
1 Systems of linear equations

1.1 Introduction

A system of linear equations (or linear system) is a collection of linear equations
involving the same set of unknown variables. A general system of n linear equations
with m unknowns can be written as

A11x1 + A12x2 + · · · + A1mxm = b1
A21x1 + A22x2 + · · · + A2mxm = b2

...
...

...
...

An1x1 + An2x2 + · · · + Anmxm = bn

, (1)

where x1, x2, . . . , xm are the unknown variables, A11, A12, . . . , Anm are the (con-
stant) coefficients, and b1, b2, . . . , bn are the (constant) right-hand side terms.

The system can be equivalently written in the matrix form,

Ax = b , (2)

where A
.
= {Aij} is the n ×m matrix of the coefficients, x

.
= {xj} is the size-m

column-vector of the unknown variables, and b
.
= {bi} is the size-n column-vector

of right-hand side terms.
A solution to a linear system is a set of values for the variables x which satisfies

all equations.
Systems of linear equations occur quite regularly in applied mathematics. There-

fore computational algorithms for finding solutions of linear systems are an im-
portant part of numerical methods. A system of non-linear equations can often
be approximated by a linear system – a helpful technique (called linearization) in
creating a mathematical model of an otherwise a more complex system.

If m = n the matrix A is called square. A square system has a unique solution
if A is invertible.

1.2 Triangular systems

An efficient algorithm to solve numerically a square system of linear equations is
to transform the original system into an equivalent triangular system,

Ty = c , (3)

where T is a triangular matrix – a special kind of square matrix where the matrix
elements either below (upper triangular) or above (lower triangular) the main
diagonal are zero.

Indeed, an upper triangular system Uy = c can be easily solved by back-
substitution,

yi =
1

Uii

(
ci −

n∑
k=i+1

Uikyk

)
, i = n, n− 1, . . . , 1 , (4)

1

where one first computes yn = bn/Unn, then substitutes back into the previous
equation to solve for yn−1, and repeats through y1.

Here is a C-function implementing the in-place1 back-substitution2:

void backsub (matrix∗ U, vec to r ∗ c){
for (int i=c−>s i z e −1; i>=0; i−−){
double s=ve c t o r g e t (c , i) ;
for (int k=i +1; i<n ; k++) s−=matr ix get (U, i , k)∗ v e c t o r g e t (c , k) ;
v e c t o r s e t (c , i , s /matr ix get (U, i , i)) ; } }

For a lower triangular system Ly = c the equivalent procedure is called forward-
substitution,

yi =
1

Lii

(
ci −

i−1∑
k=1

Likyk

)
, i = 1, 2, . . . , n . (5)

1.3 Reduction to triangular form

Popular algorithms for reducing a square system of linear equations to a triangular
form are LU-decomposition and QR-decomposition.

1.3.1 QR-decomposition

QR-decomposition is a factorization of a matrix into a product of an orthogo-
nal matrix Q, such that QTQ = 1, where T denotes transposition, and a right
triangular matrix R, such that

A = QR . (6)

QR-decomposition can be used to convert (by multiplying with QT from the left)
a linear system Ax = b into the triangular form,

Rx = QTb , (7)

which can be solved directly by back-substitution.
QR-decomposition can also be performed on non-square matrices with few long

columns. Generally speaking a rectangular n × m matrix A can be represented
as a product, A = QR, of an orthogonal n × m matrix Q, QTQ = 1, and a
right-triangular m×m matrix R.

QR-decomposition of a matrix can be computed using several methods, such
as Gram-Schmidt orthogonalization, Householder transformation [2], or Givens
rotation [1].

1here in-place means the right-hand side c is replaced by the solution y.
2the functions vector get, vector set, and matrix get are assumed to implement getting

and setting the vector- and matrix-elements.

