can also be used, like the sum of absolute values of the
off-diagonal elements is small,

∑
i<j |Aij | < ϵ, where ϵ is the required accuracy, or the

largest off-diagonal element is small, max |Ai<j | < ϵ.
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Eigenvectors

Once the matrix A is diagonalized,

QTAQ = D , (4.12)

the matrix Q becomes the matrix of eigenvectors. The latter can therefore be calculated
as V = 1J0J2..., where Ji are the successive Jacobi matrices. At each iteration the
update of the V-matrix is given as

Vij → Vij , j ̸= p, q

Vip → cVip − sViq (4.13)
Viq → sVip + cViq

Alternatively, if only one (or few) eigenvector vk is needed, one can instead solve
the (singular) system (A− λk)v = 0.

Ordering of eigenvalues

Suppose the matrix element Apq to be zeroed by a Jacobi rotation is already zero. Then
the function

θ =
1

2
atan2(2Apq, Aqq −App) (4.14)

will return 0 if Aqq > App or π/2 if Aqq < App. In the first case no rotation will take
place, while in the second case the rotation with θ = π/2 will be applied. The latter
will exchange the matrix elements Aqq and App. That is, the diagonal elements will be
arranged in accending order.

4.2.2 QR/QL algorithm
An orthogonal transformation of a real symmetric matrix, A → QTAQ = RQ, where
Q is from the QR-decomposition of A, partly turns the matrix A into diagonal form.
Successive iterations eventually make it diagonal. If there are degenerate eigenvalues
there will be a corresponding block-diagonal sub-matrix.

For convergence properties it is of advantage to use shifts: instead of QR[A] we do
QR[A− s1] and then A→ RQ+ s1. The shift s can be chosen as Ann. As soon as an
eigenvalue is found the matrix is deflated, that is, the corresponding row and column
are crossed out.

Accumulating the successive transformation matrices Qi into the total matrix Q =
Q1 . . .QN , such that QTAQ = Λ, gives the eigenvectors as columns of the Q matrix.

If only one (or few) eigenvector vk is needed one can instead solve the (singular)
system (A− λk)v = 0.
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Tridiagonalization.

Each iteration of the QR/QL algorithm is an O(n3) operation. On a tridiagonal matrix
it is only O(n). Therefore the effective strategy is first to make the matrix tridiagonal
and then apply the QR/QL algorithm. Tridiagonalization of a matrix is a non-iterative
operation with a fixed number of steps.

4.3 Eigenvalues of updated matrix
In practice it happens quite often that the matrix A to be diagonalized is given in the
form of a diagonal matrix, D, plus an update matrix, W,

A = D+W , (4.15)

where the update W is a simpler, in a certain sense, matrix which allows a more
efficient calculation of the updated eigenvalues, as compared to general diagonalization
algorithms.

The most common updates are

• symmetric rank-1 update,
W = uuT , (4.16)

where u is a columnt-vector;

• symmetric rank-2 update,
W = uvT + vuT ; (4.17)

• symmetric row/column update – a special case of rank-2 update,

W =



0 . . . u1 . . . 0
... . . . ... . . . ...
u1 . . . up . . . un

... . . . ... . . . ...
0 . . . un . . . 0

 ≡ e(p)uT + ue(p)T , (4.18)

where e(p) is the unit vector in the p-direction.

4.3.1 Rank-1 update
We assume that a size-n real symmetric matrix A to be diagonalized is given in the
form of a diagonal matrix plus a rank-1 update,

A = D+ σuuT , (4.19)
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where D is a diagonal matrix with diagonal elements {d1, . . . , dn} and u is a given
vector. The diagonalization of such matrix can be done in O(m2) operations, where
m ≤ n is the number of non-zero elements in the update vector u, as compared to
O(n3) operations for a general diagonalization [14].

The eigenvalue equation for the updated matrix reads(
D+ σuuT

)
q = λq , (4.20)

where λ is an eigenvalue and q is the corresponding eigenvector. The equation can be
rewritten as

(D− λ1)q+ σuuTq = 0 . (4.21)
Multiplying from the left with uT (D− λ1)

−1 gives

uTq+ uT (D− λ1)
−1

σuuTq = 0 . (4.22)

Finally, dividing by uTq leads to the (scalar) secular equation (or characteristic equa-
tion) in λ,

1 +

m∑
i=1

σu2
i

di − λ
= 0 , (4.23)

where the summation index counts the m non-zero components of the update vector
u. The m roots of this equation determine the (updated) eigenvalues1.

Finding a root of a rational function requires an iterative technique, such as the
Newton-Raphson method. Therefore diagonalization of an updated matrix is still an
iterative procedure. However, each root can be found in O(1) iterations, each iteration
requiring O(m) operations. Therefore the iterative part of this algorithm — finding all
m roots — needs O(m2) operations.

Finding roots of this particular secular equation can be simplified by utilizing the
fact that its roots are bounded by the eigenvalues di of the matrix D. Indeed if we
denote the roots as λ1, λ2, . . . , λn and assume that λi ≤ λi+1 and di ≤ di+1, it can be
shown that

1. if σ ≥ 0,

di ≤ λi ≤ di+1 , i = 1, . . . , n− 1 , (4.24)
dn ≤ λn ≤ dn + σuTu ; (4.25)

2. if σ ≤ 0,

di−1 ≤ λi ≤ di , i = 2, . . . , n , (4.26)
d1 + σuTu ≤ λ1 ≤ d1 . (4.27)

1Multiplying this equation by
∏m

i=1(di−λ) leads to an equivalent polynomial equation of the order
m, which has exactly m roots.
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4.3.2 Symmetric row/column update
The matrix A to be diagonalized is given in the form

A = D+ e(p)uT + ue(p)T =



d1 . . . u1 . . . 0
... . . . ... . . . ...
u1 . . . dp . . . un

... . . . ... . . . ...
0 . . . un . . . dn

 , (4.28)

where D is a diagonal matrix with diagonal elements {di|i = 1, . . . , n}, e(p) is the unit
vector in the p-direction, and u is a given update vector where the p-th element can be
assumed to equal zero, up = 0, without loss of generality. Indeed, if the element is not
zero, one can simply redefine dp → dp + 2up, up → 0.

The eigenvalue equation for matrix A is given as

(D − λ)x+ e(p)uTx+ ue(p)Tx = 0 , (4.29)

where x is an eigenvector and λ is the corresponding eigenvalue. The component
number p of this vector-equation reads

(dp − λ)xp + uTx = 0 , (4.30)

while the component number k ̸= p reads

(dk − λ)xk + ukxp = 0 , (4.31)

Dividing the last equation by (dk−λ), multiplying from the left with
∑n

k=1 uk, substi-
tuting uTx using equation (4.30) and dividing by xp gives the secular equation,

−(dp − λ) +

n∑
k ̸=p

u2
k

dk − λ
= 0 , (4.32)

which determines the updated eigenvalues.

4.3.3 Symmetric rank-2 update
A symmetric rank-2 update can be represented as two consecutive rank-1 updates,

uvT + vuT = aaT − bbT , (4.33)

where
a =

1√
2
(u+ v) , b =

1√
2
(u− v) . (4.34)

The eigenvalues can then be found by applying the rank-1 update method twice.
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4.4 Singular Value Decomposition
Singular Value Decomposition (SVD) is a factorization of matrix A in the form

A = USVT , (4.35)

where S is a diagonal matrix, U is (generally) a semi-orthogonal matrix (UTU = 1),
and V is an orthogonal matrix (VTV = VVT = 1).

The elements of the diagonal matrix S are called the singular values of matrix A.
Singular values can always be chosen non-negative by changing the signs of the corre-
sponding columns of matrix U. The columns of the matrices U and V are called the
(correspondingly left and right) singular vectors.

4.4.1 Applications of SVD
Column space, null space, and rank

The SVD of a matrix A provides a representation of the column space (also called
range) and the null space of the matrix: the columns of the V matrix corresponding
to vanishing singular values span the null space while the columns of the U matrix
corresponding to non-vanishing singular values span the range of the matrix.

The rank of the matrix is given by the number of non-vanishing singular values.

Pseudoinverse

An n×m matrix A has its pseudoinverse m×n matrix A− if the following equation is
satisfied,

AA−A = A . (4.36)

Given the SVD of the matrix, A = USVT, its pseudoinverse is

A− = VS−UT , (4.37)

where S− is the pseudoinverse of the matrix S which is formed by replacing non-
vanishing elements of S with their inverses.

Least squares solution

The least sqaures solution to an overdetermined system Ax = b is given via the matrix’
pseudoinverse as

x = A−b . (4.38)
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Solution to homogenious systems

Solutions to a homogenious system Ax = 0 are given by the null-space of the matrix,
that is, by any linear combination of the columns of the matrix V corresponding to
vanishing singular values of matrix A.

Lower-rank matrix approximation

Sometimes one needs to approximate a matrix A with a smaller matrix Ã of a given
rank r. The SVD of A provides one such approximation,

Ã = ŨS̃ṼT , (4.39)

where S̃ is a diagonal matrix which contains only the r largest singular values, and
where Ũ and ṼT contain only the corresponding singular vectors. It minimizes the
Frobenius norm of the difference between the matrix and its approximation.

4.4.2 Relation to eigenvalues of ATA

Singular values are equal the square roots of the eigenvalues of the real symmetrix
matrix ATA. Indeed, by construction the matrix ATA is positive definite, therefore its
eigenvalues are not-negiative and its eigenvalue decomposition can be written as

ATA = VS2VT (4.40)

where S is the diagonal matrix of square roots of ATA, and V is the matrix of cor-
responding eigenvectors. Then the singular value decomposition of matrix A can be
formally written as

A = USVT , U = AVS−1 . (4.41)

4.4.3 Calculation of SVD
While it is theoretically possible to calculate the SVD of a matrix A by diagonaliz-
ing ATA, it is not recommended in practice for several reasons including the potential
numerical issues related to squaring small singular values leading to rounding errors.
Generally it is more efficient to use algorithms specifically designed for SVD computa-
tions.

The most widely used algorithm, called Golub-Reinsch, is a generalization of the
QR/QL algorithm for matrix diagonalization. However, like QR/QL in matrix diago-
nalization, it is a bit tedious and tricky to implement for a learner, therefore we shall
discuss here two other, classical, methods which might not be as fast as Golub-Reinsch,
but they are stable, precise, and easy to implement.
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One-sided Jacobi SVD algorithm

This is an iterative algorithm [10] where the given matrix A is gradually transformed
into a matrix with orhogonal columns with the elementary iteration given as

A← AJ(p, q, θ) , (4.42)

where the (rotation) angle θ is chosen such that the columns of the matrix A with the
indices p and q become (after the rotation) orthogonal2. The indices (p, q) are swept
cyclically, (p = 1 . . .m, q = p+ 1, . . . ,m), where m is the number of columns.

After the algoritm has converged, that is, the transformed matrix A has orthogonal
columns, the SVD of the original matrix is recovered as follows: the matrix V is the
accumulation of the rotation matrices J, the matrix U is given by normalizing the
columns of the transformed matrix A, and the diagonal matrix S contains the norms
of the columns of the transformed matrix A.

Two-sided Jacobi SVD algorithm

This is also an iterative algorithm where a (square, else see below) matrix A is trans-
formed ino a diagonal matrix, where in the elementary iteration one first applies a
Givens rotation to symmetrize a pair of off-diagonal elements of the matrix and then
applies a Jacobi transformation to eliminate these off-diagonal elements,

A→ JTGTAJ . (4.44)

Just like in the Jacobi eigenvalue algorithm the iterations are performed in cyclic sweeps
over all non-diagonal elements of the matrix.

For a 2×2 matrix the two-sided Jacobi SVD transformation is given as following:
first, one applies a Givens rotation to symmetrize two off-diagonal elements,

A =

[
w x
y z

]
→ GTA =

[
cosφ − sinφ
sinφ cosφ

] [
w x
y z

]
=

[
a b
b c

]
, (4.45)

where the rotation angle φ = atan2(x − y, w + z); and, second, one makes the usual
Jacobi transformation to eliminate the off-diagonal elements b,

GA → JTGTAJ

=

[
cos θ − sin θ
sin θ cos θ

] [
a b
b c

] [
cos θ sin θ
− sin θ cos θ

]
=

[
d1 0
0 d1

]
. (4.46)

2The angle is given as
θ =

1

2
atan2(2AT

pAq ,A
T
qAq −AT

pAp) , (4.43)

where Ap and Aq are the corresponding columns of the matris A.



4.4. SINGULAR VALUE DECOMPOSITION 49

The matrices U and V are accumulated (from identity matrices) as

U← UGJ , (4.47)
V← VJ . (4.48)

If the matrix A is a tall n×m non-square matrix (n > m), the first step should be
the QR-decomposition,

A = QR , (4.49)

where Q is the n×m orthogonal matrix and R is a square triangular m×m matrix.
The second step is the normal SVD of the square matrix R,

R = U′DVT . (4.50)

Now the SVD of the original matrix A is given as

A = UDVT , (4.51)

where
U = QU′ . (4.52)
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Chapter 5

Power iteration methods and
Krylov subspaces

5.1 Power iteration
Power method is an iterative method to calculate an eigenvalue and the corresponding
eigenvector of a (real symmetrix) matrix A using the power iteration

xi+1 = Axi . (5.1)

The iteration converges to the eigenvector with the largest eigenvalue. Indeed, accord-
ing to the spectral theorem the eigenvectors vi,

Avi = λivi, (5.2)

of a real symmetric matrix A form an orthogonal basis such that any vector x0 can be
represented as a linear combination of the eigenvectors,

x0 =
∑
k

ckvk . (5.3)

Acting on x0 with the matrix A gives

Aix0 =
∑
k

λi
kckvk . (5.4)

Thus the contribution from the eigenvector corresponding to the largest eigenvalue is
amplified with the factor (

λlargest

λnext largest

)i

. (5.5)
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The eigenvalue can be estimated using the Rayleigh quotient,

λ[xi] =
xT
i Axi

xT
i xi

=
xT
i+1xi

xT
i xi

. (5.6)

5.2 Inverse iteration
Alternatively, the inverse power iteration with the inverse matrix,

xi+1 = A−1xi , (5.7)

converges to the smallest (in the absolute value) eigenvalue of matrix A.
Finally, the shifted inverse power iteration,

xi+1 = (A− s1)−1xi , (5.8)

where 1 signifies the identity matrix of the same size as A, converges to the eigenvalue
closest to the given number s.

The inverse iteration method is a refinement of the inverse power method where the
trick is not to invert the matrix in (5.8) but rather solve the linear system

(A− s1)xi+1 = xi (5.9)

using e.g. QR-decomposition.
The better approximation s to the sought eigenvalue is chosen, the faster conver-

gence one gets. However, incorrect choice of s can lead to slow convergence or to the
convergence to a different eigenvector. In practice the method is usually used when
good approximation for the eigenvalue is known, and hence one needs only few (quite
often just one) iteration.

One can update the estimate for the eigenvalue using the Rayleigh quotient λ[xi]
after each iteration and get faster convergence for the price of O(n3) operations per
QR-decomposition; or one can instead make more iterations (with O(n2) operations
per iteration) using the same matrix (A − s1). The optimal strategy is probably an
update after several iterations.

