An example of using $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ and Gnuplot: the exponential function

D.V. Fedorov

March 4, 2020

The exponential function can be defined as the solution to the differential equaion,

$$
\begin{equation*}
y^{\prime}(x)=y(x), \tag{1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
y(0)=1 \tag{2}
\end{equation*}
$$

The argument can be reduced to $x \in[0,1]$ using identities,

$$
\begin{align*}
\exp (x) & =\exp \left(\frac{x}{2}\right) \exp \left(\frac{x}{2}\right) \tag{3}\\
\exp (-x) & =\frac{1}{\exp (x)} \tag{4}
\end{align*}
$$

Once the argument is reduced the differential equation (1) can be integrated numerically with sufficient accuracy.

Figure 1: Illustration of the exponential function.