2

Gram-Schmidt orthogonalization Gram-Schmidt orthogonalization is an al-
gorithm for orthogonalization of a set of vectors in a given inner product space.
It takes a linearly independent set of vectors A = {a1, . . . ,am} and generates
an orthogonal set Q = {q1, . . . ,qm} which spans the same subspace as A. The
algorithm is given as

for i = 1 to m :

qi ← ai/‖ai‖
for j = i+ 1 to m : aj ← aj − 〈qi|aj〉qi

where 〈a|b〉 is the inner product of two vectors, and ‖a‖ .=
√
〈a|a〉 is the vector’s

norm. This variant of the algorithm, where all remaining vectors aj are made
orthogonal to qi as soon as the latter is calculated, is considered to be numerically
stable and is referred to as stabilized or modified.

Stabilized Gram-Schmidt orthogonalization can be used to compute QR-decom-
position of a matrix A by orthogonalization of its column-vectors ai with the inner
product

〈a|b〉 = aTb ≡
n∑

k=1

(a)k(b)k , (8)

where n is the length of column-vectors a and b, and (a)k is the kth element of
the column-vector,

for i = 1 to m :

Rii =
√
aTi ai ; qi = ai/Rii

for j = i+ 1 to m :

Rij = qT
i aj ; aj = aj − qiRij .

After orthogonalization the matrices Q = {q1 . . .qm} and R are the sought or-
thogonal and right-triangular factors of matrix A.

The factorization is unique under requirement that the diagonal elements of R
are positive. For a n×m matrix the complexity of the algorithm is O(m2n).

Gram-Schmidt decomposition with column pivoting Pivoted decomposi-
tion differs from the ordinary Gram-Schmidt in that at each iteration it takes the
largest of the remaining columns and thus introduces the permutation matrix P,

AP = QR , (9)

that is (generally) chosen so that the diagonal elements of the R-matrix are de-
creasing,

|R11| ≥ |R22| ≥ · · · ≥ |Rmm| . (10)

Pivoted QR-decomposition can be used when matrix A is rank deficient or its
rank is in doubt. With exact arithmetics if rank(A) = k then the sub-matrix of R
with rows and columns from k + 1 to m would be zero. Numerical determination
of rank requires a criterion for deciding when a small diagonal element of R should
be treated as zero – a practical choice that depends on both the matrix and the
application.

3

Householder transformation A square matrix H of the form

H = 1− 2

uTu
uuT (11)

is called Householder matrix, where the vector u is called a Householder vector.
Householder matrices are symmetric and orthogonal,

HT = H , HTH = 1 . (12)

The transformation induced by the Householder matrix on a given vector a,

a→ Ha , (13)

is called a Householder transformation or Householder reflection. The transforma-
tion changes the sign of the affected vector’s component in the u direction, or, in
other words, makes a reflection of the vector about the hyper-plane perpendicular
to u, hence the name.

Householder transformation can be used to zero selected components of a given
vector a. For example, one can zero all components but the first one, such that

Ha = γe1 , (14)

where γ is a number and e1 is the unit vector in the first direction. The factor γ
can be easily calculated,

‖a‖2 .
= aTa = aTHTHa = (γe1)T(γe1) = γ2 , (15)

⇒ γ = ±‖a‖ . (16)

To find the Householder vector, we notice that

a = HTHa = HTγe1 = γe1 −
2(u)1
uTu

u , (17)

⇒ 2(u)1
uTu

u = γe1 − a , (18)

where (u)1 is the first component of the vector u. One usually chooses (u)1 = 1
(for the sake of the possibility to store the other components of the Householder
vector in the zeroed elements of the vector a) and stores the factor

2

uTu
≡ τ (19)

separately. With this convention one readily finds τ from the first component of
equation (18),

τ = γ − (a)1 . (20)

4

where (a)1 is the first element of the vector a. For the sake of numerical stability
the sign of γ has to be chosen opposite to the sign of (a)1,

γ = −sign ((a)1) ‖a‖ . (21)

Finally, the Householder reflection, which zeroes all component of a vector a but
the first, is given as

H = 1− τuuT , τ = −sign((a)1)‖a‖ − (a)1 , (u)1 = 1 , (u)i>1 = −1

τ
(a)i . (22)

Now, a QR-decomposition of an n×nmatrix A by Householder transformations
can be performed in the following way:

1. Build the size-n Householder vector u1 which zeroes the sub-diagonal ele-
ments of the first column of matrix A, such that

