
1 Nonlinear equations

1.1 Introduction

Non-linear equations (or root-finding) is a problem of finding a set of n variables
x = {x1, . . . , xn} which satisfy a system of n non-linear equations

fi(x1, ..., xn) = 0
∣∣∣
i=1,...,n

. (1)

In matrix notation the system is written as

f(x) = 0 , (2)

where f(x)
.
= {f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)}.

In one-dimension, n = 1, it is generally possible to plot the function in the
region of interest and see whether the graph crosses the x-axis. One can then be
sure the root exists and even figure out its approximate position to start one’s
root-finding algorithm from. In multi-dimensions one generally does not know
if the root exists at all, until it is found.

The root-finding algorithms generally proceed by iteration, starting from
some approximate solution and making consecutive steps—hopefully in the di-
rection of the suspected root—until some convergence criterion is satisfied. The
procedure is generally not even guaranteed to converge unless starting from a
point close enough to the sought root.

We shall only consider the multi-dimensional case here since i) the multi-
dimensional root-finding is more difficult, and ii) the multi-dimensional routines
can also be used in a one-dimensional case.

1.2 Newton’s method

Newton’s method (also reffered to as Newton-Raphson method, after Isaac New-
ton and Joseph Raphson) is a root-finding algorithm that uses the first term of
the Taylor series of the functions fi to linearise the system (1) in the vicinity of
a suspected root. It is one of the oldest and best known methods and is a basis
of a number of more refined methods.

Suppose that the point x = {x1, . . . , xn} is close to the root. The Newton’s
algorithm tries to find the step ∆x which would move the point towards the
root, such that

fi(x + ∆x) = 0
∣∣∣
i=1,...,n

. (3)

1

The first order Taylor expansion of (3) gives a system of linear equations,

fi(x) +

n∑
k=1

∂fi
∂xk

∆xk = 0
∣∣∣
i=1,...,n

, (4)

or, in the matrix form,
J∆x = −f(x), (5)

where J is the matrix of partial derivatives,

Jik
.
=
∂fi
∂xk

, (6)

called the Jacobian matrix. In practice, if derivatives are not available analyti-
cally, one uses finite differences,

∂fi
∂xk

≈ fi(x1, . . . , xk−1, xk + δx, xk+1, . . . , xn)− fi(x1, . . . , xk, . . . , xn)

δx
, (7)

with δx� s with s being the typical scale of the problem at hand.
One should always rescale one’s problem such that the typical scale is around

unity. In this case δx can be chosen as the square root of the machine epsilon.
The solution ∆x to the linear system (5)—called the Newton’s step—gives

the approximate direction and the approximate step-size towards the solution.
The Newton’s method converges quadratically if sufficiently close to the

solution. Otherwise the full Newton’s step ∆x might actually diverge from the
solution. Therefore in practice a more conservative step, λ∆x with λ < 1, is
usually taken. The strategy of finding the optimal λ is referred to as line search.

It is typically not worth the effort to find λ which minimizes ‖f(x + λ∆x)‖
exactly, since ∆x is only an approximate direction towards the root. Instead an
inexact but quick minimization strategy is usually used, like the backtracking
line search where one first attempts the full step, λ = 1, and then backtracks,
λ← λ/2, until the condition

‖f(x + λ∆x)‖ <
(

1− λ

2

)
‖f(x)‖ (8)

is satisfied. If the condition is not satisfied for sufficiently small λmin the step
is taken with λmin simply to step away from the difficult place and try again.

Following is a typical algrorithm of the Newton’s method with backtracking
line search and condition (8),

2

repeat

calculate the Jacobian matrix J
solve J∆x = −f(x) for ∆x
λ← 1
while

(
‖f(x + λ∆x)‖ >

(
1− λ

2

)
‖f(x)‖ and λ > 1

64

)
do λ← λ/2

x← x + λ∆x
until converged (e.g. ‖f(x)‖ < tolerance)

A somewhat more refined backtracking linesearch is based on an approximate
minimization of the function

g(λ)
.
=

1

2
‖f(x + λ∆x)‖2 (9)

using interpolation. The values g(0) = 1
2‖f(x)‖2 and g′(0) = −‖f(x)‖2 are al-

ready known (check this). If the previous step with certain λtrial was rejected,
we also have g(λtrial). These three quantities allow to build a quadratic approx-
imation,

g(λ) ≈ g(0) + g′(0)λ+ cλ2 , (10)

where

c =
g(λtrial)− g(0)− g′(0)λtrial

λ2trial
. (11)

The minimum of this approximation (determined by the condition g′(λ) = 0),

λnext = −g
′(0)

2c
, (12)

becomes the next trial step-size.
The procedure is repeated recursively until either condition (8) is satisfied

or the step becomes too small (in which case it is taken unconditionally in order
to simply get away from the difficult place).

1.3 Quasi-Newton methods

The Newton’s method requires calculation of the Jacobian matrix at every iter-
ation. This is generally an expensive operation. Quasi-Newton methods avoid
calculation of the Jacobian matrix at the new point x + ∆x, instead trying to
use certain approximations, typically rank-1 updates.

3

1.3.1 Broyden’s method

Broyden’s algorithm [1] estimates the Jacobian J + ∆J at the point x + ∆x
using the finite-difference approximation,

(J + ∆J)∆x = ∆f , (13)

where ∆f
.
= f(x + ∆x)− f(x) and J is the Jacobian at the point x.

The matrix equation (13) is under-determined in more than one dimension
as it contains only n equations to determine n2 matrix elements of ∆J. Broyden
suggested to choose ∆J as a rank-1 update, linear in ∆x,

∆J = c∆xT , (14)

where the unknown vector c can be found by substituting (14) into (13), which
gives

∆J =
(∆f − J∆x)∆xT

∆xT∆x
. (15)

In practice if one wanders too far from the point where J was first calcu-
lated the accuracy of the updates may decrease significantly. In such case one
might need to recalculate J anew. For example, two successive steps with λmin

might be interpreted as a sign of accuracy loss in J and subsequently trigger its
recalculation.

It also possible to update directly the inverse B
.
= J−1 of the Jacobian

matrix using the Sherman-Morrison formula for the inverse of a rank-1 updated
matrix,

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (16)

For the update (15) the Sherman-Morrison formula gives

∆B =
∆x−B∆f

∆xTB∆f
∆xTB . (17)

Another update from the Broyden’s class is

∆B =
∆x−B∆f

∆xT∆f
∆xT . (18)

4

References

[1] C.G. Broyden. A class of methods for solving nonlinear simultaneous equa-
tions. JSTOR, 19(92):577593, 1965.

5

Table 1: Python implementation of Newton’s root-finding algorithm with back-
tracking.

def newton (f : ” func t i on ” , x s t a r t : vector , eps : f loat=1e−3,dx : f loat=1e−6):
x=xs t a r t . copy () ; n=x . s i z e ; J = matrix (n , n)
while True :
fx=f (x)
for j in range (n) :
x [j]+=dx
df=f (x)− fx
for i in range (n) : J [i , j] = df [i] / dx
x [j]−=dx

g ivens . qr (J)
Dx = givens . s o l v e (J,− fx)
s=2
while True :
s/=2
y=x+Dx∗ s
fy=f (y)
i f fy . norm()<(1− s /2)∗ fx . norm () or s<0.02 : break

x=y ; fx=fy
i f Dx. norm()<dx or fx . norm()< eps : break

return x ;

6

