
1 Minimization and optimization

1.1 Introduction

Minimization (maximization) is a problem of finding the minimum (maximum)
of a given — generally non-linear — real valued function φ(x) (often called the
objective function) of an n-dimensional argument x

.
= {x1, . . . , xn}.

Minimization is a simple case of a more general poblem — optimization —
which includes finding best available values of the objective function within a
given domain and subject to given constrains.

Minimization is not unrelated to root-finding: at the minimum all partial
derivatives of the objective function vanish,

∂φ

∂xi
= 0

∣∣∣∣
i=1,...,n

, (1)

and one can alternatively solve this system of (non-linear) equations.

1.2 Local minimization

1.2.1 Newton’s methods

Newton’s method is based on the quadratic approximation of the objective
function φ in the vicinity of the suspected minimum,

φ(x + ∆x) ≈ φ(x) +∇φ(x)T∆x +
1

2
∆xTH(x)∆x , (2)

where the vector ∇φ(x) is the gradient of the objective function at the point x,

∇φ(x)
.
=

{
∂φ(x)

∂xi

}
i=1,...,n

, (3)

and H(x) is the Hessian matrix – a square matrix of second-order partial deriva-
tives of the objective function at the point x,

H(x)
.
=

{
∂2φ(x)

∂xi∂xj

}
i,j∈1,...,n

. (4)

The minimum of the quadratic form (2), as function of ∆x, is found at the point
where its gradient with respect to ∆x vanishes,
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∇φ(x) + H(x)∆x = 0 . (5)

This gives an approximate step towards the minimum, called the Newton’s step,

∆x = −H(x)−1∇φ(x) . (6)

The original Newton’s method is simply the iteration,

xk+1 = xk −H(xk)−1∇φ(xk) , (7)

where at each iteration the full Newton’s step is taken and the Hessian matrix
is recalculated.

In practice, instead of calculating H−1 one rather solves the linear equa-
tion (5).

Usually the Newton’s method is modified to take a smaller step s,

s = λ∆x, (8)

with 0 < λ < 1. The factor λ can be found by a backtracking algoritm similar
to that in the Newton’s method for root-finding. One starts with λ = 1 and
than backtracks, λ← λ/2, until the Armijo condition,

φ(x + s) < φ(x) + αsT∇φ(x) , (9)

is satisfied (or the minimal λ is reached, in which case the step is taken uncon-
ditionally). The parameter α can be chosen as small as 10−4.

1.2.2 Quasi-Newton methods

Quasi-Newton methods are variations of the Newton’s method which attempt
to avoid recalculation of the Hessian matrix at each iteration, trying instead
certain updates based on the analysis of the gradient vectors. The update δH
is usually chosen to satisfy the condition

∇φ(x + s) = ∇φ(x) + (H + δH)s , (10)

called secant equation, which is the Taylor expansion of the gradient.
The secant equation is under-determined in more than one dimension as it

consists of only n equations for the n2 unknown elements of the update δH.
Various quasi-Newton methods use different choices for the form of the solution
of the secant equation.
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In practice one typically uses the inverse Hessian matrix (often—but not
always—denoted as B) and applies the updates directly to the inverse matrix
thus avoiding the need to solve the linear equation (5) at each iteration.

For the inverse Hessian matrix the secant equation (10) reads

(B + δB)y = s , (11)

or, in short,
δBy = u , (12)

where B
.
= H−1, y

.
= ∇φ(x + s)−∇φ(x), and u

.
= s−By.

One usually starts with the identity matrix as the zeroth approximation for
the inverse Hessian matrix and then applies the updates.

If the minimal λ is reached during the bactracking line-search—which might
be a signal of lost precision in the approximate (inverse) Hessian matrix—it is
advisable to reset the current inverse Hessian matrix to identity matrix.

Broyden’s update The Broyden’s update is chosen in the form

δB = csT . (13)

where the vector c is found from the condition (12),

c =
u

sTy
. (14)

Sometimes the dot-product sTy becomes very small or even zero which re-
sults in serious numerical difficulties. One can avoid this by only performing
update if the condition |sTy| > ε is satisfied where ε is a small number, say 10−6.

Symmetric Broyden’s update The Broyden’s update (13) is not symmetric
(while the Hessian matrix should be) which is an obvious drawback. Therefore
a beter approximation might be the symmetric Broyden’s update,

δB = asT + saT . (15)

The vector a is again found from the condition (12),

a =
u− γs
sTy

, (16)

where γ = (uTy)/(2sTy).
Again one only performs the update if |sTy| > ε.
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SR1 update The symmetric-rank-1 update (SR1) in chosen in the form

δB = vvT , (17)

where the vector v is again found from the condition (10), which gives

δB =
uuT

uTy
. (18)

Again, one only performs the update if denominator is not too small, that
is, |uTy| > ε.