5.3 Krylov subspaces
When calculating an eigenvalue of a matrix A using the power method, one starts with
an initial random vector b and then computes iteratively the sequence Ab,A2b, . . . ,An−1b
normalising and storing the result in b on each iteration. The sequence converges to
the eigenvector of the largest eigenvalue of A.
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The set of vectors
Kn =

{
b,Ab,A2b, . . . ,An−1b

}
, (5.10)

where n < rank(A), is called the order-n Krylov matrix, and the subspace spanned by
these vectors is called the order-n Krylov subspace [2]. The vectors are not orthogonal
but can be made so e.g. by Gram-Schmidt orthogonalisation.

Krylov subspaces are the basis of several successful iterative methods in numerical
linear algebra, in particular: Arnoldi and Lanczos methods for finding one (or a few)
eigenvalues of a matrix; and GMRES (Generalised Minimum RESidual) method for
solving systems of linear equations.

These methods are particularly suitable for large sparse matrices as they avoid
matrix-matrix operations but rather multiply vectors by matrices and work with the
resulting vectors and matrices in Krylov subspaces of modest sizes.

5.4 Arnoldi iteration
Arnoldi iteration is an algorithm where the order-n orthogonalised Krylov matrix Qn

for a given matrix A is built using stabilised Gram-Schmidt process [3]:

start with a set Q = {q1} where q1 is a random normalised vector;
repeat for k = 2 to n :

make a new vector qk = Aqk−1

orthogonalise qk to all vectors qi ∈ Q storing qi
†qk → hi,k−1

normalise qk storing ∥qk∥ → hk,k−1

add qk to the set Q

By construction the matrix Hn made of the elements hjk is an upper Hessenberg matrix,

Hn =


h1,1 h1,2 h1,3 · · · h1,n

h2,1 h2,2 h2,3 · · · h2,n

0 h3,2 h3,3 · · · h3,n

... . . . . . . . . . ...
0 · · · 0 hn,n−1 hn,n

 , (5.11)

which is a partial orthogonal reduction of A into Hessenberg form,

Hn = Q†
nAQn . (5.12)

The matrix Hn can be viewed as a representation of A in the Krylov subspace Kn.
The eigenvalues and eigenvectors of the matrix Hn approximate the largest (actually,
the extreme) eigenvalues of matrix A.
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Since Hn is a Hessenberg matrix of modest size one can relatively easily apply to it
the standard algorithms of linear algebra.

In practice if the size n of the Krylov subspace becomes too large the method is
restarted.

5.5 Lanczos iteration
Lanczos iteration is Arnoldi iteration for Hermitian matrices [21], in which case the
Hessenberg matrix Hn of Arnoldi method becomes a tridiagonal matrix Tn.

The Lanczos algorithm thus reduces the original hermitian N × N matrix A into
a smaller n × n tridiagonal matrix Tn by an orthogonal projection onto the order-n
Krylov subspace. The eigenvalues and eigenvectors of a tridiagonal matrix of a modest
size can be easily found by e.g. the QR-diagonalisation method.

In practice the Lanczos method is not very stable due to round-off errors leading
to quick loss of orthogonality. The eigenvalues of the resulting tridiagonal matrix may
then not be a good approximation to the original matrix. Library implementations fight
the stability issues by trying to prevent the loss of orthogonality and/or to recover the
orthogonality after the basis is generated.

5.6 Generalised minimum residual (GMRES)
GMRES is an iterative method for the numerical solution of a system of linear equa-
tions,

Ax = b , (5.13)
where the exact solution is approximated by the least-squares solution that minimises
the residual ∥Ax− b∥2 in the Krylov subspace Kn of matrix A.

The original equation is projected on the Krylov subspace,

Ax = b ⇒ QnQ
†
nAQnQ

†
nx = QnQ

†
nb , (5.14)

which gives a linear system of size-n,

Hnx̃ = b̃ , (5.15)

where
Hn = Q†

nAQn , b̃ = Q†
nb . (5.16)

The Hessenberg equation (5.15) can be easily solved by one run of Gauss elimination
and then a run of back-substitution (like in cubic splines). The approximate solution
to the original equation is then given as

x ≈ Qnx̃ . (5.17)



Chapter 6

Ordinary differential equations

6.1 Introduction
Ordinary differential equations (ODE) are generally defined as differential equations in
one variable where the highest order derivative enters linearly. Such equations invari-
ably arise in many different contexts throughout mathematics (and science generally) as
soon as changes in the system at hand are considered, usually with respect to variations
of certain parameters.

Ordinary differential equations can be generally reformulated as (coupled) systems
of first-order ordinary differential equations,

y′(x) = f(x,y) , (6.1)

where y′ .
= dy/dx, and the variables y and the right-hand side function f(x,y) are

understood as column-vectors. For example, a second order differential equation in the
form

u′′ = g(x, u, u′) (6.2)

can be rewritten as a system of two first-order equations, y′1 = y2

y′2 = g(x, y1, y2)
, (6.3)

using the variable substitution y1 = u, y2 = u′.
In practice ODEs are usually supplemented with boundary conditions which pick

out a certain class or a unique solution of the ODE. In the following we shall mostly

55
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consider the initial value problem: an ODE with the boundary condition in the form
of an initial condition at a given point a,

y(a) = y0 . (6.4)

The problem is then to find the value of the solution y at some other point b.
Finding a solution to an ODE is often referred to as integrating the ODE.
An integration algorithm typically advances the solution from the initial point a to

the final point b in a number of discrete steps

{x0
.
= a, x1, . . . , xn−1, xn

.
= b}. (6.5)

An efficient algorithm tries to integrate an ODE using as few steps as possible under
the constraint of the given accuracy goal. For this purpose the algorithm should contin-
uously adjust the step-size during the integration, using few larger steps in the regions
where the solution is smooth and perhaps many smaller steps in more treacherous
regions.

Typically, an adaptive step-size ODE integrator is implemented as two routines.
One of them—called driver—monitors the local errors and tolerances and adjusts the
step-sizes. To actually perform a step the driver calls a separate routine—the stepper—
which advances the solution by one step, using one of the many available algorithms,
and estimates the local error. The GNU Scientific Library, GSL, implements about a
dozen of different steppers and a tunable adaptive driver.

In the following we shall discuss several of the popular driving algorithms and
stepping methods for solving initial-value ODE problems.

6.2 Adaptive step-size control
Let tolerance τ be the maximal accepted error consistent with the required accuracy to
be achieved in the integration of an ODE. Suppose the integration is done in n steps of
size hi such that

∑n
i=1 hi = b− a. Under assumption that the errors at the integration

steps are random and statistically uncorrelated, the local tolerance τi for the step i has
to scale as the square root of the step-size,

τi = τ

√
hi

b− a
. (6.6)

Indeed, if the local error ei on the step i is less than the local tolerance, ei ≤ τi, the
total error E will be consistent with the total tolerance τ ,

E ≈

√√√√ n∑
i=1

e2i ≤

√√√√ n∑
i=1

τ2i = τ

√√√√ n∑
i=1

hi

b− a
= τ . (6.7)
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The current step hi is accepted if the local error ei is smaller than the local tolerance
τi, after which the next step is attempted with the step-size adjusted according to the
following empirical prescription [11],

hi+1 = hi ×
(
τi
ei

)Power

× Safety, (6.8)

where Power ≈ 0.25 and Safety ≈ 0.95.
If the local error is larger than the local tolerance the step is rejected and a new

step is attempted with the step-size adjusted according to the same prescription (6.8).
One simple prescription for the local tolerance τi and the local error ei to be used

in (6.8) is

τi = (ϵ∥yi∥+ δ)

√
hi

b− a
, ei = ∥δyi∥ , (6.9)

where δ and ϵ are the required absolute and relative precision and δyi is the estimate
of the integration error at the step i.

A more elaborate prescription considers components of the solution separately,

(τi)k =
(
ϵ|(yi)k|+ δ

)√ hi

b− a
, (ei)k = |(δyi)k| , (6.10)

where the index k runs over the components of the solution. In this case the step
acceptance criterion also becomes component-wise: the step is accepted, if

∀k : (ei)k < (τi)k . (6.11)

The factor τi/ei in the step adjustment formula (6.8) is then replaced by

τi
ei
→ min

k

(τi)k
(ei)k

. (6.12)

Yet another refinement is to include the derivatives y′ of the solution into the local
tolerance estimate, either overall,

τi =
(
ϵα∥yi∥+ ϵβ∥y′

i∥+ δ
)√ hi

b− a
, (6.13)

or component-wise,

(τi)k =
(
ϵα|(yi)k|+ ϵβ|(y′

i)k|+ δ
)√ hi

b− a
. (6.14)

The weights α and β are chosen by the user.
Table 6.1 shows an implementation of the discussed driver in Python.
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Table 6.1: An implementation of an ODE driver in Python
def dr iver ( f , a , ya , b , h=0.125 , acc =0.01 , eps =0.01) :

x=a ; y=ya ; x l i s t =[x ] ; y l i s t =[y ]
while True :

i f x>=b : return ( x l i s t , y l i s t ) # return the path
i f x+h>b : h=b−x
(yh , dy) = stepper ( f , x , y , h) # stepper returns y(x+h) and δy
to l = ( acc+eps∗yh . norm())∗math . sqrt (h/(b−a ))
err = dy . norm()
i f err<to l :

x+=h ; y=yh ; x l i s t . append(x ) ; y l i s t . append(y)
i f err >0 : h∗=min( ( t o l / err )∗∗0.25∗0.95 , 2 )
else : h∗=2

6.3 Error estimate
In an adaptive step-size algorithm the stepping routine must provide an estimate of
the integration error, upon which the driver bases its strategy to determine the optimal
step-size for a user-specified accuracy goal.

A stepping method is generally characterized by its order : a method has order p if
it can integrate exactly an ODE where the solution is a polynomial of order p. In other
words, for small h the error of the order-p method is O(hp+1).

There are two popular methods to estimate the error: step doubling, where one
compares the results from the full step and from two half-steps, and two-orders method
where one compares the results from steppers of two different orders.

6.3.1 Step doubling (Runge’s principle)
For sufficiently small steps the error δy of an integration step for a method of a given
order p can be estimated by comparing the solution yfull_step, obtained with one full-
step integration, against a potentially more precise solution, ytwo_half_steps, obtained
with two consecutive half-step integrations,

δy =
yfull_step − ytwo_half_steps

2p − 1
. (6.15)

where p is the order of the algorithm used. Indeed, if the step-size h is small, we can
assume

δyfull_step = Chp+1 , (6.16)

δytwo_half_steps = 2C

(
h

2

)p+1

=
Chp+1

2p
, (6.17)
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where δyfull_step and δytwo_half_steps are the errors of the full-step and two half-steps
integrations, and C is an unknown constant. The two can be combined as

yfull_step − ytwo_half_steps = δyfull_step − δytwo_half_steps

=
Chp+1

2p
(2p − 1) , (6.18)

from which it follows that

Chp+1

2p
=

yfull_step − ytwo_half_steps

2p − 1
. (6.19)

One has, of course, to take the potentially more precise ytwo_half_steps as the ap-
proximation to the solution y. Its error is then given as

δytwo_half_steps =
Chp+1

2p
=

yfull_step − ytwo_half_steps

2p − 1
, (6.20)

which had to be demonstrated. This prescription is often referred to as the Runge’s
principle.

One drawback of the Runge’s principle is that the full-step and the two half-step
calculations generally do not share evaluations of the right-hand side function f(x,y),
and therefore many extra evaluations are needed to estimate the error.

6.3.2 Different orders
An alternative prescription for error estimation is to make the same step-size integration
using two methods of different orders, with the difference between the two solutions
providing the estimate of the error. If the lower order method mostly uses the same
evaluations of the right-hand side function—in which case it is called embedded in the
higher order method—the error estimate does not need additional evaluations.

Predictor-corrector methods are naturally of embedded type: the correction—which
generally increases the order of the method—itself can serve as the estimate of the error.

6.4 Runge-Kutta steppers
The Runge-Kutta steppers approximate the solution of the differential equation using
polynomials. The coefficients of the polynomials are determined by sampling the right-
hand-side, f(x,y), of the differential equation at certain points (mostly) within the
step.
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6.4.1 Linear stepper
The linear approximation is given by the first two terms of the Taylor expansion of the
solution at the point xi,

y(x) ≈ p1(x) = yi + y′
i(x− xi) , (6.21)

where the derivative y′
i is determined from the equation itself, y′

i = f(x,yi). In this
parlance the values of the derivative are often denoted as k with index, for example
the derivative y′

i is often called k0,

p1(x) = yi + k0(x− xi) . (6.22)

With this notation the linear Runge-Kutta stepper (called the Euler’s rule) is given as

k0 = f(x,yi) (6.23)
yi+1 ≈ p1(x+ h) = yi + k0h . (6.24)

6.4.2 Quadratic steppers and Butcher tableaux
One can improve upon the p1-approximation by adding a second order term,

y(x) ≈ p2(x) = p1(x) + c(x− xi)
2 , (6.25)

where the coefficient c can be found by matching the polynomial p2 against our differ-
ential equation at a certain point z within the step,

p′
2(z) = f(z,p1(z)) . (6.26)

This condition should be viewed in the sense of Taylor expansion, that is why we used
p1 polynomial at the right-hand-side. This gives

c =
f(z,p1(z))− p′

1(z)

2(z − xi)
. (6.27)

One usually identifies the sampling point z by the corresponding fraction of the step,
z = xi + αh. Written with the α the c-coefficient is given as

c =
f(xi + αh,yi + αk0h))− k0

2αh
=

k1 − k0

2αh
, (6.28)

where
k1

.
= f(xi + αh,yi + αk0h) . (6.29)
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Finally, the second order approximating polynomial is given as

p2(x) = yi + k0(x− xi) + (k1 − k0)
(x− xi)

2

2αh
. (6.30)

The value of the function at the end of the step, yi+1 ≈ p2(xi + h), is then given as

yi+1 = yi +

(
1− 1

2α

)
k0h+

1

2α
k1h . (6.31)

Summarizing, the (generic) second order Runge-Kutta stepper is given as

k0 = f(xi,yi) (6.32)
k1 = f(xi + αh,yi + αk0h) (6.33)

yi+1 = yi +

(
1− 1

2α

)
k0h+

1

2α
k1h . (6.34)

It is customary in this business to represent the Runge-Kutta steppers with the so called
Butcher tableaux which collect the step-sizes and the coefficient of the polynomials in
a table. For example, the Butcher tableau of out generic second order stepper is given
as

step sizes coefficients before ki

k0 0

k1 α α

yi+1

(
1− 1

2α

)
1
2α

(6.35)

The intermediate step α can be chosen arbitrarily (or from a certain condition) the
stepper is of second order for any α. Following is a list with the most popular choices
of α.

