
1 Eigenvalues and eigenvectors

1.1 Introduction

A non-zero column-vector v is called the eigenvector of a matrix A with the eigen-
value λ, if

Av = λv . (1)

If an n × n matrix A is real and symmetric, AT = A, then it has n real
eigenvalues λ1, . . . , λn, and its (orthogonalized) eigenvectors V = {v1, . . . ,vn}
form a full basis,

VVT = VTV = 1 , (2)

in which the matrix is diagonal,

VTAV =

λ1 0 · · · 0

0 λ2
...

...
. . .

0 · · · λn

 ≡ D . (3)

Matrix diagonalization means finding all eigenvalues and (optionally) eigenvec-
tors of a matrix. Once all eigenvalues and eigenvectors are found, the Eigenvalue
Decomposition of the matrix is given as

A = VDVT . (4)

Eigenvalues and eigenvectors enjoy a multitude of applications in different
branches of science and technology.

1.2 Similarity transformations

Orthogonal transformations,
A→ QTAQ , (5)

where QTQ = 1, and, generally, similarity transformations,

A→ S−1AS , (6)

preserve eigenvalues and eigenvectors. Therefore one of the strategies to diago-
nalize a matrix is to apply a sequence of similarity transformations (also called
rotations) which (iteratively) turn the matrix into diagonal form.

1

1.2.1 Jacobi eigenvalue algorithm

Jacobi eigenvalue algorithm is an iterative method to calculate the eigenvalues and
eigenvectors of a real symmetric matrix by a sequence of Jacobi rotations.

Jacobi rotation is an orthogonal transformation which zeroes a pair of the off-
diagonal elements of a (real symmetric) matrix A,

A→ A′ = J(p, q)TAJ(p, q) : A′pq = A′qp = 0 . (7)

The orthogonal matrix J(p, q) which eliminates the element Apq is called the Jacobi
rotation matrix. It is equal identity matrix except for the four elements with indices
pp, pq, qp, and qq,

J(p, q) =

1
. . . 0

cosφ · · · sinφ
...

. . .
...

− sinφ · · · cosφ

0
. . .

1

← row p

← row q
. (8)

Or explicitly,

J(p, q)ij = δij ∀ ij /∈ {pq, qp, pp, qq} ;

J(p, q)pp = cosφ = J(p, q)qq ;

J(p, q)pq = sinφ = −J(p, q)qp . (9)

After a Jacobi rotation, A→ A′ = JTAJ, the matrix elements of A′ become

A′ij = Aij ∀ i 6= p, q ∧ j 6= p, q

A′pi = A′ip = cApi − sAqi ∀ i 6= p, q ;

A′qi = A′iq = sApi + cAqi ∀ i 6= p, q ;

A′pp = c2App − 2scApq + s2Aqq ;

A′qq = s2App + 2scApq + c2Aqq ;

A′pq = A′qp = sc(App −Aqq) + (c2 − s2)Apq , (10)

where c ≡ cosφ, s ≡ sinφ. The angle φ is chosen such that after rotation the
matrix element A′pq is zeroed,

tan(2φ) =
2Apq

Aqq −App
⇒ A′pq = 0 , , φ = atan2(2Apq, Aqq −App) . (11)

A side effect of zeroing a given off-diagonal element Apq by a Jacobi rotation
is that other off-diagonal elements are changed. Namely, the elements of the rows

2

and columns with indices p and q. However, after the Jacobi rotation the sum of
squares of all off-diagonal elements is reduced. The algorithm repeatedly performs
rotations until the off-diagonal elements become sufficiently small.

The convergence of the Jacobi method can be proved for two strategies for
choosing the order in which the elements are zeroed:

1. Classical method: with each rotation the largest of the remaining off-diagonal
elements is zeroed.

2. Cyclic method: the off-diagonal elements are zeroed in strict order, e.g. row
after row.

Although the classical method allows the least number of rotations, it is typ-
ically slower than the cyclic method since searching for the largest element is an
O(n2) operation. The count can be reduced by keeping an additional array with
indexes of the largest elements in each row. Updating this array after each rotation
is only an O(n) operation.

A sweep is a sequence of Jacobi rotations applied to all non-diagonal elements.
Typically the method converges after a small number of sweeps. The operation
count is O(n) for a Jacobi rotation and O(n3) for a sweep.

