
1 Monte Carlo integration

1.1 Introduction

Monte Carlo integration is a quadrature (cubature) where the nodes are cho-
sen randomly. Typically no assumption is made about the smoothness of the
integrand, not even that it is continuous.

Monte Carlo algorithms are particularly suited for multi-dimensional inte-
grations where one of the problems is that the integration region, Ω, might have
a quite complicated boundary which can not be easily described by simple func-
tions. On the other hand, it is usually much easier to find out whether a given
point lies within the integration region or not. Therefore a popular strategy
is to create an auxiliary rectangular volume, V , which encompasses the inte-
gration volume Ω, and an auxiliary function which coincides with the integrand
inside the volume Ω and is equal zero outside. Then the integral of the auxiliary
function over the auxiliary volume is equal the original integral.

However, the auxiliary function is generally non-continuous at the boundary;
thus ordinary quadratures—that assume continuity of the integrand—are bound
to have difficulties here. One the contrary the Monte-Carlo quadratures will do
just as good (or as bad) as with continuous integrands.

A typical implementation of a Monte Carlo algorithm integrates the given
function over a rectangular volume, specified by the coordinates of its ”lower-
left” and ”upper-right” vertices, assuming the user has provided the encompass-
ing volume with the auxiliary function.

Plain Monte Carlo algorithm distributes points uniformly throughout the
integration region using uncorrelated pseudo-random sequences of points.

Adaptive algorithms, such as VEGAS and MISER, distribute points non-
uniformly in an attempt to reduce integration error using correspondingly im-
portance and stratified sampling.

Yet another strategy to reduce the error is to use correlated quasi-random
sequences.

The GNU Scientific Library, GSL, implements a plain Monte Carlo integra-
tion algorithm; a stratified sampling algorithm, MISER; an importance sampling
algorithm, VEGAS; and a number of quasi-random generators.

1

1.2 Plain Monte Carlo sampling

Plain Monte Carlo is a quadrature with random abscissas and equal weights,∫
V

f(x)dV ≈ w
N∑
i=1

f(xi) , (1)

where x is a point in the multi-dimensional integration space. One free pa-
rameter, w, allows one condition to be satisfied: the quadrature must integrate
exactly a constant function. This gives w = V/N ,∫

V

f(x)dV ≈ V

N

N∑
i=1

f(xi)
.
= V 〈f〉 . (2)

Under the assumptions of the central limit theorem the error of the integration
can be estimated as

error = V
σ√
N

, (3)

where σ is the variance of the sample,

σ2 = 〈f2〉 − 〈f〉2 . (4)

The familiar 1/
√
N convergence of a random walk process is quite slow: to

reduce the error by a factor 10 requires 100-fold increase in the number of
sample points.

Expression (3) provides only a statistical estimate of the error, which is not
a strict bound; random sampling may not uncover all the important features of
the function, resulting in an underestimate of the error.

A simple implementation of the plain Monte Carlo algorithm is shown in
Table 1.

1.3 Importance sampling

Suppose the points are distributed not uniformly but with some density ρ(x) .
That is, the number of points ∆n in the volume ∆V around point x is given as

∆n =
N

V
ρ(x)∆V, (5)

where ρ is normalised such that
∫
V
ρdV = V .

2

Table 1: Plain Monte Carlo integrator

#include <math . h>
#include <s t d l i b . h>
#define RND ((double) rand ()/RANDMAX)
void randomx(int dim , double ∗a , double ∗b , double ∗x)
{ for (int i =0; i<dim ; i++) x [i]=a [i]+RND∗(b [i]−a [i]) ; }

void plainmc (int dim , double ∗a , double ∗b ,
double f (double∗ x) , int N, double∗ r e su l t , double∗ e r r o r)
{ double V=1; for (int i =0; i<dim ; i++) V∗=b [i]−a [i] ;
double sum=0, sum2=0, fx , x [dim] ;
for (int i =0; i<N; i++){ randomx(dim , a , b , x) ; fx=f (x) ;

sum+=fx ; sum2+=fx ∗ fx ; }
double avr = sum/N, var = sum2/N−avr∗avr ;
∗ r e s u l t = avr∗V; ∗ e r r o r = sq r t (var /N)∗V;
}

The estimate of the integral is then given as∫
V

f(x)dV ≈
N∑
i=1

f(xi)∆Vi =

N∑
i=1

f(xi)
V

Nρ(xi)
= V

〈
f

ρ

〉
, (6)

where

∆Vi =
V

Nρ(xi)
(7)

is the volume-per-point at the point xi.
The corresponding variance is now given by

σ2 =

〈(
f

ρ

)2
〉
−
〈
f

ρ

〉2

. (8)

Apparently if the ratio f/ρ is close to a constant, the variance is reduced.
It is tempting to take ρ = |f | and sample directly from the integrand. How-

ever in practice evaluations of the integrand are typically expensive. There-
fore a better strategy is to build an approximate density in the product form,
ρ(x, y, . . . , z) = ρx(x)ρy(y) . . . ρz(z), and then sample from this approximate
density. A popular routine of this sort is called VEGAS.