• Midpoint method
0

1/2 1/2

0 1

(6.36)

• Heun’s method
0

1 1

1/2 1/2

(6.37)
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• Ralston’s method

0

2/3 2/3

1/4 3/4

(6.38)

6.4.3 Cubic approximation

One can further increase the order of the approximating polynomial,

p3(x) = p2(x) + d(x− xi)
3 , (6.39)

where d can be found from the matching condition at a (possibly) different point z2
within the step,

p′
3(z2) = f(z2,p2(z2)) . (6.40)

This gives

d =
f(z2,p2(z2))− p′

2(z2)

3(z2 − xi)2
. (6.41)

Taking z = xi + βh and denoting

k2
.
= f (z2,p2(z2)) = f

(
xi + βh,yi +

(
β − β2

2α

)
k0h+

β2

2α
k1h

)
(6.42)

we get

d =
k2 −

(
k0 + (k1 − k0)

β
α

)
3β2h2

, (6.43)

and

p3(x) = yi + k0(x− xi) +
k1 − k0

2αh
(x− xi)

2

+
k2 −

(
k0 + (k1 − k0)

β
α

)
3β2h2

(x− xi)
3 . (6.44)
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This gives the following (generic) cubic Runge-Kutta stepper,

k0 = f(xi,yi) (6.45)
k1 = f(xi + αh,yi + αk0h) (6.46)

k2 = f

(
xi + βh,yi +

(
β − β2

2α

)
k0h+

β2

2α
k1h

)
(6.47)

yi+1 = yi +

(
1− 1

2α
− 1

3β2
+

1

3αβ

)
k0h+

(
1

2α
− 1

3αβ

)
k1h

+

(
1

3β2

)
k1h . (6.48)

The corresponding Butcher tableau is

0

α α

β β − β2

2α
β2

2α

1− 1
2α −

1
3β2 + 1

3αβ
1
2α −

1
3αβ

1
3β2

(6.49)

The intermediates steps α and β can be chosen largely arbitrarily. Following is a list
with several popular cubic Runge-Kutta steppers that follow the formulae from our
generic stepper.

• Heun’s third-order method

0

1/3 1/3

2/3 0 2/3

1/4 0 3/4

(6.50)

• Ralston’s third-order method

0

1/2 1/2

3/4 0 3/4

2/9 1/3 4/3

(6.51)
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• 8/15th third-order method

0

8/15 8/15

2/3 1/4 5/12

1/4 0 3/4

(6.52)

And, in principle, the coefficients in the rows can be also reshuffled somewhat
(preferable shifting the weight to the right) with the condition that the sum of the
coefficients in the row must be equal one.

6.4.4 Higher order steppers
Using this approach one can easily further increase the order of the approximating
polynomial by adding higher powers of (x − xi) and fixing the coefficients in front by
an additional sampling of the right-hand-side at certain points within the step. This led
to a bunch of steppers of different orders with different sampling points. For example,
here is the classic Runge-Kutta fourth-order method,

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

. (6.53)

One can find a list of different Runge-Kutta methods in Wikipedia.

6.4.5 Embedded methods with error estimates
The embedded Runge-Kutta methods in addition to advancing the solution by one
step also produce an estimate of the local error of the step. This is done by having two
methods in the tableau, one with a certain order p and another one with order p−1. The
difference between the two methods gives the estimate of the local error. If the lower
order method uses the same k-values as the higher order method, it is called embedded.
Embedded methods allow effective estimate of the error without extra evaluations of
the right-hand-side.

Since the embedded rule uses the same k’s the Butcher’s tableau for this kind of
method is simply extended by one row to give the coefficients of the lower order rule.
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Table 6.2: Embedded midpoint/Euler method with error estimate
public static ( vector , vector ) rkstep12

(Func<double , vector , vector> f , double x , vector y , double h)
{
vector k0 = f (x , y ) ; /∗ embedded lower order formula ( Euler ) ∗/
vector k1 = f (x+h/2 ,y+k0∗(h /2) ) ; /∗ higher order formula ( midpoint ) ∗/
vector yh = y+k1∗h ; /∗ y(x+h) estimate ∗/
vector dy = (k1−k0)∗h ; /∗ error estimate ∗/
return (yh , dy ) ;
}

The simplest embedded methods are Heun-Euler method,

0

1 1

1/2 1/2

1 0

, (6.54)

and midpoint-Euler method,

0

1/2 1/2

0 1

1 0

, (6.55)

which both combine methods of orders 2 and 1. Table (6.2) shows a C# implementation
of the embedded midpoint/Euler method with error estimate.

Here is a simple embedded method of orders 2 and 3,

0

1/2 1/2

3/4 0 3/4

2/9 3/9 4/9

0 1 0

, (6.56)
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The Bogacki-Shampine method [6] combines methods of orders 3 and 2,

0

1/2 1/2

3/4 0 3/4

1 2/9 1/3 4/9

2/9 1/3 4/9 0

7/24 1/4 1/3 1/8

. (6.57)

Bogacki and Shampine argue that their method has better stability properties and
actually outperforms higher order methods at lower accuracy goal calculations. This
method has the FSAL—First Same As Last—property: the value k4 at one step equals
k1 at the next step; thus only three function evaluations are needed per step.

The Runge-Kutta-Fehlberg method [12]—called RKF45—implemented in the renowned
rkf45 Fortran routine, has two methods of orders 5 and 4:

0

1/4 1/4

3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197

1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40

16/135 0 6656/12825 28561/56430 −9/50 2/55

25/216 0 1408/2565 2197/4104 −1/5 0

6.5 Implicit methods
Instead of the forward Euler method one could employ the backward Euler method
where the derivative is approximated as

y′(x) ≈ y(x)− y(x− h)

h
, (6.58)

which gives the following (backward Euler) stepper,

yx+h = yx + hf(x+ h, yx+h) . (6.59)
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The backward Euler methods is an implicit method: one has to solve the above equation
to find yx+h. It generally costs time to solve this equation numerically – a disadvantage
as compared to explicit methods. However implicit methods are usually more stable
for stiff (difficult) equations where a larger step h can be used as compared to explicit
methods.

Just like with explicit methods one can devise higher-order implicit methods, for
example, the implicit Heun’s method (trapezoidal rule),

yx+h = yx + h
1

2

(
f(x, yx) + f(x+ h, yx+h)

)
. (6.60)

6.6 Multistep methods
Multistep methods try to use the information about the function gathered at the pre-
vious steps. They are generally not self-starting as there are no previous steps at the
start of the integration. The first step must be done with a one-step method like
Runge-Kutta.

A number of multistep methods have been devised (and named after different math-
ematicians); we shall only consider a few simple ones here to get the idea of how it
works.

6.6.1 Two-step method
Given the previous point, (xi−1,yi−1), in addition to the current point (xi,yi), the
sought function y can be approximated in the vicinity of the point xi as a second order
polynomial,

y(x) ≈ p2(x) = yi + y′
i · (x− xi) + c · (x− xi)

2, (6.61)

where y′
i = f(xi,yi) and the coefficient c can be found from the condition

p2(xi−1) = yi−1 , (6.62)

which gives
c =

yi−1 − yi + y′
i · (xi − xi−1)

(xi − xi−1)2
. (6.63)

The value yi+1 of the function at the next point, xi+1
.
= xi + h, can now be estimated

as yi+1 = p2(xi+1) from (6.61).
The error of this second-order two-step stepper can be estimated by a comparison

with the first-order Euler’s step, which is given by the linear part of (6.61). The
correction term ch2 can serve as the error estimate,

δy = ch2 . (6.64)
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6.6.2 Two-step method with extra evaluation
One can further increase the order of the approximation (6.61) by adding a third order
term,

y(x) ≈ p3(x) = p2(x) + d · (x− xi)
2(x− xi−1) . (6.65)

The coefficient d can be found from the matching condition at a certain point t inside
the interval,

p′
3(t) = f(t,p2(t)) , (6.66)

where xi < t < xi + h. This gives

d =
f(t,p2(t))− y′

i − 2c · (t− xi)

2(t− xi)(t− xi−1) + (t− xi)2
. (6.67)

The error estimate at the point xi+1
.
= x0 + h is again given as the difference between

the higher and the lower order methods,

δy = p3(xi+1)− p2(xi+1) . (6.68)

6.7 Predictor-corrector methods
A predictor-corrector method uses extra iterations to improve the solution. It is an
algorithm that proceeds in two steps. First, the predictor step calculates a rough
approximation of y(x+h). Second, the corrector step refines the initial approximation.
Additionally the corrector step can be repeated in the hope that this achieves an even
better approximation to the true solution.

For example, the two-point Runge-Kutta method (??) is as actually a predictor-
corrector method, as it first calculates the prediction ỹi+1 for y(xi+1),

ỹi+1 = yi + hf(xi,yi) , (6.69)

and then uses this prediction in a correction step,

ˇ̃yi+1 = yi + h
1

2
(f(xi,yi) + f(xi+1, ỹi+1)) . (6.70)

6.7.1 Two-step method with correction
Similarly, one can use the two-step approximation (6.61) as a predictor, and then
improve it by one order with a correction step, namely

ˇ̄y(x) = ȳ(x) + ď · (x− xi)
2(x− xi−1). (6.71)
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The coefficient ď can be found from the condition ˇ̄y′(xi+1) = f̄i+1, where f̄i+1
.
=

f(xi+1, ȳ(xi+1)),

ď =
f̄i+1 − y′

i − 2c · (xi+1 − xi)

2(xi+1 − xi)(xi+1 − xi−1) + (xi+1 − xi)2
. (6.72)

Equation (6.71) gives a better estimate, yi+1 = ˇ̄y(xi+1), of the sought function at
the point xi+1. In this context the formula (6.61) serves as predictor, and (6.71) as
corrector. The difference between the two gives an estimate of the error.

This method is equivalent to the two-step method with an extra evaluation where
the extra evaluation is done at the full step.



70 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS



Chapter 7

Numerical integration

7.1 Introduction
The term numerical integration refers to a broad family of algorithms to compute a
numerical approximation to a definite (Riemann) integral.

Generally, the integral is approximated by a weighted sum of function values within
the domain of integration, ∫ b

a

f(x)dx ≈
n∑

i=1

wif(xi) . (7.1)

Expression (7.1) is often referred to as quadrature (cubature for multidimensional inte-
grals) or rule. The abscissas xi (also called nodes) and the weights wi of a quadrature
are usually optimized—using one of a large number of different strategies—to suit a
particular class of integration problems.

For a given numerical integration problem the choice of the quadrature algorithm
depends on several factors, in particular on the integrand. Different classes of integrands
generally require different quadratures for the most effective calculation.

A popular numerical integration library is QUADPACK [24]. It includes gen-
eral purpose routines—like QAGS, based on an adaptive Gauss–Kronrod quadrature
with acceleration—as well as a number of specialized routines. The GNU scientific
library [11] (GSL) implements most of the QUADPACK routines and in addition in-
cludes a modern general-purpose adaptive routine CQUAD based on Clenshaw-Curtis
quadratures [16].

In the following we shall consider some of the popular numerical integration algo-
rithms.

71
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7.2 Rectangle and trapezium rules
In mathematics, the Reimann integral is generally defined in terms of Riemann sums [26].
If the integration interval [a, b] is partitioned into n subintervals,

a = t0 < t1 < t2 < · · · < tn = b . (7.2)

the Riemann sum is defined as
n∑

i=1

f(xi)∆xi , (7.3)

where xi ∈ [ti−1, ti] and ∆xi = ti − ti−1. Geometrically a Riemann sum can be
interpreted as the area of a collection of adjucent rectangles with widths ∆xi and
heights f(xi).

The Rieman integral is defined as the limit of a Riemann sum as the mesh—the
length of the largest subinterval—of the partition approaches zero. Specifically, the
number denoted as ∫ b

a

f(x)dx (7.4)

is called the Riemann integral, if for any ϵ > 0 there exists δ > 0 such that for any
partition (7.2) with max∆xi < δ we have∣∣∣∣∣

n∑
i=1

f(xi)∆xi −
∫ b

a

f(x)dx

∣∣∣∣∣ < ϵ . (7.5)

A definite integral can be interpreted as the net signed area bounded by the graph of
the integrand.

Now, the n-point rectangle quadrature is simply the Riemann sum (7.3),∫ b

a

f(x)dx ≈
n∑

i=1

f(xi)∆xi , (7.6)

where the node xi is often (but not always) taken in the middle of the corresponding
subinterval, xi = ti−1 +

1
2∆xi, and the subintervals are often (but not always) chosen

equal, ∆xi = (b− a)/n. Geometrically the n-point rectangle rule is an approximation
to the integral given by the area of a collection of n adjucent equal rectangles whose
heights are determined by the values of the function (at the middle of the rectangle).

An n-point trapezium rule uses instead a collection of trapezia fitted under the
graph, ∫ b

a

f(x)dx ≈
n∑

i=1

f(ti−1) + f(ti)

2
∆xi . (7.7)
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Importantly, the trapezium rule is the average of two Riemann sums,
n∑

i=1

f(ti−1) + f(ti)

2
∆xi =

1

2

n∑
i=1

f(ti−1)∆xi +
1

2

n∑
i=1

f(ti)∆xi . (7.8)

Rectangle and trapezium quadratures both have the important feature of closely
following the very mathematical definition of the integral as the limit of the Riemann
sums. Therefore—disregarding the round-off errors—these two rules cannot fail if the
integral exists.

For certain partitions of the interval the rectangle and trapezium rules coincide.
For example, for the nodes

xi = a+ (b− a)
i− 1

2

n
, i = 1, . . . , n (7.9)

both rules give the same quadrature with equal weights, wi = (b− a)/n,∫ b

a

f(x)dx ≈ b− a

n

n∑
i=1

f

(
a+ (b− a)

i− 1
2

n

)
. (7.10)

Rectangle and trapezium quadratures are rarely used on their own—because of the
slow convergence—but they often serve as the basis for more advanced quadratures,
for example adaptive quadratures and variable transformation quadratures considered
below.

7.3 Quadratures with regularly spaced abscissas
A quadrature (7.1) with n predefined nodes xi has n free parameters: the weights wi.
A set of n parameters can generally be tuned to satisfy n conditions. The archetypal
set of conditions in quadratures is that the quadrature integrates exactly a set of n
functions,

{ϕ1(x), . . . , ϕn(x)} . (7.11)

This leads to a set of n equations,
n∑

i=1

wiϕk(xi) = Ik

∣∣∣
k=1,...,n

, (7.12)

where the integrals

Ik
.
=

∫ b

a

ϕk(x)dx (7.13)
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are assumed to be known. Equations (7.12) are linear in wi and can be easily solved.
Since integration is a linear operation, the quadrature will then also integrate exactly

any linear combination of functions (7.11).
A popular choice for predefined nodes is a closed set—that is, including the end-

points of the interval—of evenly spaced abscissas,

xi = a+
i− 1

n− 1
(b− a)

∣∣∣
i=1,...,n

. (7.14)

However, in practice it often happens that the integrand has an integrable singularity at
one or both ends of the interval. In this case one can choose an open set of equidistant
nodes,

xi = a+
i− 1

2

n
(b− a)

∣∣∣
i=1,...,n

. (7.15)

The set of functions to be integrated exactly is generally chosen to suite the prop-
erties of the integrands at hand: the integrands must be well represented by linear
combinations of the chosen functions.

7.3.1 Classical quadratures
Suppose the integrand can be well represented by the first few terms of its Taylor series,

f(x) =

∞∑
k=0

f (k)(a)

k!
(x− a)k , (7.16)

where f (k) is the k-th derivative of the integrand. This is often the case for analytic—
that is, infinitely differentiable—functions. For such integrands one can obviously
choose polynomials

{1, x, x2, . . . , xn−1} (7.17)
as the set of functions to be integrated exactly.