Other popular updates The wikipedia article “Quasi-Newton method” list
several other popular updates.

1.2.3 Downhill simplex method

The downhill simplex method [1] (also called “Nelder-Mead” or “amoeba”) is a
commonnly used minimization algorithm where the minimum of a function in an
n-dimensional space is found by transforming a simplex—a polytope with n+1
vertexes—according to the function values at the vertexes, moving it downhill
until it converges towards the minimum.

The advantages of the downhill simplex method is its stability and the lack
of use of derivatives. However, the convergence is realtively slow as compared
to Newton’s methods.

In order to introduce the algorithm we need the following definitions:

• Simplex: a figure (polytope) represented by n+1 points, called vertexes,
{p1, . . . ,pn+1} (where each point pk is an n-dimensional vector).

• Highest point: the vertex, phi, with the highest value of the function:
φ(phi) = maxk φ(pk).

• Lowest point: the vertex, plo, with the lowest value of the function:
φ(plo) = mink φ(pk).

• Centroid: the center of gravity of all points, except for the highest: pce =
1
n

∑
(k 6=hi) pk

The simplex is moved downhill by a combination of the following elementary
operations:

4



Table 1: Downhill simplex (Nelder-Mead) algorithm

REPEAT :
f i n d highest , lowest , and cen t r o id po in t s o f the s implex
try r e f l e c t i o n
IF φ(reflected) < φ(lowest) :

t ry expansion
IF φ(expanded) < φ(reflected) :

accept expansion
ELSE :

accept r e f l e c t i o n
ELSE :

IF φ(reflected) < φ(highest) :
accept r e f l e c t i o n

ELSE :
t ry con t r a c t i on
IF φ(contracted) < φ(highest) :

accept con t ra c t i on
ELSE :

do r educt i on
UNTIL converged ( e . g . s i z e ( s implex)< t o l e r a n c e )

1. Reflection: the highest point is reflected against the centroid, phi → pre =
pce + (pce − phi).

2. Expansion: the highest point reflects and then doubles its distance from
the centroid, phi → pex = pce + 2(pce − phi).

3. Contraction: the highest point halves its distance from the centroid, phi →
pco = pce + 1

2 (phi − pce).

4. Reduction: all points, except for the lowest, move towards the lowest
points halving the distance. pk 6=lo → 1

2 (pk + plo).

Table 1 shows one possible algorithm for the downhill simplex method, and
a C-implementation of simplex operations and the amoeba algorithm can be
bound in Table 4 and Table 1.4.

1.3 Global optimization

Global optimization is the problem of locating (a good approximation to) the
global minimum of a given objective function in a search space large enough to
prohibit exhaustive enumeration.
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When only a small sub-space of the search space can be realistically sampled
the stochastic methods usually come to the fore.

A good local minimizer converges to the nearest local miminum relatively
fast, so one possible global minimizer can be constructed by simply starting the
local miminizer from different random starting points.

In the following several popular global minimization algorithms are shortly
described.

1.3.1 Simulated annealing

Simulated annealing is a stochastic metaheuristic algorithm for global minimiza-
tion. The name and inspiration come from annealing—heating up and cooling
slowly—in material science. The slow cooling allows a piece of material to reach
a state with ”lowest energy”.

The objective function in the space of states is interpreted as some sort of
potential energy and the states—the points in the search space—are interpeted
as physical states of some physical system. The system attempts to make tran-
sitions from its current state to some randomly sampled nearest states with the
goal to eventually reach the state with minimal energy – the global minimum.

The system is attached to a thermal resevoir with certain temperature. Each
time the energy of the system is measured the reservoir supplies it with a random
amount of thermal energy sampled from the Boltzmann distribution,

P (E) = Te−E/T . (19)

If the temperature equals zero the system can only make transitions to the
neighboring states with lower potential energy. In this case the algorithm turns
merely into a local minimizer with random sampling.

If temperature is finite the system is able to climb up the ridges of the
potential energy—about as high as the current temperature—and thus escape
from local minima and hopefully eventually reach the global minimum.

One typically starts the simulation with some finite temperature on the
order of the height of the typical hills of the potential energy surface, letting the
system to wander almost unhindered around the landscape with a good chance
to locate if not the best then at least a good enough minimum. The temperature
is then slowly reduced following some annealing schedule which may be supplied
by the user but must end with T = 0 towards the end of the alloted time budget.

