
1 Ordinary least squares problem
1.1 Introduction
A system of linear equations is considered overdetermined if there are more equa-
tions than unknown variables. If all equations of an overdetermined system are
linearly independent, the system has no exact solution.

An ordinary least-squares problem (also called linear least-squares problem) is
the problem of finding an approximate solution to an overdetermined linear system.
It often arises in applications where a theoretical model is fitted to experimental
data.

1.2 Ordinary least-squares problem
Consider a linear system

Ac = b , (1)

where A is a n×m matrix, c is an m-component vector of unknown variables and b
is an n-component vector of the right-hand side terms. If the number of equations
n is larger than the number of unknowns m, the system is overdetermined and
generally has no solution.

However, it is still possible to find an approximate solution — the one where
Ac is only approximately equal b — in the sence that the Euclidean norm of the
difference between Ac and b is minimized,

c : min
c

∥Ac− b∥2 . (2)

The problem (2) is called the ordinary least-squares problem and the vector c that
minimizes ∥Ac− b∥2 is called the least-squares solution.

1.3 Least-squares solution via QR-decomposition
The linear least-squares problem can be solved by QR-decomposition. The matrix
A is factorized as A = QR, where Q is n × m matrix with orthogonal columns,
QTQ = 1, and R is an m × m upper triangular matrix. The Euclidean norm
∥Ac− b∥2 can then be rewritten as

∥Ac− b∥2 = ∥QRc− b∥2 (3)
= ∥Rc−QTb∥2 + ∥(1−QQT)b∥2

≥ ∥(1−QQT)b∥2 .

The term ∥(1−QQT)b∥2 is independent of the variables c and can not be reduced
by their variations. However, the term ∥Rc−QTb∥2 can be reduced down to zero
by solving the m×m system of linear equations

Rc = QTb . (4)
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The system is right-triangular and can be readily solved by back-substitution.
Thus the solution to the ordinary least-squares problem (2) is given by the

solution of the triangular system (4).

1.4 Least-squares solution via Singular Value Decomposi-
tion

Under the thin singular value decomposition we shall understand a representation
of a tall n×m (n > m) matrix A in the form

A = USVT , (5)

where U is an orthogonal n×m matrix (UTU = 1), S is a square m×m diagonal
matrix with non-negative real numbers on the diagonal (called singular values of
matrix A), and V is a square m×m orthoginal matrix (VTV = 1).

Singular value decomposition can be used to solve our linear least squares
problem Ac = b. Indeed inserting the decomposition into the equation gives

USVTc = b . (6)

Multiplying from the left with UT and using the orthogonality of U one gets the
projected equation

SVTc = UTb . (7)

This is a square system which can be easily solved first by solving the diagonal
system

Sy = UTb (8)

for y and then obtaining c as
c = Vy . (9)

The covariance matrix (22) can be calculated as

Σ = (ATA)−1 = (VS2VT)−1 = VS−2VT . (10)

Singular value decomposition can be found by diagonalising the m × m sym-
metric positive semi-definite matrix ATA (although this method is not the best
for practical calculations, it would do as an educational tool),

ATA = VDVT , (11)

where D is a diagonal matrix with eigenvalues of the matrix ATA on the diagonal
and V is the matrix of the corresponding eigenvectors. Indeed it is easy to check
that the sought decomposition can the be constructed as A = USVT where S =
D1/2, U = AVD−1/2.

2



1.5 Ordinary least-squares curve fitting
Ordinary least-squares curve fitting is a problem of fitting n (experimental) data
points {xi, yi ±∆yi}i=1,...,n, where ∆yi are experimental errors, by a linear com-
bination, Fc, of m functions {fk(x)}k=1,...,m ,

Fc(x) =

m∑
k=1

ckfk(x) , (12)

where the coefficients ck are the fitting parameters.
The objective of the least-squares fit is to minimize the square deviation, called

χ2, between the fitting function Fc(x) and the experimental data [1],

χ2 =

n∑
i=1

(
F (xi)− yi

∆yi

)2

. (13)

where the individual deviations from experimental points are weighted with their
inverse errors in order to promote contributions from the more precise measure-
ments.

Minimization of χ2 with respect to the coefficiendt ck in (12) is apparently
equivalent to the least-squares problem (2) where

Aik =
fk(xi)

∆yi
, bi =

yi
∆yi

. (14)

If QR = A is the QR-decomposition of the matrix A, the formal least-squares
solution to the fitting problem is

c = R−1QTb . (15)

In practice of course one rather back-substitutes the right-triangular system

Rc = QTb . (16)

1.5.1 Variances and correlations of fitting parameters

Suppose δyi is a small deviation of the measured value of the physical observable at
hand from its exact value. The corresponding deviation δck of the fitting coefficient
is then given as

δck =
∑
i

∂ck
∂yi

δyi . (17)

In a good experiment the deviations δyi are statistically independent and dis-
tributed normally with the standard deviations ∆yi. The deviations (17) are then
also distributed normally with variances

⟨δckδck⟩ =
∑
i

(
∂ck
∂yi

∆yi

)2

=
∑
i

(
∂ck
∂bi

)2

. (18)
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The standard errors in the fitting coefficients are then given as the square roots of
variances,

∆ck =
√
⟨δckδck⟩ =

√√√√∑
i

(
∂ck
∂bi

)2

. (19)

The variances are diagonal elements of the covariance matrix, Σ, made of co-
variances,

Σkq ≡ ⟨δckδcq⟩ =
∑
i

∂ck
∂bi

∂cq
∂bi

. (20)

Covariances ⟨δckδcq⟩ are measures of to what extent the coefficients ck and cq
change together if the measured values yi are varied. The normalized covariances,

⟨δckδcq⟩√
⟨δckδck⟩⟨δcqδcq⟩

(21)

are called correlations.
Using (20) and (15) the covariance matrix can be calculated as

Σ =

(
∂c

∂b

)(
∂c

∂b

)T

= R−1(R−1)T = (RTR)−1 = (ATA)−1 . (22)

The square roots of the diagonal elements of this matrix provide the estimates of
the errors ∆c of the fitting coefficients,

∆ck =
√
Σkk

∣∣∣
k=1...m

, (23)

and the (normalized) off-diagonal elements provide the estimates of their correla-
tions.

Table 1.5.1 shows how a Csharp implementation of the ordinary least squares
fit via QR decomposition could look like.

An illustration of a fit is shown on Figure 1 where a polynomial is fitted to a
set of data.
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static ( vector , matrix ) l s f i t
(Func<double , double>[] fs , vector x , vector y , vector dy){

int n = x . s ize , m=f s . Length ;
var A = new matrix (n ,m) ;
var b = new vector (n ) ;
for ( int i =0; i<n ; i++){

b [ i ]=y [ i ]/ dy [ i ] ;
for ( int k=0;k<m; k++)A[ i , k]= f s [ k ] ( x [ i ] ) / dy [ i ] ;
}

var qra = new GSQR(A) ;
vector c = qra . so lve (b ) ;
var pinvA = qra . pinverse ( ) ;
var S = pinvA∗pinvA .T;
return ( c , S ) ;
}

Table 1: A Csharp implemetation of the ordinary least-squares fit.
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Figure 1: Ordinary least squares fit of Fc(x) = c1 + c2x + c3x
2 to a set of data.

Shown are fits with optimal coefficiens c as well as with c+∆c and c−∆c.
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