The typical convergence criterion is that the diagonal elements have not changed
after a sweep. Other criteria can also be used, like the sum of absolute values of
the off-diagonal elements is small,

∑
i<j |Aij | < ε, where ε is the required accuracy,

or the largest off-diagonal element is small, max |Ai<j | < ε.
The eigenvectors can be calculated as V = 1J1J2..., where Ji are the successive

Jacobi matrices. At each stage the transformation is

Vij → Vij , j 6= p, q

Vip → cVip − sViq (12)

Viq → sVip + cViq

Alternatively, if only one (or few) eigenvector vk is needed, one can instead
solve the (singular) system (A− λk)v = 0.

1.2.2 QR/QL algorithm

An orthogonal transformation of a real symmetric matrix, A → QTAQ = RQ,
where Q is from the QR-decomposition of A, partly turns the matrix A into
diagonal form. Successive iterations eventually make it diagonal. If there are
degenerate eigenvalues there will be a corresponding block-diagonal sub-matrix.

For convergence properties it is of advantage to use shifts: instead of QR[A]
we do QR[A− s1] and then A→ RQ+ s1. The shift s can be chosen as Ann. As
soon as an eigenvalue is found the matrix is deflated, that is, the corresponding
row and column are crossed out.

Accumulating the successive transformation matrices Qi into the total matrix
Q = Q1 . . .QN , such that QTAQ = Λ, gives the eigenvectors as columns of the
Q matrix.

3

If only one (or few) eigenvector vk is needed one can instead solve the (singular)
system (A− λk)v = 0.

Tridiagonalization. Each iteration of the QR/QL algorithm is an O(n3) oper-
ation. On a tridiagonal matrix it is only O(n). Therefore the effective strategy
is first to make the matrix tridiagonal and then apply the QR/QL algorithm.
Tridiagonalization of a matrix is a non-iterative operation with a fixed number of
steps.

1.3 Eigenvalues of updated matrix

In practice it happens quite often that the matrix A to be diagonalized is given in
the form of a diagonal matrix, D, plus an update matrix, W,

A = D + W , (13)

where the update W is a simpler, in a certain sense, matrix which allows a more
efficient calculation of the updated eigenvalues, as compared to general diagonal-
ization algorithms.

The most common updates are

• symmetric rank-1 update,
W = uuT , (14)

where u is a columnt-vector;

• symmetric rank-2 update,

W = uvT + vuT ; (15)

• symmetric row/column update – a special case of rank-2 update,

W =

0 . . . u1 . . . 0
...

. . .
...

. . .
...

u1 . . . up . . . un
...

. . .
...

. . .
...

0 . . . un . . . 0

 ≡ e(p)uT + ue(p)T , (16)

where e(p) is the unit vector in the p-direction.

1.3.1 Rank-1 update

We assume that a size-n real symmetric matrix A to be diagonalized is given in
the form of a diagonal matrix plus a rank-1 update,

A = D + σuuT , (17)

4

where D is a diagonal matrix with diagonal elements {d1, . . . , dn} and u is a given
vector. The diagonalization of such matrix can be done in O(m2) operations, where
m ≤ n is the number of non-zero elements in the update vector u, as compared to
O(n3) operations for a general diagonalization [1].

The eigenvalue equation for the updated matrix reads(
D + σuuT

)
q = λq , (18)

where λ is an eigenvalue and q is the corresponding eigenvector. The equation can
be rewritten as

(D− λ1)q + σuuTq = 0 . (19)

Multiplying from the left with uT (D− λ1)
−1

gives

uTq + uT (D− λ1)
−1
σuuTq = 0 . (20)

Finally, dividing by uTq leads to the (scalar) secular equation (or characteristic
equation) in λ,

1 +

m∑
i=1

σu2i
di − λ

= 0 , (21)

where the summation index counts the m non-zero components of the update
vector u. The m roots of this equation determine the (updated) eigenvalues1.

Finding a root of a rational function requires an iterative technique, such as the
Newton-Raphson method. Therefore diagonalization of an updated matrix is still
an iterative procedure. However, each root can be found in O(1) iterations, each
iteration requiring O(m) operations. Therefore the iterative part of this algorithm
— finding all m roots — needs O(m2) operations.