Table 2 lists one possible variant of the algorithm.
The function neigbour(state) should return a randomly chosen neighbour

of the given state.

6



Table 2: Simulated annealing algorithm

s t a t e ← s t a r t s t a t e
T ← s t a r t t empera tu r e
energy ← E( s t a t e )
REPEAT :

new state ← neighbour ( s t a t e )
new energy ← E( new state )
IF new energy < energy :

s t a t e ← new state
energy ← new energy

ELSE :

do with p r o b a b i l i t y exp
(
−newenergy−energy

T

)
:

s t a t e ← new state
energy ← new energy

r educe t empe ra tu r e a c co rd ing to s chedu l e (T)
UNTIL terminated

Downhill simplex method can incorporate simulated annealing by adding the
stochastic thermal energy to the values of the objective function at the vertices.

1.3.2 Quantum annealing

Quantum annealing is a general global minimization algorithm which—like sim-
ulated annealing—also allows the search path to escape from local minima.
However instead of the thermal jumps over the potential barriers quantum an-
nealing allows the system to tunnel through the barriers.

In its simple incarnation the quantum annealing algorithm allows the system
to attempt transitions not only to the nearest states but also to distant states
within certain ”tunneling distance” from the current state. The transition is
accepted only if it reduces the potential energy of the system.

At the beginning of the minimization procedure the tunnelling distance is
large—on the order of the size of the region where the global minimum is sus-
pected to be localed—allowing the system to explore the region. The tunneling
distance is then slowly reduced according to a schedule such that by the end
of the alloted time the tunnelling distance reduces to zero at which point the
system hopefully is in the state with minimal energy.
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Table 3: Quantum annealing algorithm

s t a t e ← s t a r t s t a t e
energy ← E( s t a t e )
R ← s t a r t r a d i u s
REPEAT :

new state ← random ne ighbour with in rad ius ( s ta te ,R)
new energy ← E( new state )
IF new energy < energy :

s t a t e ← new state
energy ← new energy

r e d u c e r a d i u s a c c o r d i n g t o s c h e d u l e (R)
UNTIL terminated

1.3.3 Evolutionary algorithms

Unlike annealing algorithms, which follow the motion of only one point in the
search space, the evolutionary algorithms typically follow a set of points called a
population of individuals. A bit like the downhill simplex method which follows
the motion of a set of points – the simplex.

The population evolves towards more fit individuals where fitness is under-
stood in the sence of minimizing the objective functions. The parameters of
the individuals (for example, the coordinates of the points in multi-dimentional
minimization of a continuous objective function) are called genes.

The algorithm proceeds iteratively with the population in each iteration
called a generation. In each generation the fitness of each individual—typically,
the value of the objective function—is evaluated and the new generation is
generated stochastically from the gene pool of the current generation through
crossovers and mutations such that the genes of more fit individuals have a
better chance of propagating into the next generation.

Each new individual in the next generation is produced from a pair of ”par-
ent” individuals of the current generation. The use of two ”parents” is biolog-
ically inspired, in practice more than two ”parents” can be used as well. The
parents for a new individual are selected from the individuals of the current
generation through a fitness based stochastic process where fitter individuals
are more likely to be selected.

The ”child” individual shares many characteristics of its ”parents”. In the
simplest case the ”child” may get its genes by simply averaging the genes of its
parents. Then a certain amount of mutations—random changes in the genes—
are added to the ”child’s” genes.
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Generation of ”children” continues until the population of the new generation
reaches the appropriate size after which the iteration repeats itself.

The algorithm is terminated when the fitness level of the population is
deemed sufficient or when the allocated budget is exhausted.

1.4 Implementation in C

References

[1] J.A.Nelder and R.Mead. A simplex method for function minimization. Com-
puter Journal, 7:308–313, 1965.
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Table 4: C implementation of simplex operations

void r e f l e c t i o n
(double∗ highest , double∗ cent ro id , int dim , double∗ r e f l e c t e d ){
for ( int i =0; i<dim ; i++) r e f l e c t e d [ i ]=2∗ c en t r o id [ i ]− h ighe s t [ i ] ;

}
void expansion

(double∗ highest , double∗ cent ro id , int dim , double∗ expanded ) {
for ( int i =0; i<dim ; i++) expanded [ i ]=3∗ c en t r o id [ i ]−2∗ h ighe s t [ i ] ;

