1 Ordinary least squares problem

1.1 Introduction

A system of linear equations is considered overdetermined if there are more equa-
tions than unknown variables. If all equations of an overdetermined system are
linearly independent, the system has no exact solution.

An ordinary least-squares problem (also called linear least-squares problem) is
the problem of finding an approximate solution to an overdetermined linear system.
It often arises in applications where a theoretical model is fitted to experimental
data.

1.2 Ordinary least-squares problem

Consider a linear system
Ac=b, (1)

where A is a n X m matrix, c is an m-component vector of unknown variables and b
is an n-component vector of the right-hand side terms. If the number of equations
n is larger than the number of unknowns m, the system is overdetermined and
generally has no solution.

However, it is still possible to find an approximate solution — the one where
Ac is only approximately equal b — in the sence that the Euclidean norm of the
difference between Ac and b is minimized,

c: min|/Ac —bl|?. (2)

The problem (2) is called the ordinary least-squares problem and the vector ¢ that
minimizes ||Ac — b||? is called the least-squares solution.

1.3 Least-squares solution via QR-decomposition

The linear least-squares problem can be solved by QR-decomposition. The matrix
A is factorized as A = QR, where Q is n x m matrix with orthogonal columns,
Q'Q = 1, and R is an m x m upper triangular matrix. The Euclidean norm
||Ac — b||? can then be rewritten as

lAc —b|* = [|QRe - b]f? (3)
= |Re—Q"b|* + (1 - QQT)b|?
> [I(1-QQ")b|?.

The term ||(1 —QQT)b||? is independent of the variables ¢ and can not be reduced
by their variations. However, the term |Rc — Q"b||? can be reduced down to zero
by solving the m x m system of linear equations

Rc=Q'b. (4)



The system is right-triangular and can be readily solved by back-substitution.
Thus the solution to the ordinary least-squares problem (2) is given by the
solution of the triangular system (4).

1.4 Least-squares solution via Singular Value Decomposi-
tion

Under the thin singular value decomposition we shall understand a representation
of a tall n x m (n > m) matrix A in the form

A=TUSVT, (5)

where U is an orthogonal n x m matrix (UTU = 1), S is a square m x m diagonal
matrix with non-negative real numbers on the diagonal (called singular values of
matrix A), and V is a square m x m orthoginal matrix (VTV = 1).

Singular value decomposition can be used to solve our linear least squares
problem Ac = b. Indeed inserting the decomposition into the equation gives

USVie=b. (6)

Multiplying from the left with UT and using the orthogonality of U one gets the
projected equation
SVic=U"b. (7)

This is a square system which can be easily solved first by solving the diagonal

system
Sy=U"b (8)

for y and then obtaining c as
c=Vy. (9)

The covariance matrix (22) can be calculated as
Y= (ATA) " = (vSiVT)~l = vs2vT, (10)

Singular value decomposition can be found by diagonalising the m x m sym-
metric positive semi-definite matrix ATA (although this method is not the best
for practical calculations, it would do as an educational tool),

ATA=VDVT, (11)

where D is a diagonal matrix with eigenvalues of the matrix ATA on the diagonal
and V is the matrix of the corresponding eigenvectors. Indeed it is easy to check
that the sought decomposition can the be constructed as A = USVT where S =
D'/2, U =AVD~1/2,



1.5 Ordinary least-squares curve fitting

Ordinary least-squares curve fitting is a problem of fitting n (experimental) data
points {z;,y; £ Ay;}i=1,..n, where Ay; are experimental errors, by a linear com-
bination, F., of m functions {fx(x)}r=1

,,,,,

= aful@), (12)
k=1

where the coeflicients ¢, are the fitting parameters.
The objective of the least-squares fit is to minimize the square deviation, called
X2, between the fitting function F,(x) and the experimental data [1],

2 - <F($i)—yi>2
X ; Ay . (13)
where the individual deviations from experimental points are weighted with their
inverse errors in order to promote contributions from the more precise measure-
ments.

Minimization of y? with respect to the coefficiendt c, in (12) is apparently
equivalent to the least-squares problem (2) where

fr(wi) by — Yi
Ay, 77 Ay

A = (14)

If QR = A is the QR-decomposition of the matrix A, the formal least-squares
solution to the fitting problem is

c=R'Q"b. (15)
In practice of course one rather back-substitutes the right-triangular system

Rc=Q'b. (16)

1.5.1 Variances and correlations of fitting parameters

Suppose dy; is a small deviation of the measured value of the physical observable at
hand from its exact value. The corresponding deviation dcy, of the fitting coefficient

is then given as
Gck
5Ck = E ayl (17)

In a good experiment the deviations dy; are statistically independent and dis-
tributed normally with the standard deviations Ay;. The deviations (17) are then
also distributed normally with variances

(Serder) = (gZ’szi>2 = Z @2’:)2 . (18)

g




The standard errors in the fitting coeflicients are then given as the square roots of

variances,
Z 0 Cp 2
b, '

i

Ack =/ <§Ck56k> =

The variances are diagonal elements of the covariance matriz, 33, made of co-
variances,
Ocy, Ocg

Yig = (dcxdcy) = 5. Db, -

(20)

Covariances (dcidcy) are measures of to what extent the coefficients ¢, and ¢
change together if the measured values y; are varied. The normalized covariances,

(0cxdeq)

(Ockdcy)(0cqdcy) (21)

are called correlations.
Using (20) and (15) the covariance matrix can be calculated as
wo (%) (% ! =R YR )T =(R'TR)™'=(ATA)! (22)
ob /) \ 0b '

The square roots of the diagonal elements of this matrix provide the estimates of
the errors Ac of the fitting coefficients,

Ack =/ Xk ‘k:l L (23)

and the (normalized) off-diagonal elements provide the estimates of their correla-
tions.

Table 1.5.1 shows how a Csharp implementation of the ordinary least squares
fit via QR decomposition could look like.

An illustration of a fit is shown on Figure 1 where a polynomial is fitted to a
set of data.
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static (vector ,matrix) lsfit
(Func<double,double >[] fs, vector x, vector y, vector dy){

int n = x.size, m=fs.Length;
var A = new matrix(n,m);
var b = new vector(n);

for (int 1i=0;i<n;i++){
bli]=y[i]/dy[i];
for (int k=0;k<m;k++)A[i,k]=fs [k](x[i])/dy[i];

}
var qra = new GSQR(A);
vector ¢ = qra.solve(b);
var pinvA = qra.pinverse ();

var S = pinvAxpinvA.T;
return (c,S);

}

Table 1: A Csharp implemetation of the ordinary least-squares fit.
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Figure 1: Ordinary least squares fit of Fe(x) = ¢1 + caw + c32% to a set of data.
Shown are fits with optimal coefficiens ¢ as well as with ¢ + Ac and ¢ — Ac.