Finding roots of this particular secular equation can be simplified by utilizing
the fact that its roots are bounded by the eigenvalues di of the matrix D. Indeed
if we denote the roots as λ1, λ2, . . . , λn and assume that λi ≤ λi+1 and di ≤ di+1,
it can be shown that

1. if σ ≥ 0,

di ≤ λi ≤ di+1 , i = 1, . . . , n− 1 , (22)

dn ≤ λn ≤ dn + σuTu ; (23)

2. if σ ≤ 0,

di−1 ≤ λi ≤ di , i = 2, . . . , n , (24)

d1 + σuTu ≤ λ1 ≤ d1 . (25)

1Multiplying this equation by
∏m

i=1(di−λ) leads to an equivalent polynomial equation of the
order m, which has exactly m roots.

5

1.3.2 Symmetric row/column update

The matrix A to be diagonalized is given in the form

A = D + e(p)uT + ue(p)T =

d1 . . . u1 . . . 0
...

. . .
...

. . .
...

u1 . . . dp . . . un
...

. . .
...

. . .
...

0 . . . un . . . dn

 , (26)

where D is a diagonal matrix with diagonal elements {di|i = 1, . . . , n}, e(p) is
the unit vector in the p-direction, and u is a given update vector where the p-th
element can be assumed to equal zero, up = 0, without loss of generality. Indeed,
if the element is not zero, one can simply redefine dp → dp + 2up, up → 0.

The eigenvalue equation for matrix A is given as

(D − λ)x + e(p)uTx + ue(p)Tx = 0 , (27)

where x is an eigenvector and λ is the corresponding eigenvalue. The component
number p of this vector-equation reads

(dp − λ)xp + uTx = 0 , (28)

while the component number k 6= p reads

(dk − λ)xk + ukxp = 0 , (29)

Dividing the last equation by (dk − λ), multiplying from the left with
∑n

k=1 uk,
substituting uTx using equation (28) and dividing by xp gives the secular equation,

−(dp − λ) +

n∑
k 6=p

u2k
dk − λ

= 0 , (30)

which determines the updated eigenvalues.

1.3.3 Symmetric rank-2 update

A symmetric rank-2 update can be represented as two consecutive rank-1 updates,

uvT + vuT = aaT − bbT , (31)

where

a =
1√
2

(u + v) , b =
1√
2

(u− v) . (32)

The eigenvalues can then be found by applying the rank-1 update method twice.

6

1.4 Singular Value Decomposition

Singular Value Decomposition (SVD) is a factorization of matrix A in the form

A = UDVT , (33)

where D is a diagonal matrix, and U and V are orthogonal matrices (UTU = 1
and VTV = 1).

The elements of the diagonal matrix D are called the singular values of ma-
trix A. Singular values can always be chosen non-negative by chaging the signs of
the corresponding columns of matrix U.

Singular values are equal the square roots of the eigenvalues of the real sym-
metrix matrix ATA. Indeed, by construction the matrix ATA is positive definite,
therefore its eigenvalues are not-negiative and its eigenvalue decomposition can be
written as

ATA = VS2VT (34)

where S is the diagonal matrix of square roots of ATA, and V is the matrix of
corresponding eigenvectors. Then the singular value decomposition of matrix A
can be formally written as

A = USVT , U = AVS−1 . (35)

One algorithm to perform SVD is the two-sided Jacobi SVD algorithm which is
a generalization of the Jacobi eigenvalue algorithm. In the two-sided Jacobi SVD
algorithm one first applies a Givens rotation to symmetrize a pair of off-diagonal
elements of the matrix and then applies a Jacobi transformation to eliminate these
off-diagonal elements.

It is an iterative procedure where one starts with A0 = A and then iterates

Ak → Ak+1 = JT
kG

T
kAkJk . (36)

Just like in the Jacobi eigenvalue algorithm the iterations are performed in
cyclic sweeps over all non-diagonal elements of the matrix. At each iteration the
matrix G equalizes the correponding non-diagonal elements, and then the Jacobi
transformation zeroes them. The iteration procedure stops when the diagonal
elements remain unchanged for a whole sweep.