}
void con t r a c t i on

(double∗ highest , double∗ cent ro id , int dim , double∗ contrac ted ){
for ( int i =0; i<dim ; i++)

contrac ted [ i ]=0.5∗ c en t r o id [ i ]+0.5∗ h ighe s t [ i ] ;
}
void r educt i on ( double∗∗ simplex , int dim , int l o ){

for ( int k=0;k<dim+1;k++) i f ( k!= l o ) for ( int i =0; i<dim ; i++)
simplex [ k ] [ i ]=0 .5∗ ( s implex [ k ] [ i ]+ s implex [ l o ] [ i ] ) ;

}
double d i s t ance (double∗ a , double∗ b , int dim){

double s =0; for ( int i =0; i<dim ; i++) s+=pow(b [ i ]−a [ i ] , 2 ) ;
return s q r t ( s ) ;

}
double s i z e (double∗∗ simplex , int dim){

double s =0; for ( int k=1;k<dim+1;k++){
double d i s t=d i s t ance ( s implex [ 0 ] , s implex [ k ] , dim ) ;
i f ( d i s t>s ) s=d i s t ; }

return s ;
}

void s implex update (double∗∗ simplex , double∗ f v a l u e s , int d ,
int∗ hi , int∗ lo , double∗ c en t r o id ) {
∗ hi =0; ∗ l o =0; double h ighe s t=f v a l u e s [ 0 ] , l owest =f v a l u e s [ 0 ] ;
for ( int k=1;k<d+1;k++) {
double next=f v a l u e s [ k ] ;
i f ( next>h ighe s t ){ h ighe s t=next ;∗ hi=k ;}
i f ( next<l owest ) { l owest=next ; ∗ l o=k ;} }

for ( int i =0; i<d ; i++) {
double s =0; for ( int k=0;k<d+1;k++) i f ( k!=∗ hi ) s+=simplex [ k ] [ i ] ;
c en t r o id [ i ]= s /d ; }

}
void s i m p l e x i n i t i a t e (
double fun (double ∗ ) , double∗∗ simplex , double∗ f v a l u e s , int d ,
int∗ hi , int∗ lo , double∗ c en t r o id ) {

for ( int k=0;k<d+1;k++) f v a l u e s [ k]= fun ( s implex [ k ] ) ;
s implex update ( simplex , f v a l u e s , d , hi , lo , c en t r o id ) ;

}
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Table 5: C implementation of downhill simplex algorithm

int downh i l l s imp l ex (
double F(double ∗ ) ,double∗∗ simplex , int d , double s i m p l e x s i z e g o a l )

{
int hi , lo , k=0; double c en t r o id [ d ] , F value [ d+1] , p1 [ d ] , p2 [ d ] ;
s i m p l e x i n i t i a t e (F , simplex , F value , d,& hi ,& lo , c en t r o id ) ;
while ( s i z e ( simplex , d)> s i m p l e x s i z e g o a l ){

s implex update ( simplex , F value , d,& hi ,& lo , c en t r o id ) ;
r e f l e c t i o n ( s implex [ h i ] , c ent ro id , d , p1 ) ; double f r e=F( p1 ) ;
i f ( f r e<F value [ l o ] ) { // r e f l e c t i o n l ook s good : t r y expansion

expansion ( s implex [ h i ] , c ent ro id , d , p2 ) ; double f e x=F( p2 ) ;
i f ( f ex<f r e ){ // accept expansion

for ( int i =0; i<d ; i++)s implex [ h i ] [ i ]=p2 [ i ] ; F value [ h i ]= f e x ;}
else { // r e j e c t expansion and accept r e f l e c t i o n

for ( int i =0; i<d ; i++)s implex [ h i ] [ i ]=p1 [ i ] ; F value [ h i ]= f r e ;}}
else { // r e f l e c t i o n wasn ’ t good

i f ( f r e<F value [ h i ] ) { // ok , accept r e f l e c t i o n
for ( int i =0; i<d ; i++)s implex [ h i ] [ i ]=p1 [ i ] ; F value [ h i ]= f r e ;}

else { // t ry con t rac t ion
con t r a c t i on ( s implex [ h i ] , c ent ro id , d , p1 ) ; double f c o=F( p1 ) ;
i f ( f co<F value [ h i ] ) { // accept con t rac t i on

for ( int i =0; i<d ; i++)s implex [ h i ] [ i ]=p1 [ i ] ; F value [ h i ]= f c o ;}
else { // do reduc t ion

r educt i on ( simplex , d , l o ) ;
s i m p l e x i n i t i a t e (F , simplex , F value , d,& hi ,& lo , c en t r o id ) ;}}}

k++;} return k ;
}
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