3

1.4 Stratified sampling

Stratified sampling is a generalisation of the recursive adaptive integration al-
gorithm to random quadratures in multi-dimensional spaces.

Table 2: Recursive stratified sampling algorithm

sample N random po in t s with p l a i n Monte Carlo ;
e s t imate the average and the e r r o r ;
IF the e r r o r i s acceptab l e :

RETURN the average and the e r r o r ;
ELSE :

FOR EACH dimension :
subd iv ide the volume in two along the dimension ;
e s t imate the sub−va r i ance s in the two sub−volumes ;

p ick the dimension with the l a r g e s t sub−var iance ;
subd iv ide the volume in two along t h i s dimension ;
d i spatch two r e c u r s i v e c a l l s to each o f the sub−volumes ;
e s t imate the grand average and grand e r r o r ;
RETURN the grand average and grand e r r o r ;

The ordinary “dividing by two” strategy does not work for multi-dimensional
integrations as the number of sub-volumes grows way too fast to keep track
of. Instead one estimates along which dimension a subdivision should bring the
most dividends and only subdivides along this dimension. Such strategy is called
recursive stratified sampling. A simple variant of this algorithm is presented in
Table 2.

In a stratified sample the points are concentrated in the regions where the
variance of the function is largest, see an illustration in Figure 1.

1.5 Quasi-random (low-discrepancy) sampling

Pseudo-random sampling has high discrepancy1: it typically creates regions
with high density of points and other regions with low density of points, see an
illustration on Figure 2 (left). With pseudo-random sampling there is a finite
probability that all the N points would fall into one half of the region and none
into the other half.

Quasi-random sequences avoid this phenomenon by distributing points in
a highly correlated manner with a specific requirement of low discrepancy, see

1discrepancy is a measure of how unevenly the points are distributed over the region.

4

0 0.5 1

x

0

0.5

1

y

Figure 1: Stratified sample of a discontinuous function, f(x, y) = 1 if x2 + y2 <
0.92 otherwise f(x, y) = 0, built with the algorithm in Table 2.

Figure 2 for an example. Quasi-random sampling is like a computation on
a grid where the grid constant must not be known in advance as the grid is
ever gradually refined and the points are always distributed uniformly over the
region. The computation can be stopped at any time.

By placing points more evenly than at random, the quasi-random sequences
try to improve on the 1/

√
N convergence rate of pseudo-random sampling.

The central limit theorem does not apply in this case as the points are not
statistically independent. Therefore the variance can not be used as an estimate
of the error. The error estimation is actually not trivial. In practice one can
employ two different sequences and use the difference in the resulting integrals
as an error estimate.

1.5.1 Van der Corput and Halton sequences

A van der Corput sequence is a low-discrepancy sequence over the unit interval.
It is constructed by reversing the base-b representation of the sequence of natural
numbers (1, 2, 3, . . .). For example, the decimal van der Corput sequence begins
as

0.1, 0.2, 0.3, . . . , 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, . . . , 0.91, 0.02, 0.12, (9)

5

Figure 2: Typical distributions of pseudo-random points (left), and quasi-
random low-discrepancy points: lattice (center) and base-2/3 Halton (right)
sequences. The first thousand points are plotted in each case.

In a base-b representation a natural number n with s digits {di | i =
1 . . . s, 0 ≤ di < b} is given as

n =

s∑
k=1

dkb
k−1 . (10)

The corresponding base-b van der Corput number qb(n) is then given as

qb(n) =

s∑
k=1

dkb
−k . (11)

Here is a C implementation of this algorithm,

double corput (int n , int base){
double q=0, bk=(double)1/ base ;
while (n>0){ q += (n % base)∗bk ; n /= base ; bk /= base ; }
return q ; }

The van der Corput numbers of any base are uniformly distributed over the
unit interval. They also form a dense set in the unit interval: there exists a
subsequence of the van der Corput sequence which converges to any given real
number in [0, 1].

The Halton sequence is a generalization of the van der Corput sequence to
d-dimensional spaces. One chooses a set of coprime bases b1, . . . , bd and then
for each dimension i generates a van der Corput sequence with its own base bi.