This leads to the so called classical quadratures: quadratures with regularly spaced
abscissas and polynomials as exactly integrable functions.

An n-point classical quadrature integrates exactly the first n terms of the function’s
Taylor expansion (7.16). The xn order term will not be integrated exactly and will lead
to an error of the quadrature. Thus the error En of the n-point classical quadrature is
on the order of the integral of the xn term in (7.16),

En ≈
∫ b

a

f (n)(a)

n!
(x− a)ndx =

f (n)(a)

(n+ 1)!
hn+1 ∝ hn+1 , (7.18)

where h = b− a is the length of the integration interval. A quadrature with the error
of the order hn+1 is often called a degree-n quadrature.
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Table 7.1: Maxima script to calculate analytically the weights of an n-point classical
quadrature with predefined abscissas in the interval [0, 1].

n: 8; xs: makelist((i-1)/(n-1),i,1,n); /* nodes: adapt to your needs */
ws: makelist(concat(w,i),i,1,n);
ps: makelist(x^i,i,0,n-1); /* polynomials */
fs: makelist(buildq([i:i,ps:ps],lambda([x],ps[i])),i,1,n);
integ01: lambda([f],integrate(f(x),x,0,1));
Is: maplist(integ01,fs); /* calculate the integrals */
eq: lambda([f],lreduce("+",maplist(f,xs)*ws));
eqs: maplist(eq,fs)-Is; /* build equations */
solve(eqs,ws); /* solve for the weights */

If the integrand is smooth enough and the length h is small enough a classical
quadrature with not so large n can provide a good approximation for the integral.
However, for large n the weights of classical quadratures tend to have alternating signs,
which leads to large round-off errors, which in turn negates the potentially higher
accuracy of the quadrature. Again, if the integrand violates the assumption of Tay-
lor expansion—for example by having an integrable singularity inside the integration
interval—the higher order quadratures may perform poorly.

Classical quadratures are mostly of historical interest nowadays. Alternative methods—
such as quadratures with optimized abscissas, adaptive, and variable transformation
quadratures—are more stable and accurate and are normally preferred to classical
quadratures.

Classical quadratures with equally spaced abscissas—both closed and open sets—are
generally referred to as Newton-Cotes quadratures. An interested reader can generate
Newton–-Cotes quadratures of any degree n using the Maxima script in Table (7.1).

7.4 Quadratures with optimized abscissas
In quadratures with optimized abscissas not only the weights wi but also the abscissas
xi are chosen optimally. The number of free parameters is thus 2n and one can choose
a set of 2n functions,

{ϕ1(x), . . . , ϕ2n(x)} , (7.19)

to be integrated exactly. This gives a system of 2n equations, linear in wi and non-linear
in xi,

n∑
i=1

wiϕk(xi) = Ik

∣∣∣
k=1,...,2n

, (7.20)
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where again

Ik
.
=

∫ b

a

ϕk(x)dx . (7.21)

The weights and abscissas of the quadrature can be determined by solving this system
of equations1.

Although quadratures with optimized abcissas are generally of much higher order,
2n − 1 compared to n − 1 for non-optimal abscissas, the optimal points generally can
not be reused at the next iteration in an adaptive algorithm.

7.4.1 Gauss quadratures
Gauss quadratures deal with a slightly more general form of integrals,∫ b

a

ω(x)f(x)dx , (7.23)

where ω(x) is a positive weight function. For ω(x) = 1 the problem is the same
as considered above. Popular choices of the weight function include ω(x) = (1 −
x2)±1/2, exp(−x), exp(−x2) and others. The idea is to represent the integrand as a
product ω(x)f(x) such that all the difficulties go into the weight function ω(x) while
the remaining factor f(x) is smooth and well represented by polynomials.

An N -point Gauss quadrature is a quadrature with optimized abcissas,∫ b

a

ω(x)f(x)dx ≈
N∑
i=1

wif(xi) , (7.24)

which integrates exactly a set of 2N polynomials of the orders 1, . . . , 2N − 1 with the
given weight ω(x).

Fundamental theorem

There is a theorem stating that there exists a set of polynomials pn(x), orthogonal on
the interval [a, b] with the weight function ω(x),∫ b

a

ω(x)pn(x)pk(x) ∝ δnk . (7.25)

1Here is, for example, an n = 2 quadrature with optimized abscissas,∫ 1

−1
f(x)dx ≈ f

(
−
√

1
3

)
+ f

(
+
√

1
3

)
. (7.22)
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Now, one can prove that the optimal nodes for the N -point Gauss quadrature are
the roots of the polynomial pN (x),

pN (xi) = 0 . (7.26)

The idea behind the proof is to consider the integral∫ b

a

ω(x)q(x)pN (x)dx = 0 , (7.27)

where q(x) is an arbitrary polynomial of degree less than N . The quadrature should
represent this integral exactly,

N∑
i=1

wiq(xi)pN (xi) = 0 . (7.28)

Apparently this is only possible if xi are the roots of pN .

Calculation of nodes and weights

A neat algorithm—usually refered to as Golub-Welsch algorithm [15]—for calculation
of the nodes and weights of a Gauss quadrature is based on the symmetric form of the
three-term reccurence relation for orthogonal polynomials,

xpn−1(x) = βnpn(x) + αnpn−1(x) + βn−1pn−2(x) , (7.29)

where p−1(x)
.
= 0, p1(x)

.
= 1, and n = 1, . . . , N . This reccurence relation can be

written in the matrix form,

xp(x) = Jp(x) + βNpN (x)eN , (7.30)

where p(x)
.
= {p0(x), . . . , pN−1(x)}T , eN = {0, . . . , 0, 1}T , and the tridiagonal matrix

J — usually refered to as Jacobi matrix or Jacobi operator — is given as

J =



α1 β1

β1 α2 β2

β2 α3 β3

. . . . . .

βN−1 αN


. (7.31)
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Substituting the roots xi of pN — that is, the set {xi | pN (xi) = 0} — into the
matrix equation (7.30) leads to eigenvalue problem for the Jacobi matrix,

Jp(xi) = xip(xi) . (7.32)

Thus, the nodes of an N -point Gauss quadrature (the roots of the polynomial pN ) are
the eigenvalues of the Jacobi matrix J and can be calculated by a standard diagonal-
ization2 routine.

The weights can be obtained considering N integrals,∫ b

a

ω(x)pn(x)dx = δn0

∫ b

a

ω(x)dx , n = 0, . . . , N − 1 . (7.33)

Applying our quadrature gives the matrix equation,

Pw = e1

∫ b

a

ω(x)dx , (7.34)

where w
.
= {w1, . . . , wN}T , e1 = {1, 0, . . . , 0}T , and

P
.
=


p0(x1) . . . p0(xN )

p1(x1) . . . p1(xN )

. . . . . . . . .

pN−1(x1) . . . pN−1(xN )

 . (7.35)

Equation (7.34) is linear in wi and can be solved directly. However, if diagonalization
of the Jacobi matrix provided the normalized eigenvectors, the weigths can be readily
obtained using the following method.

The matrix P apparently consists of non-normalized column eigenvectors of the
matrix J. The eigenvectors are orthogonal and therefore PTP is a diagonal matrix with
positive elements. Multiplying (7.34) by PT and then by (PTP)−1 from the left gives

w = (PTP)−1PT e1

∫ b

a

ω(x)dx . (7.36)

From p0(x) = 1 it follows that PT e1 = {1, . . . , 1}T and therefore

wi =
1

(PTP)ii

∫ b

a

ω(x)dx . (7.37)

2A symmetric tridiagonal matrix can be diagonalized very effectively using the QR/RL algorithm.
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Let the matrix V be the set of the normalized column eigenvectors of the matrix J. The
matrix V is then connected with the matrix P through the normalization equation,

V =
√
(PTP)−1P . (7.38)

Therefore, again taking into account that p0(x) = 1, equation (7.37) can be written as

wi = (V1i)
2

∫ b

a

ω(x)dx . (7.39)

Example: Gauss-Legendre quadrature

Gauss-Legendre quadrature deals with the weight ω(x) = 1 on the interval [−1, 1].
The associated polynomials are Legendre polynomials Pn(x), hence the name. Their
reccurence relation is usually given as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x) . (7.40)

Rescaling the polynomials (preserving p0(x) = 1) as
√
2n+ 1Pn(x) = pn(x) (7.41)

reduces this reccurence relation to the symmetric form (7.29),

xpn−1(x) =
1

2

1√
1− (2n)−2

pn(x) +
1

2

1√
1− (2(n− 1))−2

pn−2(x) . (7.42)

Correspondingly, the coefficients in the matrix J are

αn = 0 , βn =
1

2

1√
1− (2n)−2

. (7.43)

The problem of finding the nodes and the weights of the N -point Gauss-Legendre
quadrature is thus reduced to the eigenvalue problem for the Jacobi matrix with coef-
ficients (7.43).

As an illustration of this algorithm Table (7.2) shows an Octave function which
calculates the nodes and the weights of the N -point Gauss-Legendre quadrature and
then integrates a given function.

7.4.2 Gauss-Kronrod quadratures
Generally, the error of a numerical integration is estimated by comparing the results
from two rules of different orders. However, for ordinary Gauss quadratures the nodes



80 CHAPTER 7. NUMERICAL INTEGRATION

Table 7.2: An Octave function that calculates the nodes and weights of the N -point
Gauss-Legendre quadrature and then integrates a given function.
function Q = gauss_legendre ( f , a , b ,N)
beta = . 5 . / sqrt (1 −(2∗(1:N−1)).^( −2)); % reccurence re la t ion
J = diag (beta , 1 ) + diag (beta , −1); % Jacobi matrix
[V,D] = eig (J ) ; % diagonal i zat ion of J
x = diag (D) ; [ x , i ] = sort (x ) ; % sorted nodes
w = V(1 , i ) .^2∗2 ; % weights
Q = w∗ f (( a+b)/2+(b−a)/2∗x)∗(b−a )/2 ; % integra l
endfunction ;

for two rules of different orders almost never coinside. This means that one can not
reuse the points of the lower order rule when calculating the hihger order rule.

Gauss-Kronrod algorithm [20] remedies this inefficiency. The points inherited from
the lower order rule are reused in the higher order rule as predefined nodes (with n
weights as free parameters), and then m more optimal points are added (m abscissas
and m weights as free parameters). The order of the method is n+2m− 1. The lower
order rule becomes embedded—that is, it uses a subset of the nodes—into the higher
order rule. On the next iteration the procedure is repeated.

Patterson [23] has tabulated nodes and weigths for several sequences of embedded
Gauss-Kronrod rules.

7.5 Adaptive quadratures
Higher order quadratures suffer from round-off errors as the weights wi generally have
alternating signs. Again, using high order polynomials is dangerous as they typically
oscillate wildly and may lead to Runge’s phenomenon. Therefore, if the error of the
quadrature is yet too large for a quadrature with sufficiently large n, the best strategy
is to subdivide the interval in two and then use the quadrature on the half-intervals.
Indeed, if the error is of the order hk, the subdivision would lead to reduced error,
2 (h/2)

k
< hk, if k > 1.

An adaptive quadrature is an algorithm where the integration interval is subdivided
into adaptively refined subintervals until the given accuracy goal is reached.

Adaptive algorithms are usually built on pairs of quadrature rules – a higher order
rule,

Q =
∑
i

wif(xi), (7.44)

where wi are the weights of the higher order rule and Q is the higher order estimate of
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the integral, and a lower order rule,

q =
∑
i

vif(xi), (7.45)

where vi are the weights of the lower order rule and q is the the lower order estimate
of the integral. The difference between the higher order rule and the lower order rule
gives an estimate of the error,

δQ = |Q− q| . (7.46)
The integration result is accepted, if the error δQ is smaller than tolerance,

δQ < δ + ϵ|Q| , (7.47)

where δ is the absolute accuracy goal and ϵ is the relative accuracy goal of the integra-
tion.

If the error estimate is larger than tolerance, the interval is subdivided into two half-
intervals and the procedure applies recursively to subintervals with the same relative
accuracy goal ϵ and rescaled absolute accuracy goal δ/

√
2.

The points xi are usually chosen such that the two quadratures use the same points,
and that the points can be reused in the subsequent recursive steps. The reuse of the
function evaluations made at the previous step of adaptive integration is very important
for the efficiency of the algorithm. The equally-spaced abscissas naturally provide for
such a reuse.

As an example, Table 7.3 shows an implementation of the described algorithm using

xi =

{
1

6
,
2

6
,
4

6
,
5

6

}
(easily reusable points) , (7.48)

wi =

{
2

6
,
1

6
,
1

6
,
2

6

}
(trapezium rule) , (7.49)

vi =

{
1

4
,
1

4
,
1

4
,
1

4

}
(rectangle rule) . (7.50)

During recursion the function values at the points #2 and #3 are inherited from the
previous step and need not to be recalculated.

The points and weights are cited for the rescaled integration interval [0, 1]. The
transformation of the points and weights to the original interval [a, b] is given as

xi → a+ (b− a)xi ,

wi → (b− a)wi . (7.51)

This implementation calculates directly the Riemann sums and can therefore deal
with integrable singularities, although rather inefficiently.
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More efficient adaptive routines keep track of the subdivisions of the interval and
the local errors [16]. This allows detection of singularities and switching in their vicinity
to specifically tuned quadratures. It also allows better estimates of local and global
errors.

Here is an embedded 8-point open quadrature,

xi =

{
1

12
,
2

12
,
4

12
,
5

12
,
7

12
,
8

12
,
10

12
,
11

12

}
, (7.52)

wi =

{
4738

19845
,
−59
567

,
5869

13230
,
−74
945

, w4, w3, w2, w1

}
, (7.53)

vi =

{
208

945
,
−7
135

,
209

630
, 0, v4, v3, v2, v1

}
. (7.54)

Table 7.3: Recursive adaptive integrator in Python
def adapt ( f , a , b , acc =0.01 , eps =0.01 , f2=math . nan , f3=math . nan) :

f1 = f (a+(b−a)/6)
f4 = f (a+5∗(b−a )/6) ;
i f math . isnan ( f2 ) : # f i r s t c a l l

f2 = f (a+2∗(b−a)/6)
f3 = f (a+4∗(b−a)/6)

Q = (2∗ f1+f2+f3+2∗f4 )/6∗(b−a)
q = ( f1+f4+f2+f3 )/4∗(b−a ) ;
to lerance = acc+eps∗abs(Q)
error = abs(Q−q ) ;
i f error < tolerance : return Q;
else :

Q1 = adapt ( f , a , ( a+b)/2 , acc/math . sqrt ( 2 . ) , eps , f1 , f2 )
Q2 = adapt ( f , ( a+b)/2 ,b , acc/math . sqrt ( 2 . ) , eps , f3 , f4 )
return Q1+Q2

7.6 Variable transformation quadratures
The idea behind variable transformation quadratures is to apply the given quadrature—
either with optimimized or regularly spaced nodes—not to the original integral, but to
a variable transformed integral [22],

∫ b

a

f(x)dx =

∫ tb

ta

f
(
g(t)

)
g′(t)dt ≈

N∑
i=1

wif
(
g(ti)

)
g′(ti) , (7.55)
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where the transformation x = g(t) is chosen such that the transformed integral better
suits the given quadrature. Here g′ denotes the derivative and [ta, tb] is the correspond-
ing interval in the new variable.