H1A =

? ? . . . ?
0
... A1

0

 , (23)

where H1 = 1 − τ1u1u
T
1 and where ? denotes (generally) non-zero matrix

elements. In practice one does not build the matrix H1 explicitly, but rather
calculates the matrix H1A in-place, consecutively applying the Householder
reflection to columns the matrix A, thus avoiding computationally expensive
matrix-matrix operations. The zeroed sub-diagonal elements of the first
column of the matrix A can be used to store the elements of the Householder
vector u1 while the factor τ1 has to be stored separately in a special array.
This is the storage scheme used by LAPACK and GSL.

2. Similarly, build the size-(n− 1) Householder vector u2 which zeroes the sub-
diagonal elements of the first column of matrix A1 from eq. (23). With the
transformation matrix H2 defined as

H2 =

1 0 · · · 0
0
... 1− τ2u2u

T
2

0

 . (24)

the two transformations together zero the sub-diagonal elements of the two
first columns of matrix A,

H2H1A =

? ? ? · · · ?
0 ? ? · · · ?
0 0
...

... A3

0 0

 , (25)

5

3. Repeating the process zero the sub-diagonal elements of the remaining columns.
For column k the corresponding Householder matrix is

Hk =

 Ik−1 0

0 1− τkuku
T
k

 , (26)

where Ik−1 is an identity matrix of size k− 1, uk is the size-(n-k+1) House-
holder vector that zeroes the sub-diagonal elements of matrix Ak−1 from the
previous step. The corresponding transformation step is

Hk . . .H2H1A =

[
Rk ?
0 Ak

]
, (27)

where Rk is a size-k right-triangular matrix.

After n − 1 steps the matrix A will be transformed into a right triangular
matrix,

Hn−1 · · ·H2H1A = R . (28)

4. Finally, introducing an orthogonal matrix Q = HT
1H

T
2 . . .H

T
n−1 and multi-

plying eq. (28) by Q from the left, we get the sought QR-decomposition,

A = QR . (29)

In practice one does not build explicitly the Q matrix but rather applies the
successive Householder reflections stored during the decomposition.

Givens rotations A Givens rotation is a transformation in the form

A→ G(p, q, θ)A , (30)

where A is the object to be transformed—matrix of vector—and G(p, q, θ) is the
Givens rotation matrix (also known as Jacobi rotation matrix): an orthogonal
matrix in the form

G(p, q, θ) =

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · sin θ · · · 0
...

...
. . .

...
...

0 · · · − sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

← row p

← row q
. (31)

6

When a Givens rotation matrix G(p, q, θ) multiplies a vector x, only elements xp
and xq are affected. Considering only these two affected elements, the Givens
rotation is given explicitly as[

x′p
x′q

]
=

[
cos θ sin θ
− sin θ cos θ

] [
xp
xq

]
=

[
xp cos θ + xq sin θ
−xp sin θ + xq cos θ

]
. (32)

Apparently the rotation can zero the element x′q, if the angle θ is chosen as

tan θ =
xq
xp
⇒ θ = atan2(xq, xp) . (33)

A sequence of Givens rotations,

G =

m∏
n≥q>p=1

G(p, q, θqp) , (34)

(where n×m is the dimension of the matrix A) can zero all elements of a matrix
below the main diagonal if the angles θqp are chosen to zero the elements with
indices q, p of the partially transformed matrix just before applying the matrix
G(p, q, θqp). The resulting matrix is obviously the R-matrix of the sought QR-
decomposition of the matrix A where G = QT.