6

The n-th Halton d-dimentional point x in the unit volume is then given as

xb1,...,bd(n) = {qb1(n), . . . , qbd(n)} . (12)

Here is a C implementation which calls the corput function listed above,

#include<a s s e r t . h>
void halton (int n , int d , double ∗x){

int base []={2 ,3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67} ;
int maxd=s izeof (base)/ s izeof (int) ; a s s e r t (d <= maxd) ;
for (int i =0; i<d ; i++) x [i]= corput (n , base [i]) ; }

1.5.2 Lattice rules

In the simplest incarnation a lattice rule can be defined as follows. Let the
generating vector z = {αi | i = 1, . . . , d} — where d is the dimension of the
integration space — be a set of cleverly chosen irrational numbers. Then the
n-th point (in the unit volume) of the sequence is given as

x(n) = frac(nz) ≡ {frac(nα1), . . . , frac(nαd)} , (13)

where frac(x) is the fractional part of x.
An implementation of this algorithm in C is given in Table 3 and an illus-

tration of such sequence is shown on Figure 2 (center).

1.6 Implementations

References

[1]

7

Table 3: Lattice low-disrepancy quasi-random sequence in C.

#define f r a c l (x) ((x)− f l o o r l (x))
#define PI 3.1415926535897932384626433832795028841971693993751L
#define r e a l long double
void l a t t i c e (int d , double ∗x){

stat ic int dim=0, n=−1; stat ic r e a l ∗ alpha ; int i ;
i f (d<0){ /∗ d<0 i s the s i g n a l to (re−) i n i t i a l i z e the l a t t i c e ∗/

dim=−d ; n=0; alpha=(r e a l ∗) r e a l l o c (alpha , dim∗ s izeof (r e a l)) ;
for (i =0; i<dim ; i++) alpha [i]= f r a c l (s q r t l (PI+i)) ;
}

else i f (d>0){
n++; a s s e r t (d==dim && n>0);
for (i =0; i<dim ; i++)x [i]= f r a c l (n∗ alpha [i]) ;
}

else i f (alpha !=NULL) f r e e (alpha) ;
return ;

}

8

Table 4: Python implementation of the stratified sampling algorithm.

import random ,math
de f randomx(a , b , rnd) :

return [a [i]+rnd ()∗ (b [i]−a [i]) for i in range (l en (a))]
de f s t a t i s t i c s (xs) :

mean=sum(xs)/ l en (xs)
var i ance=sum((x−mean)∗∗2 for x in xs)/ l en (xs)
return (mean , var iance , l en (xs))

de f s t r a t a (f , a , b , acc , eps , rnd=None , r euse =(0 ,0 , 0)) :
i f rnd==None : random . seed (1) ; rnd=random . random
dim=len (a) ; n=16∗dim ; V=1
for i in range (dim) : V∗=b [i]−a [i]
xs=[randomx(a , b , rnd) for i in range (n)]
ys=[f (xs [i]) for i in range (l en (xs))]
(mean , var iance ,)= s t a t i s t i c s (ys)
(old mean , o ld var i ance , o ld n)=reuse
i n t eg=V∗(mean∗n+old mean∗ o ld n)/ (n+old n)
e r r o r=V∗math . sq r t ((var i ance ∗n+o ld va r i an c e ∗ o ld n)/ (n+old n))\

/math . s q r t (n+old n)
i f e r ror<acc+eps ∗abs (i n t eg) :

return (integ , e r r o r)
else :

vmax=−1; kmax=0
for k in range (dim) :

(l e f t mean , l e f t v a r i a n c e , l e f t n)= s t a t i s t i c s (\
l i s t (ys [i] for i in range (n) i f xs [i] [k]<(a [k]+b [k]) / 2))

(right mean , r i gh t va r i an c e , r i g h t n)= s t a t i s t i c s (\
l i s t (ys [i] for i in range (n) i f xs [i] [k]>=(a [k]+b [k]) / 2))

v=abs (le f t mean−r ight mean)
i f v>vmax :

vmax=v ; kmax=k ;
r e u s e l e f t =(le f t mean , l e f t v a r i a n c e , l e f t n)
r e u s e r i g h t=(right mean , r i gh t va r i an c e , r i g h t n)

a2=a . copy () ; a2 [kmax]=(a [kmax]+b [kmax]) / 2
b2=b . copy () ; b2 [kmax]=(a [kmax]+b [kmax]) / 2
(i1 , e1)= s t r a t a (f , a , b2 , acc /1 .414 , eps , rnd , r e u s e l e f t)
(i2 , e2)= s t r a t a (f , a2 , b , acc /1 .414 , eps , rnd , r e u s e r i g h t)
return (i 1+i2 , math . s q r t (e1∗ e1+e2∗ e2))

9