For example, the Gauss-Legendre quadrature assumes the integrand can be well
represented with polynomials and performs poorly on integrals with integrable singu-
larities like

I =

∫ 1

0

1

2
√
x
dx . (7.56)

However, a simple varibale transformation x = t2 removes the singularity,

I =

∫ 1

0

dt , (7.57)

and the Gauss-Legendre quadrature for the transformed integral gives exact result. The
price is that the transformed quadrature performs less effectively on smooth functions.

Some of the popular variable transformation quadratures are Clenshaw-Curtis [8],
based on the transformation∫ 1

−1

f(x)dx =

∫ π

0

f(cos θ) sin θdθ , (7.58)

and “tanh-sinh” quadrature [22], based on the transformation∫ 1

−1

f(x)dx =

∫ ∞

−∞
f
(
tanh

(π
2
sinh(t)

)) π

2

cosh(t)

cosh2
(
π
2 sinh(t)

)dt . (7.59)

and another one, ∫ 1

0

f(x)dx =

∫ 1

0

f
(
3t2 − 2t3

)
6(t− t2)dt . (7.60)

Generally, the equally spaced trapezium/rectangle rule is used after the transfor-
mation.

7.7 Infinite intervals
One way to calculate an integral over infinite interval is to transform it by a variable
sustitution into an integral over a finite interval. The latter can then be evaluated by
ordinary integration methods. Table 7.4 lists several of such transformation.
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Table 7.4: Variable transformations reducing infinite interval integrals into integrals
over finite intervals.

∫ +∞

−∞
f(x)dx =

∫ +1

−1

f

(
t

1− t2

)
1 + t2

(1− t2)2
dt , (7.61)∫ +∞

−∞
f(x)dx =

∫ 1

0

(
f

(
1− t

t

)
+ f

(
−1− t

t

))
dt

t2
, (7.62)∫ +∞

a

f(x)dx =

∫ 1

0

f

(
a+

t

1− t

)
1

(1− t)2
dt , (7.63)∫ +∞

a

f(x)dx =

∫ 1

0

f

(
a+

1− t

t

)
dt

t2
, (7.64)∫ b

−∞
f(x)dx =

∫ 0

−1

f

(
b+

t

1 + t

)
1

(1 + t)2
dt , (7.65)∫ b

−∞
f(x)dx =

∫ 1

0

f

(
b− 1− t

t

)
dt

t2
. (7.66)



Chapter 8

Monte Carlo integration

8.1 Introduction
Monte Carlo integration is a quadrature (cubature) where the nodes are chosen ran-
domly [28]. Typically no assumption is made about the smoothness of the integrand,
not even that it is continuous.

Monte Carlo algorithms are particularly suited for multi-dimensional integrations
where one of the problems is that the integration region, Ω, might have a quite com-
plicated boundary which can not be easily described by simple functions. On the
other hand, it is usually much easier to find out whether a given point lies within
the integration region or not. Therefore a popular strategy is to create an auxiliary
rectangular volume, V , which encompasses the integration volume Ω, and an auxiliary
function which coincides with the integrand inside the volume Ω and is equal zero out-
side. Then the integral of the auxiliary function over the auxiliary volume is equal the
original integral.

However, the auxiliary function is generally non-continuous at the boundary; thus
ordinary quadratures—that assume continuity of the integrand—are bound to have
difficulties here. One the contrary the Monte-Carlo quadratures will do just as good
(or as bad) as with continuous integrands.

A typical implementation of a Monte Carlo algorithm integrates the given function
over a rectangular volume, specified by the coordinates of its ”lower-left” and ”upper-
right” vertices, assuming the user has provided the encompassing volume with the
auxiliary function.

Plain Monte Carlo algorithm distributes points uniformly throughout the integra-
tion region using uncorrelated pseudo-random sequences of points.

Adaptive algorithms, such as VEGAS and MISER, distribute points non-uniformly
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in an attempt to reduce integration error using correspondingly importance and strat-
ified sampling.

Yet another strategy to reduce the error is to use correlated quasi-random sequences.
The GNU Scientific Library, GSL, implements a plain Monte Carlo integration

algorithm; a stratified sampling algorithm, MISER; an importance sampling algorithm,
VEGAS; and a number of quasi-random generators.

8.2 Plain Monte Carlo sampling
Plain Monte Carlo is a quadrature with random abscissas and equal weights,

∫
V

f(x)dV ≈ w

N∑
i=1

f(xi) , (8.1)

where x is a point in the multi-dimensional integration space. One free parameter, w,
allows one condition to be satisfied: the quadrature must integrate exactly a constant
function. This gives w = V/N ,

∫
V

f(x)dV ≈ V

N

N∑
i=1

f(xi)
.
= V ⟨f⟩ . (8.2)

Under the assumptions of the central limit theorem the error of the integration can be
estimated as

error = V
σ√
N

, (8.3)

where σ is the variance of the sample,

σ2 = ⟨f2⟩ − ⟨f⟩2 . (8.4)

The familiar 1/
√
N convergence of a random walk process is quite slow: to reduce the

error by a factor 10 requires 100-fold increase in the number of sample points.
Expression (8.3) provides only a statistical estimate of the error, which is not a strict

bound; random sampling may not uncover all the important features of the function,
resulting in an underestimate of the error.

A simple implementation of the plain Monte Carlo algorithm is shown in Table 8.1.
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Table 8.1: Plain Monte Carlo integrator
#include <math . h>
#include <s t d l i b . h>
#define RND ((double) rand ()/RAND_MAX)
void randomx( int dim , double ∗a , double ∗b , double ∗x)
{ for ( int i =0; i<dim ; i++) x [ i ]=a [ i ]+RND∗(b [ i ]−a [ i ] ) ; }

void plainmc ( int dim , double ∗a , double ∗b ,
double f (double∗ x ) , int N, double∗ resu l t , double∗ error )
{ double V=1; for ( int i =0; i<dim ; i++) V∗=b [ i ]−a [ i ] ;

double sum=0, sum2=0, fx , x [ dim ] ;
for ( int i =0; i<N; i++){ randomx(dim , a , b , x ) ; fx=f (x ) ;

sum+=fx ; sum2+=fx∗ fx ; }
double avr = sum/N, var = sum2/N−avr∗avr ;
∗ r e s u l t = avr∗V; ∗ error = sqrt ( var/N)∗V;

}

8.3 Importance sampling
Suppose the points are distributed not uniformly but with some density ρ(x) . That
is, the number of points ∆n in the volume ∆V around point x is given as

∆n =
N

V
ρ(x)∆V, (8.5)

where ρ is normalised such that
∫
V
ρdV = V .

The estimate of the integral is then given as∫
V

f(x)dV ≈
N∑
i=1

f(xi)∆Vi =

N∑
i=1

f(xi)
V

Nρ(xi)
= V

〈
f

ρ

〉
, (8.6)

where
∆Vi =

V

Nρ(xi)
(8.7)

is the volume-per-point at the point xi.
The corresponding variance is now given by

σ2 =

〈(
f

ρ

)2
〉
−
〈
f

ρ

〉2

. (8.8)

Apparently if the ratio f/ρ is close to a constant, the variance is reduced.
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It is tempting to take ρ = |f | and sample directly from the integrand. However
in practice evaluations of the integrand are typically expensive. Therefore a better
strategy is to build an approximate density in the product form, ρ(x, y, . . . , z) =
ρx(x)ρy(y) . . . ρz(z), and then sample from this approximate density. A popular routine
of this sort is called VEGAS.

8.4 Stratified sampling

Stratified sampling is a generalisation of the recursive adaptive integration algorithm
to random quadratures in multi-dimensional spaces.

Table 8.2: Recursive stratified sampling algorithm
sample N random points with pla in Monte Carlo ;
estimate the average and the error ;
IF the error i s acceptable :

RETURN the average and the error ;
ELSE :

FOR EACH dimension :
subdivide the volume in two along the dimension ;
estimate the sub−variances in the two sub−volumes ;

pick the dimension with the l a r ge s t sub−variance ;
subdivide the volume in two along th i s dimension ;
dispatch two recurs ive c a l l s to each of the sub−volumes ;
estimate the grand average and grand error ;
RETURN the grand average and grand error ;

The ordinary “dividing by two” strategy does not work for multi-dimensional inte-
grations as the number of sub-volumes grows way too fast to keep track of. Instead
one estimates along which dimension a subdivision should bring the most dividends
and only subdivides along this dimension. Such strategy is called recursive stratified
sampling. A simple variant of this algorithm is presented in Table 8.2.

In a stratified sample the points are concentrated in the regions where the variance
of the function is largest, see the illustration in Figure 8.1.

The naive implementation in Table 8.2 keeps throwing points until the given toler-
ance is achieved. This might be problematic for multidimensional integrals where for
the given tolerance one might need excessively many points. The GSL’s implementa-
tion instead takes the number of points as the argument and then returns the estimate
of the integral and the estimate of the error.
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Figure 8.1: Stratified sample of a discontinuous function, f(x, y) = 1 if x2 + y2 < 0.82

otherwise f(x, y) = 0, built with the algorithm in Table 8.2.

8.5 Quasi-random (low-discrepancy) sampling

Pseudo-random sampling has high discrepancy1: it typically creates regions with high
density of points and other regions with low density of points, see an illustration on
Figure 8.2 (left). With pseudo-random sampling there is a finite probability that all
the N points would fall into one half of the region and none into the other half.

Quasi-random sequences avoid this phenomenon by distributing points in a highly
correlated manner with a specific requirement of low discrepancy, see Figure 8.2 for
an example. Quasi-random sampling is like a computation on a grid where the grid
constant must not be known in advance as the grid is ever gradually refined and the
points are always distributed uniformly over the region. The computation can be
stopped at any time.

By placing points more evenly than at random, the quasi-random sequences try to
improve on the 1/

√
N convergence rate of pseudo-random sampling.

The central limit theorem does not apply in this case as the points are not statisti-
cally independent. Therefore the variance can not be used as an estimate of the error.
The error estimation is actually not trivial. In practice one can employ two different
sequences and use the difference in the resulting integrals as an error estimate.

1discrepancy is a measure of how unevenly the points are distributed over the region.
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Figure 8.2: Typical distributions of pseudo-random points (left), and quasi-random
low-discrepancy points: additive (center) and base-2/3 Halton (right) sequences. The
first thousand points are plotted in each case.

8.5.1 Van der Corput and Halton sequences
A van der Corput sequence is a low-discrepancy sequence over the unit interval. It is
constructed by reversing the base-b representation of the sequence of natural numbers
(1, 2, 3, . . . ). For example, the decimal van der Corput sequence begins as

0.1, 0.2, 0.3, . . . , 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, . . . , 0.91, 0.02, 0.12, . . . . (8.9)

In a base-b representation a natural number n with s digits {di | i = 1 . . . s, 0 ≤
di < b} is given as

n =

s∑
k=1

dkb
k−1 . (8.10)

The corresponding base-b van der Corput number qb(n) is then given as

qb(n) =

s∑
k=1

dkb
−k . (8.11)

Here is a C implementation of this algorithm,
double corput ( int n , int b){

double q=0, bk=(double)1/b ;
while (n>0){ q += (n % b)∗bk ; n /= b ; bk /= b ; }
return q ; }

The van der Corput numbers of any base are uniformly distributed over the unit
interval. They also form a dense set in the unit interval: there exists a subsequence of
the van der Corput sequence which converges to any given real number in [0, 1].
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The Halton sequence is a generalization of the van der Corput sequence to d-
dimensional spaces. One chooses a set of coprime bases b1, . . . , bd and then for each
dimension i generates a van der Corput sequence with its own base bi. The n-th Halton
d-dimentional point x in the unit volume is then given as

xb1,...,bd(n) = {qb1(n), . . . , qbd(n)} . (8.12)

Here is a C implementation which calls the corput function listed above,
void halton ( int n , int d , double ∗x){
static int base [ ]={2 ,3 ,5 ,7 ,11 ,13 ,17 ,19 ,23 ,29 ,31 ,37 ,41 ,43 ,47 ,53 ,59 ,61};
static int maxd=sizeof ( base )/ sizeof ( int ) ;
a s se r t (d <= maxd) ; for ( int i =0; i<d ; i++) x [ i ]=corput (n , base [ i ] ) ; }

8.5.2 Additive recurrences (lattice rules)
For any irrational number α the sequence

sn(α)
.
= frac(nα) (8.13)

(where frac(x) is the fractional part of x) has discrepancy approaching 1/N . This
sequence can be also defined as an additive recurrence relation,

sn+1(α) = frac(sn + α) ≡ (sn + α) mod 1 . (8.14)

In a d-dimensional space one chooses for each dimension a separate sequence with
its own irrational number αi|i=1,...,d (one possibility is to take the square roots of prime
numbers modulo 1). The corresponding quasi-random vector x is then given as

x(n) = {frac(nα1), . . . , frac(nαd)} . (8.15)

This formula is sometimes also referred to as lattice rule.
Here is an implementation of this algorithm in C and an illustration of such sequence

is shown on Figure 8.2 (center).
#define PI 3.1415926535897932384626433832795028841971693993751L
#define r ea l long double
void qrnd ( int d , double ∗x){

static int dim=0, n=0; static r ea l ∗alpha , ip t r ;
i f (x==NULL){ /∗ rese t ∗/

dim=d ; n=0; alpha=(long double ∗) r e a l l o c ( alpha , dim∗sizeof ( r ea l ) ) ;
for ( i =0; i<dim ; i++) alpha [ i ]=modfl ( s q r t l (PI+i ),& ipt r ) ; }

else{ n++;
asse r t (d==dim ) ; for ( i =0; i<dim ; i++)x [ i ]=modfl (n∗alpha [ i ] ,& ipt r ) ; }

return ; }



92 CHAPTER 8. MONTE CARLO INTEGRATION

8.6 Implementations
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Table 8.3: C implementation of the stratified sampling algorithm
#include<math . h>
#include<s t d l i b . h>
#include<stdio . h>
#define FOR(k) for ( int k=0;k<dim ; k++)
#define RND (double) rand ()/RAND_MAX

double s t rata (
int dim , double f ( int dim , double∗x ) ,
double∗a , double∗b ,
double acc , double eps ,
int n_reuse , double mean_reuse)

{
int N=16∗dim ;
double V=1; FOR(k) V∗=b [ k]−a [ k ] ;
int n_left [ dim ] , n_right [ dim ] ;
double x [ dim ] , mean_left [ dim ] , mean_right [ dim ] ,mean=0;
FOR(k){ mean_left [ k]=0; mean_right [ k]=0; n_left [ k]=0; n_right [ k]=0; }
for ( int i =0; i<N; i++){

FOR(k) x [ k]=a [ k]+RND∗(b [ k]−a [ k ] ) ;
double fx=f (dim , x ) ;
mean+=fx ;
FOR(k){

i f (x [ k]>(a [ k]+b [ k ] )/2){ n_right [ k]++; mean_right [ k]+=fx ; }
else { n_left [ k]++; mean_left [ k]+=fx ; }
}

}
mean/=N;
FOR(k){ mean_left [ k]/=n_left [ k ] ; mean_right [ k]/=n_right [ k ] ; }

int kdiv=0; double maxvar=0;
FOR(k){

double var=fabs (mean_right [ k]−mean_left [ k ] ) ;
i f ( var>maxvar){ maxvar=var ; kdiv=k ; }
}

double integ=(mean∗N+mean_reuse∗n_reuse )/(N+n_reuse )∗V;
double error=fabs (mean_reuse−mean)∗V;
double t o l e r=acc+fabs ( integ )∗ eps ;
i f ( error<t o l e r )return integ ;

double a2 [ dim ] , b2 [ dim ] ; FOR(k)a2 [ k]=a [ k ] ; FOR(k)b2 [ k]=b [ k ] ;
a2 [ kdiv ]=(a [ kdiv]+b [ kdiv ] ) / 2 ; b2 [ kdiv ]=(a [ kdiv]+b [ kdiv ] ) / 2 ;
double integ_le f t=

strata (dim , f , a , b2 , acc/ sqrt (2) , eps , n_left [ kdiv ] , mean_left [ kdiv ] ) ;
double integ_right=

strata (dim , f , a2 , b , acc/ sqrt (2) , eps , n_right [ kdiv ] , mean_right [ kdiv ] ) ;
return integ_le f t+integ_right ;
}
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Chapter 9

Nonlinear equations

9.1 Introduction
Non-linear equations (or root-finding) is a problem of finding a set of n variables x

.
=

{x1, . . . , xn} which satisfy a system of n non-linear equations

fi(x1, ..., xn) = 0
∣∣∣
i=1,...,n

. (9.1)

In vector notation the system is written as

f(x) = 0 , (9.2)

where f(x)
.
= {f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)}.