For a 2×2 matrix the two-sided Jacobi SVD transformation is given as follow-
ing: first, one applies a Givens rotation to symmetrize two off-diagonal elements,

Ak ≡
[
w x
y z

]
→ A

′

k = GT
kAk =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
w x
y z

]
=

[
a b
b c

]
, (37)

where the rotation angle θ = atan2(x−y, w+z); and, second, one makes the usual
Jacobi transformation to eliminate the off-diagonal elements,

A
′

k → Ak+1 = JT
kA

′

kJk

=

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

] [
a b
b c

] [
cos(φ) sin(φ)
− sin(φ) cos(φ)

]
=

[
d1 0
0 d1

]
. (38)

7

The matrices U and V are accumulated (from identity matrices) as

Uk+1 = UkGkJk , (39)

Vk+1 = VkJk . (40)

If the matrix A is a tall n×m non-square matrix (n > m), the first step should
be the QR-decomposition,

A = QR , (41)

where Q is the n × m orthogonal matrix and R is a square triangular m × m
matrix.

The second step is the normal SVD of the square matrix R,

R = U′DVT . (42)

Now the SVD of the original matrix A is given as

A = UDVT , (43)

where
U = QU′ . (44)

References

[1] Gene H. Golub. Some modified matrix eigenvalue problems. SIAM Rev.,
15(2):318–334, 1973.

8

Table 1: Jacobi diagonalization in C using gsl matrix and gsl vector as con-
tainers.

#include<math . h>
#include<g s l / g s l mat r i x . h>
#include<g s l / g s l v e c t o r . h>
int j a c ob i (g s l ma t r i x ∗ A, g s l v e c t o r ∗ e , g s l ma t r i x ∗ V){
/∗ Jacobi d i a g ona l i z a t i on ; upper t r i a n g l e o f A i s des t royed ;

e and V accumulate e i g enva l u e s and e i g enve c t o r s ∗/
int changed , sweeps=0, n=A−>s i z e 1 ;
for (int i =0; i<n ; i++)g s l v e c t o r s e t (e , i , g s l ma t r i x g e t (A, i , i)) ;
g s l m a t r i x s e t i d e n t i t y (V) ;
do{ changed=0; sweeps++; int p , q ;
for (p=0;p<n ; p++)for (q=p+1;q<n ; q++){
double app=g s l v e c t o r g e t (e , p) ;
double aqq=g s l v e c t o r g e t (e , q) ;
double apq=g s l ma t r i x g e t (A, p , q) ;
double phi=0.5∗ atan2 (2∗apq , aqq−app) ;
double c = cos (phi) , s = s i n (phi) ;
double app1=c∗c∗app−2∗s ∗c∗apq+s ∗ s ∗aqq ;
double aqq1=s ∗ s ∗app+2∗s ∗c∗apq+c∗c∗aqq ;
i f (app1!=app | | aqq1!=aqq){ changed=1;
g s l v e c t o r s e t (e , p , app1) ;
g s l v e c t o r s e t (e , q , aqq1) ;
g s l ma t r i x s e t (A, p , q , 0 . 0) ;
for (int i =0; i<p ; i++){
double a ip=g s l ma t r i x g e t (A, i , p) ;
double a iq=g s l ma t r i x g e t (A, i , q) ;
g s l ma t r i x s e t (A, i , p , c∗aip−s ∗ a iq) ;
g s l ma t r i x s e t (A, i , q , c∗ a iq+s ∗ a ip) ; }

for (int i=p+1; i<q ; i++){
double api=g s l ma t r i x g e t (A, p , i) ;
double a iq=g s l ma t r i x g e t (A, i , q) ;
g s l ma t r i x s e t (A, p , i , c∗api−s ∗ a iq) ;
g s l ma t r i x s e t (A, i , q , c∗ a iq+s ∗ api) ; }

for (int i=q+1; i<n ; i++){
double api=g s l ma t r i x g e t (A, p , i) ;
double aq i=g s l ma t r i x g e t (A, q , i) ;
g s l ma t r i x s e t (A, p , i , c∗api−s ∗ aq i) ;
g s l ma t r i x s e t (A, q , i , c∗ aq i+s ∗ api) ; }

for (int i =0; i<n ; i++){
double vip=g s l ma t r i x g e t (V, i , p) ;
double viq=g s l ma t r i x g e t (V, i , q) ;
g s l ma t r i x s e t (V, i , p , c∗vip−s ∗ viq) ;
g s l ma t r i x s e t (V, i , q , c∗ viq+s ∗ vip) ; }
} } }while (changed !=0) ;

return sweeps ; }

9

