
1 Minimization

1.1 Introduction

Minimization (maximization) is the problem of finding the minimum (maximum)
of a given—generally non-linear—real valued function φ(x) of an n-dimensional
argument x

.
= {x1, . . . , xn}. The function is often called the objective function or

the cost function.
Minimization is a simpler case of a more general poblem—optimization—which

includes finding the best available values of the objective function within a given
domain and/or subject to given constrains.

Minimization is not unrelated to root-finding: at the minimum all partial
derivatives of the objective function vanish,

∂φ

∂xi
= 0

∣∣∣∣
i=1,...,n

, (1)

and one can alternatively solve this system of (non-linear) equations.

1.2 Local minimization

1.2.1 Newton’s methods

Newton’s method is based on the quadratic approximation of the objective function
φ(x) in the vicinity of the suspected minimum,

φ(x + ∆x) ≈ φ(x) +∇φ(x)T∆x +
1

2
∆xTH(x)∆x , (2)

where the vector ∇φ(x) is the gradient of the objective function at the point x,

∇φ(x)
.
=

{
∂φ(x)

∂xi

}
i=1,...,n

, (3)

and H(x) is the Hessian matrix – a square matrix of second-order partial derivatives
of the objective function at the point x,

H(x)
.
=

{
∂2φ(x)

∂xi∂xj

}
i,j∈1,...,n

. (4)

The minimum of the quadratic form (2), as function of ∆x, is found at the point
where its gradient with respect to ∆x vanishes,

∇φ(x) + H(x)∆x = 0 . (5)

This gives an approximate step towards the minimum, called the Newton’s step,

∆x = −H(x)−1∇φ(x) . (6)

1

The original Newton’s method is simply the iteration,

xk+1 = xk −H(xk)−1∇φ(xk) , (7)

where at each iteration the full Newton’s step is taken and the Hessian matrix is
recalculated. In practice, instead of calculating H−1 one rather solves the linear
equation (5).

Usually the Newton’s method is modified to take a smaller step s,

s = λ∆x, (8)

with 0 < λ < 1. The factor λ can be found by a backtracking algoritm similar
to that in the Newton’s method for root-finding. One starts with λ = 1 and than
backtracks, λ← λ/2, until the Armijo condition,

φ(x + s) < φ(x) + αsT∇φ(x) , (9)

is satisfied (or the minimal λ is reached, in which case the step is taken uncondi-
tionally). The parameter α can be chosen as small as 10−4.

1.2.2 Quasi-Newton methods

Quasi-Newton methods are variations of the Newton’s method which attempt to
avoid recalculation of the Hessian matrix at each iteration, trying instead certain
updates based on the analysis of the gradient vectors. The update δH is usually
chosen to satisfy the condition

∇φ(x + s) = ∇φ(x) + (H + δH)s , (10)

called secant equation, which is the Taylor expansion of the gradient.
The secant equation is under-determined in more than one dimension as it

consists of only n equations for the n2 unknown elements of the update δH. Various
quasi-Newton methods use different choices for the form of the solution of the
secant equation.

In practice one typically uses the inverse Hessian matrix (often—but not always—
denoted as B) and applies the updates directly to the inverse matrix thus avoiding
the need to solve the linear equation (5) at each iteration.

For the inverse Hessian matrix the secant equation (10) reads

(B + δB)y = s , (11)

or, in short,
δBy = u , (12)

where B
.
= H−1, y

.
= ∇φ(x + s)−∇φ(x), and u

.
= s− By.

One usually starts with the identity matrix as the zeroth approximation for
the inverse Hessian matrix and then applies the updates.

2

Table 1: Quasi-newton minimisation algorithm with updates.

set the inverse Hessian matrix to unity, B = 1
repeat until converged (e.g. ‖∇φ‖ < tolerance) :

calculate the Newton’s step ∆x = −B∇φ
do linesearch starting with λ = 1 :

if φ(x + λ∆x) < φ(x) accept the step:

x = x + λ∆x
update B = B + δB
break linesearch

λ = λ/2
if λ is too small accept the step and reset B:

x = x + λ∆x
B = 1
break linesearch

continue linesearch

If the minimal λ is reached during the bactracking line-search—which might
be a signal of lost precision in the approximate (inverse) Hessian matrix—it is
advisable to reset the current inverse Hessian matrix to identity matrix.