In one-dimension, n = 1, it is generally possible to plot the function in the region
of interest and see whether the graph crosses the x-axis. One can then be sure the root
exists and even figure out its approximate position to start one’s root-finding algorithm
from. In multi-dimensions one generally does not know if the root exists at all, until it
is found.

The root-finding algorithms generally proceed by iteration, starting from some ap-
proximate solution and making consecutive steps—hopefully in the direction of the
suspected root—until some convergence criterion is satisfied. The procedure is gener-
ally not even guaranteed to converge unless starting from a point close enough to the
sought root.

We shall only consider the multi-dimensional case here since i) the multi-dimensional
root-finding is more difficult, and ii) the multi-dimensional routines can also be used
in the one-dimensional case.
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9.2 Newton’s method
Newton’s method (also reffered to as Newton-Raphson method, after Isaac Newton and
Joseph Raphson) is a root-finding algorithm that uses the first term of the Taylor series
of the functions fi to linearise the system (9.1) in the vicinity of a suspected root. It is
one of the oldest and best known methods and is a basis of a number of more refined
methods.

Suppose that the point x = {x1, . . . , xn} is close to the root. The Newton’s algo-
rithm tries to find the step ∆x which would move the point towards the root, such
that

fi(x+∆x) = 0
∣∣∣
i=1,...,n

. (9.3)

The first order Taylor expansion of (9.3) gives a system of linear equations,

fi(x) +

n∑
k=1

∂fi
∂xk

∆xk = 0
∣∣∣
i=1,...,n

, (9.4)

or, in the matrix form,
J∆x = −f(x), (9.5)

where J is the matrix of partial derivatives,

Jik
.
=

∂fi
∂xk

, (9.6)

called the Jacobian matrix. In practice, if derivatives are not available analytically, one
uses finite differences,

∂fi
∂xk

≈ fi(x1, . . . , xk + δxk, . . . , xn)− fi(x1, . . . , xk, . . . , xn)

δxk
, (9.7)

where the step δxk is usually (unless the user knows better) chosen as δxk = |xk|
√
ϵ

where ϵ is machine precision. For double-precision numbers
√
ϵ = 2−26. As a rule of

thumb one should always try to rescale one’s problem such that the typical scale of
one’s variables is around unity.

The solution ∆x to the linear system (9.5)—called the Newton’s step—gives the
approximate direction and the approximate step-size towards the solution.

The Newton’s method converges quadratically if x is sufficiently close to the solu-
tion. Otherwise the full Newton’s step ∆x might actually diverge from the solution.
Therefore in practice a more conservative step, λ∆x with λ < 1, is usually taken. The
strategy of finding the optimal λ is referred to as line search.

It is typically not worth the effort to find λ which minimizes ∥f(x+λ∆x)∥ exactly,
since ∆x is only an approximate direction towards the root. Instead, an inexact but
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quick minimization strategy is usually used, called the backtracking line search, where
one first attempts the full step, λ = 1, and then backtracks, λ ← λ/2, until the
condition

∥f(x+ λ∆x)∥ <
(
1− λ

2

)
∥f(x)∥ (9.8)

is satisfied. If the condition is not satisfied for sufficiently small λmin the step is taken
with λmin simply to step away from the difficult place and try again.

Here is a typical algrorithm for the Newton’s method with backtracking line search
and condition (9.8),

repeat
calculate the Jacobian matrix J
solve J∆x = −f(x) for ∆x
λ← 1
while ∥f(x+ λ∆x)∥ >

(
1− λ

2

)
∥f(x)∥ and λ ≥ 1

64 do λ← λ/2
x← x+ λ∆x

until converged (e.g. ∥f(x)∥ < tolerance)

A somewhat more refined backtracking linesearch is based on an approximate min-
imization of the function

ϕ(λ)
.
=

1

2
∥f(x+ λ∆x)∥2 (9.9)

using interpolation. The values ϕ(0) = 1
2∥f(x)∥

2 and ϕ′(0) = −∥f(x)∥2 are already
known (check this). If the previous step with certain λtrial was rejected, we also have
ϕ(λtrial). These three quantities allow to build a quadratic approximation,

ϕ(λ) ≈ ϕ(0) + ϕ′(0)λ+ cλ2 , (9.10)

where
c =

ϕ(λtrial)− ϕ(0)− ϕ′(0)λtrial

λ2
trial

. (9.11)

The minimum of this approximation (determined by the condition ϕ′(λ) = 0),

λnext = −
ϕ′(0)

2c
, (9.12)

becomes the next trial step-size.
The procedure is repeated recursively until either condition (9.8) is satisfied or the

step becomes too small (in which case it is taken unconditionally in order to simply get
away from the difficult place).
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9.3 Quasi-Newton methods
The Newton’s method requires calculation of the Jacobian matrix at every iteration.
This is generally an expensive operation. Quasi-Newton methods avoid calculation of
the Jacobian matrix at the new point x+ λ∆x, instead trying to use certain approxi-
mations, typically rank-1 updates.

9.3.1 Broyden’s rank-1 updates
Broyden’s algorithms [7] estimate the Jacobian J + ∆J at the point x+∆x using the
finite-difference approximation,

(J + ∆J)∆x = ∆f , (9.13)

where ∆f
.
= f(x + ∆x) − f(x) and J is the Jacobian at the point x. Equivalently,

one can apply the same approximation for the update B+∆B of the inverse Jacobian
matrix,

∆x = (B +∆B)∆f , (9.14)

The matrix equation (9.14) is under-determined in more than one dimension as it
contains only n equations to determine n2 matrix elements of ∆B. Broyden suggested
to choose ∆B as a rank-1 update that is linear ∆x. A rank-1 update has exactly n free
parameters which can be determined form the (inverse secant) equation (9.14). For
example, one can choose the update in the form

∆B = c∆xT , (9.15)

where c is an unknown vector. Inserting this ansatz into (9.14) and solving for c gives
the update

∆B =
∆x− B∆f

∆xT∆f
∆xT . (9.16)

Here is a list of several rank-1 updates of the inverse Jacobian matrix,

1. “Good Broyden’s method”,

∆B = c∆xTB ⇒ ∆B =
∆x− B∆f

∆xTB∆f
∆xTB . (9.17)

2. “Bad Broyden’s method”,

∆B = c∆fT ⇒ ∆B =
∆x− B∆f

∆fT∆f
∆fT . (9.18)
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3. Yet another method,

∆B = c∆xT ⇒ ∆B =
∆x− B∆f

∆xT∆f
∆xT . (9.19)

In practice if one wanders too far from the point where J was first calculated the
accuracy of the updates may decrease significantly. In such case one might need to
recalculate J anew. For example, two successive steps with λmin might be interpreted
as a sign of accuracy loss in J and subsequently trigger its recalculation.

Again, if the denominator in the update formula becomes too small one has to
discard the update as it is obviously wrong. If this happens two steps in a row, one has
to recalculate one’s B-matrix.

Here is a typical quasi-Newton algorithm,

calculate the inverse Jacobian matrix B = J−1

repeat
∆x = −Bf(x)
λ = 1
while ∥f(x+ λ∆x)∥ >

(
1− λ

2

)
∥f(x)∥ and λ ≥ 1

64 do λ = λ/2
x = x+ λ∆x
if λ ≥ 1

64 update B = B+∆B else recalculate B = J−1

until converged (e.g. ∥f(x)∥ < tolerance)

The matrix B is updated if the linesearch succeeds, that is, the step-parameter λ is not
too small; in case the step-parameter becomes small the step is accepted unconditionally
and the B-matrix is recalculated.
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Chapter 10

Minimization

10.1 Introduction

Minimization (maximization) is the problem of finding the minimum (maximum) of a
given—generally non-linear—real valued function ϕ(x) of an n-dimensional argument
x

.
= {x1, . . . , xn}. The function is often called the objective function or the cost function.

Minimization is a simpler case of a more general poblem—optimization—which
includes finding the best available values of the objective function within a given domain
and/or subject to given constrains.

Minimization is not unrelated to root-finding: at the minimum all partial derivatives
of the objective function vanish,

∂ϕ

∂xi
= 0

∣∣∣∣
i=1...n

, (10.1)

and one can alternatively solve this system of (non-linear) equations.

10.2 Local minimization

Local minimization refers to a group of algorithms that move from one candidate so-
lution to another candidate solution by applying local changes and moving “downhill”
until a solution deemed optimal is found (or the alotted time is elapsed).

101



102 CHAPTER 10. MINIMIZATION

10.2.1 Newton’s method
Newton’s method is based on the quadratic approximation of the objective function
ϕ(x) in the vicinity of the suspected minimum,

ϕ(x+∆x) ≈ ϕ(x) +∇ϕ(x)T∆x+
1

2
∆xTH(x)∆x , (10.2)

where the vector ∇ϕ(x) is the gradient of the objective function at the point x,

∇ϕ(x) .
=

{
∂ϕ(x)

∂xi

}
i=1...n

, (10.3)

and H(x) is the Hessian matrix – a square matrix of second-order partial derivatives of
the objective function at the point x,

H(x)
.
=

{
∂2ϕ(x)

∂xi∂xj

}
i,j∈1...n

. (10.4)

The minimum of the quadratic form (10.2), as function of ∆x, is found at the point
where its gradient with respect to ∆x vanishes,

∇ϕ(x) + H(x)∆x = 0 . (10.5)
This gives an approximate step towards the minimum, called the Newton’s step,

∆x = −H(x)−1∇ϕ(x) . (10.6)

The original Newton’s method is simply the iteration,

xk+1 = xk −H(xk)
−1∇ϕ(xk) , (10.7)

where at each iteration the full Newton’s step is taken and the Hessian matrix is
recalculated. In practice, instead of calculating H−1 one rather solves the linear equa-
tion (10.5).

Usually the Newton’s method is modified to take a smaller step s,

s = λ∆x, (10.8)

with 0 < λ < 1. The factor λ can be found by a backtracking algoritm similar to that
in the Newton’s method for root-finding. One starts with λ = 1 and than backtracks,
λ← λ/2, until the Armijo condition,

ϕ(x+ s) < ϕ(x) + αsT∇ϕ(x) , (10.9)

is satisfied (or the minimal λ (say, 1/1024) is reached, in which case the step is taken
unconditionally). The parameter α can be chosen as small as 10−4.
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10.2.2 Numerical calculation of gradient and Hessian matrix
The forward finite-difference approximation to the derivative f ′(x) of a function f(x)
is given as

f ′(x) ≈ f(x+ δx)− f(x)

δx
, (10.10)

where δx is usually chosen as |x|
√
ϵ where ϵ is the machine precision (for ”double”

numbers
√
ϵ = 2−26). This gives the following approximation for the gradient,

∇ϕ(x)i =
∂ϕ(x)

∂xi
=

ϕ(x1, . . . , xi + δxi, . . . , xn)− ϕ(x1, . . . , xn)

δxi
, (10.11)

where δxi = |xi|
√
ϵ.

The Hessian matrix in the same approximation is given as

∂2ϕ

∂xi∂xj
=

∂

∂xi
∇ϕj =

∇ϕ(x1, . . . , xi + δxi, . . . , xn)j −∇ϕ(x1, . . . , xn)j
δxi

(10.12)

The central (possibly better) finite difference formula for the first derivative is given
as,

f ′(x) ≈ f(x+ δx)− f(x− δx)

2δx
. (10.13)

This gives the following approximation for the gradient,

∇ϕ(x)i =
∂ϕ(x)

∂xi
=

ϕ(x1, . . . , xi + δxi, . . . , xn)− ϕ(x1, . . . , xi − δxi, . . . , xn)

2δxi
, (10.14)

and the following approximation for the Hessian matrix,

Hjk = ∂2ϕ
∂xj∂xk

≈
ϕ(x+δxk+δxj)−ϕ(x+δxk−δxj)−ϕ(x−δxk+δxj)+ϕ(x−δxk−δxj)

4δxkδxj
. (10.15)

where δxk is a vector in the direction k with the length δxk = |xk|
√
ϵ where ϵ is the

machine epsilon. In practice the calculation of the gradient should reuse the ϕ-values
from the calculation of the Hessian matrix.

10.2.3 Quasi-Newton methods
Quasi-Newton methods are variations of the Newton’s method which attempt to avoid
recalculation of the Hessian matrix at each iteration, trying instead certain updates
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based on the analysis of the gradient vectors. The update δH is usually chosen to
satisfy the condition

∇ϕ(x+ s) = ∇ϕ(x) + (H + δH)s , (10.16)

called secant equation, which is the Taylor expansion of the gradient.
The secant equation is under-determined in more than one dimension as it consists of

only n equations for the n2 unknown elements of the update δH. Various quasi-Newton
methods use different choices for the form of the solution of the secant equation.

In practice one typically uses the inverse Hessian matrix (often—but not always—
denoted as B) and applies the updates directly to the inverse matrix thus avoiding the
need to solve the linear equation (10.5) at each iteration.

For the inverse Hessian matrix the secant equation (10.16) reads

(B + δB)y = s , (10.17)

or, in short,
δBy = u , (10.18)

where B
.
= H−1, y .

= ∇ϕ(x+ s)−∇ϕ(x), and u
.
= s− By.

One usually starts with the identity matrix as the zeroth approximation for the
inverse Hessian matrix and then applies the updates.

If the minimal λ (say, 1/1024) is reached during the bactracking line-search—which
might be a signal of lost precision in the approximate (inverse) Hessian matrix—it is
advisable to reset the current inverse Hessian matrix to identity matrix.

Table 10.2.3 lists one possible algorithm of the quasi-newton method with updates.