In practice one does not explicitly builds the G matrix but rather stores the θ
angles in the places of the corresponding zeroed elements of the original matrix:

#include<g s l / g s l mat r i x . h>
#include<math . h>
void g i v en s q r (g s l mat r i x ∗ A){ /∗ A <− Q,R ∗/
for (int q=0;q<A−>s i z e 2 ; q++)for (int p=q+1;p<A−>s i z e 1 ; p++){
double theta=atan2 (g s l ma t r i x g e t (A, p , q) , g s l ma t r i x g e t (A, q , q)) ;
for (int k=q ; k<A−>s i z e 2 ; k++){
double xq=g s l ma t r i x g e t (A, q , k) , xp=g s l ma t r i x g e t (A, p , k) ;
g s l ma t r i x s e t (A, q , k , xq∗ cos (theta)+xp∗ s i n (theta)) ;
g s l ma t r i x s e t (A, p , k,−xq∗ s i n (theta)+xp∗ cos (theta)) ; }

g s l ma t r i x s e t (A, p , q , theta) ; } }

When solving the linear system Ax = b one transforms it into the equivalent
triangular system Rx = Gb where one calculates Gb by successively applying the
individual Givens rotations with the stored θ-angles:

#include<g s l / g s l v e c t o r . h>
#include<g s l / g s l mat r i x . h>
#include<math . h>
void givens qr QTvec (g s l ma t r i x ∗ QR, g s l v e c t o r ∗ v){ /∗ v <− QˆTv ∗/
for (int q=0; q<QR−>s i z e 2 ; q++)for (int p=q+1; p<QR−>s i z e 1 ; p++){
double theta = g s l ma t r i x g e t (QR, p , q) ;
double vq=g s l v e c t o r g e t (v , q) , vp=g s l v e c t o r g e t (v , p) ;
g s l v e c t o r s e t (v , q , vq∗ cos (theta)+vp∗ s i n (theta)) ;
g s l v e c t o r s e t (v , p,−vq∗ s i n (theta)+vp∗ cos (theta)) ; } }

The triangular system Rx = Gb is then solved by the ordinary back-substitution:

7

#include<g s l / g s l mat r i x . h>
#include” g i v en s q r . h”
void g i v e n s q r s o l v e (g s l ma t r i x ∗ QR, g s l v e c t o r ∗ b){
givens qr QTvec (QR, b) ;
backsub (QR, b) ; }

If one needs to build the Q-matrix explicitly, one uses

Qij = eTi Qej = eTj Q
Tei , (35)

where ei is the unit vector in the direction i and where again one can use the
successive rotations to calculate QTei,

#include<g s l / g s l v e c t o r . h>
#include<g s l / g s l mat r i x . h>
#include” g i v en s q r . h”
void givens qr unpack Q (g s l ma t r i x ∗ QR, g s l ma t r i x ∗ Q){
g s l v e c t o r ∗ e i = g s l v e c t o r a l l o c (QR−>s i z e 1) ;
for (int i =0; i<QR−>s i z e 1 ; i++){
g s l v e c t o r s e t b a s i s (e i , i) ;
g ivens qr QTvec (QR, e i) ;
for (int j =0; j<QR−>s i z e 2 ; j++)
g s l ma t r i x s e t (Q, i , j , g s l v e c t o r g e t (e i , j)) ; }

g s l v e c t o r f r e e (e i) ; }

Since each Givens rotation only affects two rows of the matrix it is possible
to apply a set of rotations in parallel. Givens rotations are also more efficient on
sparse matrices.

1.3.2 LU-decomposition

LU-decomposition is a factorization of a square matrix A into a product of a lower
triangular matrix L and an upper triangular matrix U,

A = LU . (36)

The linear system Ax = b after LU-decomposition of the matrix A becomes
LUx = b and can be solved by first solving Ly = b for y and then Ux = y for x
with two runs of forward and backward substitutions.

If A is an n× n matrix, the condition (36) is a set of n2 equations,

n∑
k=1

LikUkj = Aij

∣∣
i,j=1...n

, (37)

for n2 + n unknown elements of the triangular matrices L and U. The decompo-
sition is thus not unique.