Table 1.2.2 lists one possible algorithm of the quasi-newton method with up-
dates.

Broyden’s update The Broyden’s update is chosen in the form

δB = csT . (13)

where the vector c is found from the condition (12),

c =
u

sTy
. (14)

Sometimes the dot-product sTy becomes very small or even zero which results
in serious numerical difficulties. One can avoid this by only performing update if
the condition |sTy| > ε is satisfied where ε is a small number, say 10−6.

Symmetric Broyden’s update The Broyden’s update (13) is not symmetric
(while the Hessian matrix should be) which is an obvious drawback. Therefore a
beter approximation might be the symmetric Broyden’s update,

δB = asT + saT . (15)

The vector a is again found from the condition (12),

a =
u− γs
sTy

, (16)

3

where γ = (uTy)/(2sTy).
Again one only performs the update if |sTy| > ε.

SR1 update The symmetric-rank-1 update (SR1) in chosen in the form

δB = vvT , (17)

where the vector v is again found from the condition (10), which gives

δB =
uuT

uTy
. (18)

Again, one only performs the update if denominator is not too small, that is,
|uTy| > ε.

Other popular updates The wikipedia article “Quasi-Newton method” list
several other popular updates.

1.2.3 Downhill simplex method

The downhill simplex method [1] (also called “Nelder-Mead” or “amoeba”) is a
commonnly used minimization algorithm where the minimum of a function in an
n-dimensional space is found by transforming a simplex—a polytope with n+1
vertexes—according to the function values at the vertexes, moving it downhill
until it converges towards the minimum.

The advantages of the downhill simplex method is its stability and the lack
of use of derivatives. However, the convergence is realtively slow as compared to
Newton’s methods.

In order to introduce the algorithm we need the following definitions:

• Simplex: a figure (polytope) represented by n+1 points, called vertexes,
{p1, . . . ,pn+1} (where each point pk is an n-dimensional vector).

• Highest point: the vertex, phi, with the highest value of the function: φ(phi) =
maxk φ(pk).

• Lowest point: the vertex, plo, with the lowest value of the function: φ(plo) =
mink φ(pk).

• Centroid: the center of gravity of all points, except for the highest: pce =
1
n

∑
(k 6=hi) pk

The simplex is moved downhill by a combination of the following elementary
operations:

1. Reflection: the highest point is reflected against the centroid, phi → pre =
pce + (pce − phi).

4

Table 2: Downhill simplex (Nelder-Mead) algorithm

REPEAT :
f i n d highest , lowest , and cen t r o id po in t s o f the s implex
try r e f l e c t i o n
IF φ(reflected) < φ(lowest) :

t ry expansion
IF φ(expanded) < φ(reflected) :

accept expansion
ELSE :

accept r e f l e c t i o n
ELSE :

IF φ(reflected) < φ(highest) :
accept r e f l e c t i o n

ELSE :
t ry con t r a c t i on
IF φ(contracted) < φ(highest) :

accept con t ra c t i on
ELSE :

do r educt i on
UNTIL converged (e . g . s i z e (s implex)< t o l e r a n c e)

2. Expansion: the highest point reflects and then doubles its distance from the
centroid, phi → pex = pce + 2(pce − phi).

3. Contraction: the highest point halves its distance from the centroid, phi →
pco = pce + 1

2 (phi − pce).

4. Reduction: all points, except for the lowest, move towards the lowest points
halving the distance. pk 6=lo → 1

2 (pk + plo).

Table 2 shows one possible algorithm for the downhill simplex algorithm.

References

[1] J.A.Nelder and R.Mead. A simplex method for function minimization. Com-
puter Journal, 7:308–313, 1965.

5