Broyden’s update

The Broyden’s update is chosen in the form

δB = csT . (10.19)

where the vector c is found from the condition (10.18),

c =
u

sTy
. (10.20)

Sometimes the dot-product sTy becomes very small or even zero which results in
serious numerical difficulties. One can avoid this by only performing update if the
condition |sTy| > ϵ is satisfied where ϵ is a small number, say 10−6.
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Table 10.1: Quasi-newton minimisation algorithm with updates.
set the inverse Hessian matrix to unity, B = 1
repeat until converged (e.g. ∥∇ϕ∥ < tolerance) :

calculate the Newton's step ∆x = −B∇ϕ
do linesearch starting with λ = 1 :

if ϕ(x+ λ∆x) < ϕ(x) accept the step and update B:
x = x+ λ∆x
update B = B+ δB
break linesearch

λ = λ/2
if λ < 1

1024 accept the step and reset B:
x = x+ λ∆x
B = 1
break linesearch

continue linesearch

Symmetric Broyden’s update

The Broyden’s update (10.19) is not symmetric (while the Hessian matrix should be)
which is an obvious drawback. Therefore a beter approximation might be the symmetric
Broyden’s update,

δB = asT + saT . (10.21)

The vector a is again found from the condition (10.18),

a =
u− γs

sTy
, (10.22)

where γ = (uTy)/(2sTy).
Again one only performs the update if |sTy| > ϵ.

SR1 update

The symmetric-rank-1 update (SR1) in chosen in the form

δB = vvT , (10.23)

where the vector v is again found from the condition (10.16), which gives

δB =
uuT

uTy
. (10.24)
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Again, one only performs the update if denominator is not too small, that is, |uTy| >
ϵ.

Other popular updates

The wikipedia article “Quasi-Newton method” list several other popular updates.

10.2.4 Downhill simplex method
The downhill simplex method [18] (also called “Nelder-Mead” or “amoeba”) is a com-
monnly used minimization algorithm where the minimum of a function in an n-dimensional
space is found by transforming a simplex—a polytope with n+1 vertexes—according
to the function values at the vertexes, moving it downhill until it converges towards
the minimum.

The advantages of the downhill simplex method is its stability and the lack of use
of derivatives. However, the convergence is realtively slow as compared to Newton’s
methods.

In order to introduce the algorithm we need the following definitions:
• Simplex: a figure (polytope) represented by n+1 points, called vertexes, {p1, . . . ,pn+1}

(where each point pk is an n-dimensional vector).

• Highest point: the vertex, phi, with the highest value of the function: ϕ(phi) =
maxk ϕ(pk).

• Lowest point: the vertex, plo, with the lowest value of the function: ϕ(plo) =
mink ϕ(pk).

• Centroid: the center of gravity of all points, except for the highest: pce =
1
n

∑
(k ̸=hi) pk

The simplex is moved downhill by a combination of the following elementary oper-
ations:

1. Reflection: the highest point is reflected against the centroid, phi → pre = pce +
(pce − phi).

2. Expansion: the highest point reflects and then doubles its distance from the
centroid, phi → pex = pce + 2(pce − phi).

3. Contraction: the highest point halves its distance from the centroid, phi → pco =
pce +

1
2 (phi − pce).

4. Reduction: all points, except for the lowest, move towards the lowest points
halving the distance. pk ̸=lo → 1

2 (pk + plo).
Table 10.2 shows one possible algorithm for the downhill simplex algorithm.
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Table 10.2: Downhill simplex (Nelder-Mead) algorithm
REPEAT :

f ind highest , lowest , and centroid points of the simplex
try r e f l e c t i o n
IF ϕ(reflected) < ϕ(lowest) :

try expansion
IF ϕ(expanded) < ϕ(reflected) :

accept expansion
ELSE :

accept r e f l e c t i o n
ELSE :

IF ϕ(reflected) < ϕ(highest) :
accept r e f l e c t i o n

ELSE :
try contract ion
IF ϕ(contracted) < ϕ(highest) :

accept contract ion
ELSE :

do reduction
UNTIL converged ( e . g . s i z e ( simplex)<tolerance )

10.2.5 Gauss-Newton algorithm
The Gauss-Newton algorithm is designed to minimize an objective function ϕ(c) that
is given as a sum of squares of several (non-linear) functions ri(c),

ϕ(c) =

n∑
i=1

r2i (c) , (10.25)

where {ck=1...m} is the set of parameters of the objective function. In particular, the
algorithm can be used to solve a non-linear least squares curve fitting problem where
the function to minimize is given as

χ2(c) =

n∑
i=1

(
f(c, xi)− yi

δyi

)2

, (10.26)

where {xi, yi ± δyi} is the set of data to fit and f(c, x) is the fitting function that
depends on a set of parameters c.

The algorithm can also be used to find an approximate solution to an overdetermined
(if n > m) system of non-linear equations

r(c) = 0 . (10.27)
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Just like the Newton’s method the algorithm relies on the Taylor expansion of the
objective function in the vicinity of the suspected minimum,

ϕ(c+∆c) ≈ ϕ(c) + gT∆c+
1

2
∆cTHc , (10.28)

where the (size-m) gradient g is given as

gk = 2

n∑
i=1

ri
∂ri
∂ck

(10.29)

and the (square m×m) Hessian matrix H is given as

Hjk = 2

n∑
i=1

(
∂ri
∂cj

∂ri
∂ck

+ ri
∂2ri

∂cj∂ck

)
. (10.30)

Now, in the Gauss-Newton method one ignores the second-derivative term in (10.30)
which results in the following approximation for the Hessian matrix,

Hjk ≈ 2JTJ , (10.31)

where J is the (tall n×m) Jacobian matrix of the {ri} functions,

Jik =
∂ri
∂ck

. (10.32)

The approximation (10.31) may be valid in two cases,

1. The functions ri are small in the vicinity of the minimum;

2. The functions ri are only slightly non-linear such that the second derivatives are
small in magnitude.

Using the Jacobian matrix the gradient of ϕ can be written as

g = 2JTr . (10.33)

From here the algorithm proceeds as in the usual Newton’s method: one finds the
Newton’s step,

∆c = −H−1g ≈ −
(
JTJ

)−1
(JTr) , (10.34)

and then does the backtracking line-search.
Note that

(
JTJ

)−1
JT is the left pseudo-inverse of the matrix J. Therefore the New-

ton’s step of the Gauss-Newton method for the objective function
∑n

i=1 r
2
i is equivalent

to the step of the root-finding Newton’s method for the system of equations r(c) = 0.
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10.3 Uncertainties of nonlinear least squares fit pa-
rameters

The non-linear least squares fit is the process of fitting a curve (a mathematical func-
tion, f(c, x), where c is the set of fitting parameters) to a set of data points with
uncertainties, {xi, yi ± δyi}. However, unlike the ordinary least squares fit, where the
fitting parameters enter linearly, in the non-linear least squares fit the parameters enter
essentially non-linearly.

The fit is achieved by minimizing the sum of squares (hence the name) of the
deviations of the curve from the data (called χ2 in physics),

χ2(c) =

n∑
i=1

(
f(c, xi)− yi

δyi

)2

≡
n∑

i=1

r2i (c) , (10.35)

where
ri(c)

.
=

f(c, xi)− yi
δyi

(10.36)

are the (weighted) residuals.
The χ2 can be minimized in the space of the fitting parameters either using any

of the general minimization algorithms or using the Gauss-Newton algortithm which
is specifically designed for an objective function in the form of the sum of squares of
some residuals.

The uncertainties of the fitting parameters can be estimated by i) Taylor expansion
of χ2 around the minimum; ii) linearizing the problem; iii) calculating the uncertainties
using the same technique as for the ordinary least squares fit. In other words, we
apply the Newton’s method to find the solution of the minimization problem and then
determine the uncertainties of the fitting parameters from the last Newton’s step (the
one that brings us to the minimum).

10.3.1 Linearization of nonlinear problem at minimum
The Newton’s step ∆c toward the minimum is found from the second order Taylor
expansion of χ2,

χ2(c+∆c) ≈ χ2(c) + gT∆c+
1

2
∆cTH∆c , (10.37)

where the gradient g is given as

gk =
∂χ2

∂ck
=

n∑
i=1

2ri
∂ri
∂ck

. (10.38)
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and the Hessian matrix H is given as

Hjk =
∂2χ2

∂cj∂ck
=

n∑
i=1

(
2
∂ri
∂cj

∂ri
∂ck

+ 2ri
∂2ri

∂cj∂ck

)
. (10.39)

Close to the minimum the term with the second derivative can be (hopefully) neglected
(since at the minimum f(c, xi) ≈ yi).

Introducing the (tall n×m) Jacobian matrix J of the residuals,

Jij =
∂ri
∂cj

=
1

δyi

∂f(c, xi)

∂cj
, (10.40)

one can rewrite the gradient as
g = 2JTr (10.41)

and the Hessian matrix as
H = 2JTJ . (10.42)

The corresponding Newton’s step is determined by the equation

H∆c = −g , (10.43)

or
JTJ∆c = −JTr , (10.44)

which gives the Newton’s step to the minimum as

∆c = −J−1r (10.45)

where
J−1 = (JTJ)−1JT (10.46)

is the pseudo-inverse of the matrix J.

10.3.2 Uncertainties of the fit parameters
Equation (10.45) defines ∆ck=1...m as function of yi=1...n. The question is, if yi are
determined with uncertainties δyi, what are the uncertainties of ∆ck?

The answer is given by the propagation of uncertainty rule which says that the
(co)variances δckδcj are given as

δckδcj =
∑
i

∂∆ck
∂yi

∂∆cj
∂yi

δyiδyi =
∑
i

(J−1)ki(J
−1)ji . (10.47)
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In matrix notation the covariance matrix Σkj = δckδcj is given as

Σ = J−1J−T = (JTJ)−1 . (10.48)

The uncertainties of the fitting parameters are then given as the square roots of the
diagonal elements of the covariance matrix,

δck =
√
Σkk . (10.49)

Notice that within the approximation (10.42) (that should work well at the mini-
mum) the covariance matrix is given via the inverse of the Hessian matrix, H−1, at the
minimum,

Σ = (JTJ)−1 = 2H−1 , (10.50)

which is the canonical texbook result. It can also be obtained from the Taylor expansion
of the variation of χ2 with respect to fit parameters at the minimum, where the gradient
is zero,

δχ2 =
1

2
δcTHδc = trace

(
1

2
ΣH

)
. (10.51)

The uncertainties of fit parameters are determined by a unit variation of χ2 per degree
of freedom (that is, per fit parameter). That is, the matrix inside the trace operator
must be the unit m×m matrix. This gives

Σ = 2H−1 . (10.52)
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Chapter 11

Global optimization

11.1 Introduction

Global optimization is the problem of locating (a good approximation to) the global
minimum of a given objective function in a (given) search space that is large enough to
prohibit exhaustive enumeration. When only a small sub-space of the search space can
be realistically sampled within the allotted time the stochastic methods—which use
some form of randomness—usually come to the fore. In the following several popular
stochastic global minimization algorithms are shortly described.

11.2 Randomized local minimizers

For a differentiable optimization problem a good local minimizer would typically con-
verge to the nearest local miminum relatively fast. Therefore a class of “quick-and-
dirty” global minimizers can be constructed by simply adding some elements of random
sampling to local minimizers.

11.2.1 Local minimization from several random start-points

One strategy is to start the local miminizer several times from different (quasi)random
starting points within the given search space (recording the best solution). The proce-
dure is repeated until the alloted time is exhausted.

115
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11.2.2 Local minimization from best random sample
Another strategy is to use the allotted time to (quasi)randomly sample the given search
space and then run the local minimizer from the best sampled point.

11.3 Simulated annealing
Simulated annealing is a stochastic meta-heuristic algorithm for global minimization.
The name and inspiration come from annealing—heating up and cooling slowly—in
material science. The slow cooling allows a piece of material to reach a state with
”lowest energy”.

The objective function in the space of states is interpreted as some sort of potential
energy and the points in the search space are interpreted as states of a certain physical
system. The system attempts to make transitions from its current state to some ran-
domly sampled nearest states with the goal to eventually reach the state with minimal
energy – the global minimum.

The system is attached to a thermal reservoir with certain temperature T . Each
time the energy of the system is measured the reservoir supplies it with a random
amount of thermal energy sampled from the Boltzmann distribution,

P (E) = Te−E/T . (11.1)

If the temperature equals zero the system can only make transitions to the neigh-
boring states with lower potential energy. In this case the algorithm turns merely into
a local minimizer with random sampling.

If temperature is finite the system is able to climb up the ridges of the potential
energy—about as high as the current temperature—and thus escape from local minima
and hopefully eventually reach the global minimum.

One typically starts the simulation with some finite temperature on the order of
the height of the typical hills of the potential energy surface, letting the system to
wander almost unhindered around the landscape with a good chance to locate if not
the best then at least a good enough minimum. The temperature is then slowly reduced
following some annealing schedule which may be supplied by the user but must end
with T = 0 towards the end of the allotted time budget.

Table 11.1 lists one possible variant of the algorithm. Here the function neigbour is
system-dependent and should return a randomly chosen “neighbour” of the given state.
For a continuous function, where the state is the position of the current approximation
to the minimum, the neghbour could be a random position within radius R from the
current position. The step-radius can be gradually reduced to zero toward the end of
the simulation, like

R(t) = R0 · (1−
t

ta
) , (11.2)
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Table 11.1: Simulated annealing algorithm
s tate ← start_state
T ← start_temperature
energy ← E( state )
REPEAT :

new_state ← neighbour ( state )
new_energy ← E( new_state )
IF new_energy < energy :

s tate ← new_state
energy ← new_energy

ELSE :
do with probabi l i ty exp

(
−new_energy−energy

T

)
:

s tate ← new_state
energy ← new_energy

reduce_temperature_according_to_schedule (T)
UNTIL terminated

where R0 is the initial radius, t is the running time, and ta is the allotted time.
The temperature can be also reduced linearly,

T (t) = T0 · (1−
t

ta
) , (11.3)

where T0 is the initial temperature.

11.4 Quantum annealing
Quantum annealing is a general global minimization algorithm which—like simulated
annealing—also allows the search path to escape from local minima. However instead
of the thermal jumps over the potential barriers quantum annealing allows the system
to tunnel through the barriers.

In its simplest incarnation the quantum annealing algorithm allows the system to
attempt transitions not only to the nearest states but also to distant states within
certain ”tunneling distance” from the current state. The transition is accepted only if
it reduces the potential energy of the system.

At the beginning of the minimization procedure the tunneling distance is large—
on the order of the size of the region where the global minimum is suspected to be
located—allowing the system to explore the region. The tunneling distance is then
slowly reduced according to a schedule such that by the end of the allotted time the
tunneling distance reduces to zero at which point the system hopefully is in the state
with minimal energy.
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Table 11.2: Quantum annealing algorithm
s tate ← start_state
energy ← E( state )
R ← start_radius
REPEAT :

new_state ← random_neighbour_within_radius ( state ,R)
new_energy ← E( new_state )
IF new_energy < energy :

s tate ← new_state
energy ← new_energy

reduce_radius_according_to_schedule (R)
UNTIL terminated

11.5 Evolutionary algorithms

Unlike annealing algorithms, which follow the motion of only one point in the search
space, the evolutionary algorithms typically follow a set of points called a population
of individuals. Somewhat like the downhill simplex method which follows the motion
of a set of points – the simplex.

The population evolves toward more fit individuals where fitness is understood in
the sense of minimizing the objective function. The parameters of the individuals (for
example, the coordinates of the points in the parameter space of the objective function)
are called genes.