Usually the decomposition is made unique by providing extra n conditions e.g.
by the requirement that the elements of the main diagonal of the matrix L are
equal one,

Lii = 1 , i = 1 . . . n . (38)

8

The system (37) with the extra conditions (38) can then be easily solved row
after row using the Doolittle’s algorithm,

for i = 1 . . . n :

Lii = 1
for j = i . . . n : Uij = Aij −

∑
k<i LikUkj

for j = i+ 1 . . . n : Lji = 1
Uii

(
Aji −

∑
k<j LjkUki

)
In a slightly different Crout’s algorithm it is the matrix U that has unit diagonal

elements,

for i = 1 . . . n :

Uii = 1
for j = i . . . n : Lji = Aji −

∑
k<i LjkUki

for j = i+ 1 . . . n : Uij = 1
Lii

(
Aji −

∑
k<j LjkUki

)
Without a proper ordering (permutations) in the matrix, the factorization may

fail. For example, it is easy to verify that A11 = L11U11. If A11 = 0, then at least
one of L11 and U11 has to be zero, which implies either L or U is singular, which
is impossible if A is non-singular. This is however only a procedural problem.
It can be removed by simply reordering the rows of A so that the first element
of the permuted matrix is nonzero (or, even better, the largest in absolute value
among all elements of the column below the diagonal). The same problem in
subsequent factorization steps can be removed in a similar way. Such algorithm is
referred to as partial pivoting. It requires an extra integer array to keep track of
row permutations.

1.3.3 Cholesky decomposition

The Cholesky decomposition of a Hermitian positive-definite matrix A is a decom-
position in the form

A = LL† , (39)

where L is a lower triangular matrix with real and positive diagonal elements, and
L† is the conjugate transpose of L.

For real symmetric positive-definite matrices the decomposition reads

A = LLT , (40)

where L is real.
The decomposition can be calculated using the following in-place algorithm,

Ljj =

√√√√Ajj −
j−1∑
k=1

L2
jk , Lij =

1

Ljj

(
Aij −

j−1∑
k=1

LikLjk

)∣∣∣∣∣
i>j

. (41)

The expression under the square root is always positive if A is real and positive-
definite.

9

When applicable, the Cholesky decomposition is about twice as efficient as
LU-decomposition for solving systems of linear equations.

1.4 Determinant of a matrix

LU- and QR-decompositions allow O(n3) calculation of the determinant of a square
matrix. Indeed, for the LU-decomposition,

detA = detLU = detLdetU = detU =

n∏
i=1

Uii . (42)

For the Gram-Schmidt QR-decomposition

detA = detQR = detQdetR . (43)

Since Q is an orthogonal matrix (detQ)2 = 1,

|detA| = |detR| =

∣∣∣∣∣
n∏

i=1

Rii

∣∣∣∣∣ . (44)

With Gram-Schmidt method one arbitrarily assigns positive sign to diagonal ele-
ments of the R-matrix thus removing from the R-matrix the memory of the original
sign of the determinant.

However with Givens rotation method the determinant of the individual ro-
tation matrix—and thus the determinant of the total rotation matrix—is equal
one, therefore for a square matrix A the QR-decomposition A = GR via Givens
rotations allows calculation of the determinant with the correct sign,

detA = detR ≡
n∏

i=1

Rii (45)

1.5 Matrix inverse

The inverse A−1 of a square n×n matrix A can be calculated by solving n linear
equations

Axi = ei

∣∣∣
i=1,...,n

, (46)

where ei is the unit-vector in the i-direction: a column where all elements are
equal zero except for the element number i which is equal one. Thus the set of
columns {ei}i=1,...,n form the identity matrix. The matrix made of columns xi is
apparently the inverse of A.

Here is an implementation of this algorithm using the functions from the Givens
rotation chapter,

10

#include<g s l / g s l v e c t o r . h>
#include<g s l / g s l mat r i x . h>
#include” g i v en s q r . h”
void g i v e n s q r i n v e r s e (g s l ma t r i x ∗ QR, g s l ma t r i x ∗ B){
g s l m a t r i x s e t i d e n t i t y (B) ;
for (int i =0; i<QR−>s i z e 2 ; i++){
g s l v e c t o r v i ew v = gs l matr ix co lumn (B, i) ;
g i v e n s q r s o l v e (QR,&v . vec to r) ; } }

References

[1] Wallace Givens. Computation of plane unitary rotations transforming a general
matrix to triangular form. J. SIAM, 6(1):26–50, 1958.

[2] A.S. Householder. Unitary triangularization of a nonsymmetric matrix. Journal
of the ACM, 5(4):339–342, 1958.

11