The algorithm proceeds iteratively in discrete steps where the population in each
iteration is called a generation. In each generation the fitness of each individual—
typically, the value of the objective function—is evaluated and the new generation is
generated stochastically from the gene pool of the current generation through certain
operations (like crossovers and mutations) such that the genes of more fit individuals
have a better chance of propagating into the next generation.

Each new individual in the next generation can be produced from a pair of ”par-
ent” individuals of the current generation, as inspired by biology, but more than two
”parents” can be used as well. The parents for a new individual are selected from the
individuals of the current generation through a fitness based stochastic process where
fitter individuals are more likely to be selected.

Generation of ”children” continues until the population of the new generation
reaches the appropriate size after which the iteration repeats itself.

The algorithm is terminated when the fitness level of the population is deemed
sufficient or when the allocated budget is exhausted.
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11.5.1 Particle Swarm Optimization (PSO)
One example of evolutionary optimization algorithms is the particle swarm optimization
method [25] where a population of “particles” move (in discrete time-steps) through
the parameter space of the objective function and sample the function at the particles’
positions at each step. The movement of each particle is stochastic and is influenced by
the particle’s best position as well as the whole swarm’s best position: at each time-step
a particle gets a stochastic kick toward it’s own best position and toward the swarm’s
best position. After a certain amount of steps the swarm is expected to converge to
the best solution.

A particle number i carries three vector-parameters: its position xi in the parameter
space of the objective function; its best position pi so far; and its velocity, vi. In
addition the swarm as a whole remembers its global best position, g.

At each time-step ∆t (usually equal unity) first the positions of the particles are
updated,

xi = xi + vi∆t , (11.4)

and the objective function is sampled at the new positions. Then the particles’ best
and the global best positions are updated. After that the velocities of the particles are
stochastically updated according to the formula,

vi = wvi + u(pi − xi) + u(g − xi) , (11.5)

where u is a random number from a unit uniform distribution, and w < 1 us the
damping parameter which ensures that the swarm gradually calms down (hopefully in
the area of global minimum).

Table 11.3 lists one possible implementation of the algorithm.

11.5.2 Bare bones PSO (BBPSO)
A simpler variant of the PSO algorithm is the the so called “bare bones PSO” [19].
Here one dispences with the velocity of the particles and instead updates the positions
of the particles using the following rule,

xi = G

(
pi + g

2
, ∥pi − g∥

)
, (11.6)

where xi, pi are the position and the best position of particle i, g is the global best po-
sition, and G(x, σ) is the Gaussian (normal) distribution with the mean x and standard
deviation σ.
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Table 11.3: Particle swarm optimization algorithm
I n i t i a l i z e uniform unit random number generator u ;
Assume the time−step i s equal unity , ∆t = 1 ;
I n i t i a l i z e p a r t i c l e pos i t i ons randomly within given rectangular
volume V [a,b] given by the vectors a and b ,

xi = random vector within V [a,b] ;
I n i t i a l i z e p a r t i c l e v e l o c i t i e s randomly ,

vi = random vector within V [a−b
2

, b−a
2

] 1
∆t

;
I n i t i a l i z e l o c a l best pos it ions ,

pi = xi ;
I n i t i a l i z e g lobal best posit ion ,

g = mini(f(pi)) ;
REPEAT:

Update v e l o c i t i e s ( the damping parameter w ≈ 0.72) ,
vi = wvi + U · (pi − xi)

1
∆t

+ U · (g − xi)
1
∆t

;
Update pos i t ions ,

xi = xi + vi∆t ;
Update l o c a l bests ,

i f f(xi) < f(pi) pi = xi ;
Update global best ,

i f f(xi) < f(g) g = xi ;
UNTIL a l l o t t ed time i s spent or converged

Generation of normally distributed sequences

Box-Muller transform A normally distributed sequence of numbers, r, with zero
mean and unit variance (called standard normal distribution) can be constructed us-
ing the Box-Muller transform from two sequences, u1 and u2, which are uniformly
distributed on the unit interval (0, 1]. The transformation is given as

r1 =
√
−2 lnu1 cos(2πu2) , (11.7)

r2 =
√
−2 lnu1 sin(2πu2) . (11.8)

The sequences r1 and r2 are independent random variables with a standard normal
distribution.

A normal distribution R with a given mean m and variance σ can be constructed
from the standard normal distribution r as

R = m+ rσ . (11.9)
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Irwin-Hall distribution The size-n Irwin-Hall distribution is the distribution of the
sum of n independent numbers, ui, which are uniformly distributed on (0, 1),

x =

n∑
i=1

ui . (11.10)

By the Central Limit Theorem as n increases the Irwin-Hall distribution Hn(x)
approaches the normal distribution Gµσ(x) with the mean µ = n/2 and the variance
σ2 = n/12, √

n

12
Hn

(
x

√
n

12
+

n

2

)
n→∞−→ G0,1(x) . (11.11)

This leads to a simple approximation where a standard normal distribution is given
by the sum of 12 pseudorandom numbers on (0, 1),

12∑
i=1

ui − 6 ≈ G0,1 (11.12)
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Chapter 12

Artificial Neural Networks

12.1 Introduction
An artificial neural network is simply a mathematical function. Specifically, a vector
function, F, of a vector argument x (often called the input signal),

y = Fp(x) (12.1)

where the vector y is the return value (often called response), and the vector p is
the set of internal parameters of the network. The parameters are tuned such that
the network can perform some useful function like recognizing a pattern in a bitmap
picture or approximating a solution to a differential equation. Tuning the parameters
for a specific task is called network training or learning [27].

12.2 Applications
Neural networks have found numerous applications in many areas. In particlar they
are used for pattern recognition. An example of pattern recognition is handwriting
recognition. In this case the input to the network is the bitmap picture of a handwritten
character: the vector x contains the RGB values of the bitmap’s pixels. The response
y of the network is the UTF code of the recognised character.

Another example is the traffic sign recognition network for vehicle control systems.
In this case the input to the network is the bitmap picture from the vehicle’s camera
and the output is the code of the recognized traffic sign.

In physics neural networks are used as function approximants (for interpolation,
regression, and numerical solution of differential equations) as well as in data processing
and modelling of complex systems.
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12.3 Graphical representation

Artificial neural networks are designed to resemble biological neural networks in the
brains of animals, hence the name. Specifically, an artificial neural network is a collec-
tion of connected nodes called artificial neurons, typically represented graphically. A
single artificial neuron is customarily pictured as

x2

x1

r = f
(∑

ixi

)�
�

�
�������:

XXXXXXz ������:

XXXXXXz
y2 = w2r

y1 = w1r

The neuron takes one or more input signals xi, applies the neuron’s activation function,
f , to the sum of the input signals producing its response, r, and then sends one or more
output signals, yi, where the response is multiplied by weight-factors wi.

Here is an example of a network that takes a 2-dimensional vector x as input and
returns a 2-dimensional vector y as output,
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The left column of neurons (which receive the input signal x) is called the input layer.
The right column of neurons which send out the response y is called the output layer.
The middle column of neurons is called the hidden layer. Each arrow connecting neurons
carries its own weight-factor. Networks with one or more hidden layers are often called
deep neural networks. Networks where the signal flow is always from left to right are
called feedforward networks.
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The activation function fi(x) of the i’th neuron is often chosen as

fi(x) = f

(
x− ai
bi

)
(12.2)

where f is the common activation function and where the shift ai and scale bi are the
individual neuron’s parameters. The total network parameter-vector p is then given as
the collection of all weight-factors wij , shifts ai, and scales bi.

There exist many different types of networks with different numbers of neurons/lay-
ers and with different topological structures.

12.4 Training (learning)
Training is tuning the network’s parameters p to better handle the given task. It
typically involves minimization of certain cost function of network parameters, C(p).
The two major training paradigms are supervised and unsupervised learning.

Supervised learning uses a set of inputs paired with the desired outputs. Here the
cost function is given by the difference between the network’s output and the desired
output. For example, in handwriting recognition the supervised learning can use a set
of bitmaps with known handwritten characters with the cost function being the number
of wrongly recognized characters.

Another example is the one-dimensional interpolation where the input data are pairs
{xi, yi}i=1...n (the table to interpolate) and the cost function is the average squared
deviation,

C(p) =
1

n

n∑
i=1

(Fp(xi)− yi)
2
. (12.3)

In unsupervised learning the input data is given together with the cost function but
without the correct output. For example, in solving a differential equation the cost
function could be the average mismatch between the left- and right-hand sides of the
differentical equation.
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Chapter 13

Fast Fourier transform

Fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier
transform (DFT). Computing DFT of a size-N vector in the naïve way, using the defi-
nition, takes O(N2) arithmetic operations, while an FFT can compute the same result
in only O(N logN) operations. The difference in speed can be substantial, especially
for large data sets. This improvement made many DFT-based algorithms practical.
Since the inverse of a DFT is also a DFT, any FFT algorithm can be used for the
inverse DFT as well.

The most well known FFT algorithms, like the Cooley-Tukey algorithm [9], depend
upon the factorization of N . However, there are FFTs with O(N logN) complexity for
all N , even for prime N .

13.1 Discrete Fourier Transform
For a set of complex numbers {xn}n=0,...,N−1, the DFT is defined as a set of complex
numbers ck,

ck =

N−1∑
n=0

xne
−2πink

N , k = 0, . . . , N − 1 . (13.1)

The inverse DFT is given by

xn =
1

N

N−1∑
k=0

cke
+2πink

N . (13.2)

These transformations can be viewed as expansion of the vector x = {xn}n=0...N−1

in terms of the orthogonal basis of vectors vk,

vk = {e 2πik
N n}n=0...N−1, (13.3)
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v⋆
k · vk′ =

N−1∑
n=0

(
e−2πi kn

N

)(
e2πi

k′n
N

)
=

N−1∑
n=0

e2πi
(k′−k)n

N = Nδkk′ . (13.4)

The DFT represents the amplitude and phase of the different sinusoidal components
in the input data xn.

The DFT is widely used in different fields, like spectral analysis, data compression,
solution of partial differential equations and others.

13.1.1 Applications
Data compression

Several lossy (that is, with certain loss of information) image and sound compression
methods employ DFT as an approximation for the Fourier series. The signal is dis-
cretized and transformed, and then the Fourier coefficients of high/low frequencies,
which are assumed to be unnoticeable, are discarded. The decompressor computes the
inverse transform based on this reduced number of Fourier coefficients.

Noise filtering

DFT can be used to attemt to filter out noise from a noisy signal. First, the signal
is Fourier transformed. Then either the Fourier components with small amplitude are
removed (set to zero) or the Fourier components with high frequencies are removed (set
to zero). The filtered signal is then given as the inverse DFT of the modified set of
Fourier components. And example is shown on Figure 13.1.

Partial differential equations

Discrete Fourier transforms are often used to solve partial differential equations, where
the DFT is used as an approximation for the Fourier series (which is recovered in the
limit of infinite N). The advantage of this approach is that it expands the signal in
complex exponentials einx, which are eigenfunctions of differentiation: d

dxe
inx = ineinx.

Thus, in the Fourier representation, differentiation is simply multiplication by in.
A linear differential equation with constant coefficients is transformed into an easily

solvable algebraic equation. One then uses the inverse DFT to transform the result
back into the ordinary spatial representation. This approach belongs to the group of
spectral methods.

Convolution and Deconvolution

FFT can be used to efficiently compute convolutions of two sequences. A convolution
is the pairwise product of elements from two different sequences, such as in multiplying
two polynomials or multiplying two long integers.
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Figure 13.1: Noisy signal filtering using DFT

Another example comes from data acquisition processes where the detector intro-
duces certain (typically Gaussian) blurring to the sampled signal. A reconstruction
of the original signal can be obtained by deconvoluting the acquired signal with the
detector’s blurring function.

13.2 Cooley-Tukey algorithm
In its simplest incarnation this algorithm re-expresses the DFT of size N = 2M in
terms of two DFTs of size M ,

ck =

N−1∑
n=0

xne
−2πink

N

=

M−1∑
m=0

x2me−2πimk
M + e−2πi k

N

M−1∑
m=0

x2m+1e
−2πimk

M

=

 c
(even)
k + e−2πi k

N c
(odd)
k , k < M

c
(even)
k−M − e−2πi k−M

N c
(odd)
k−M , k ≥M

, (13.5)

where c(even) and c(odd) are the DFTs of the even- and odd-numbered sub-sets of x.
This re-expression of a size-N DFT as two size-N2 DFTs is sometimes called the

Danielson-Lanczos lemma. The exponents e−2πi k
N are called twiddle factors.
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The operation count by application of the lemma is reduced from the original N2

down to 2(N/2)2 +N/2 = N2/2 +N/2 < N2.
For N = 2p Danielson-Lanczos lemma can be applied recursively until the data

sets are reduced to one datum each, see Table 13.1. The number of operations is then
reduced to O(N lnN) compared to the original O(N2).

The established library FFT routines, like FFTW and GSL, further reduce the
operation count (by a constant factor) using advanced programming techniques like
precomputing the twiddle factors, effective memory management and others.

13.3 Multidimensional DFT
For example, a two-dimensional set of data xn1n2 , n1 = 1 . . . N1, n2 = 1 . . . N2 has the
discrete Fourier transform

ck1k2 =

N1−1∑
n1=0

N2−1∑
n2=0

xn1n2e
−2πi

n1k1
N1 e−2πi

n2k2
N2 . (13.6)
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Table 13.1: Csharp-implementation of the Cooley-Tukey algorithm
using static System .Math ;
using static complex ;
using static cmath ;

public static p a r t i a l c l a s s matlib{

public static void df t s
( int sign , int N, complex [ ] x , int ix , int st r ide , complex [ ] c , int i c ){

for ( int k=0;k<N; k++){
c [ i c+k]=0;
for ( int n=0;n<N; n++)

c [ i c+k]+=x [ ix+n∗ s t r i d e ]∗ exp( s ign ∗2∗PI∗ I ∗n∗k/N) ;
}

}

public static void f f t s
( int sign , int N, complex [ ] x , int ix , int st r ide , complex [ ] c , int i c ){

i f (N==1) c [ i c+0]=x [ ix +0];
else i f (N%2==0){

f f t s ( sign ,N/2 ,x , ix+0 ,2∗ str ide , c , i c+0 ) ;
f f t s ( sign ,N/2 ,x , ix+str ide ,2∗ str ide , c , i c+N/2) ;
for ( int k=0;k<N/2;k++){

complex p=c [ i c+k ] , q=exp( s ign ∗2∗PI∗ I ∗k/N)∗ c [ i c+k+N/ 2 ] ;
c [ i c+k ]=p+q ;
c [ i c+k+N/2]=p−q ;
}

}
else df t s ( sign ,N, x , ix , s t r ide , c , i c ) ;
}

public static complex [ ] f f t ( complex [ ] x){
int N=x . Length ;
var c=new complex [N] ;
f f t s (−1,N, x ,0 ,1 , c , 0 ) ;
return c ;
}

public static complex [ ] i f t ( complex [ ] c ){
int N=c . Length ;
var x=new complex [N] ;
f f t s (+1,N, c ,0 ,1 , x , 0 ) ;
for ( int i =0; i<N; i++)x [ i ]/=N;
return x ;
}

}// c lass
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