
Yet Another

Introduction to Numerical Methods

version 14.04

D.V. Fedorov



ii

c© 2013 Dmitri V. Fedorov

Permission is granted to copy and redistribute this work under the terms of either the
GNU General Public License1, version 3 or later, as published by the Free Software
Foundation, or the Creative Commons Attribution Share Alike License2, version 3 or
later, as published by the Creative Commons corporation.

This work is distributed in the hope that it will be useful, but without any warranty.
No responsibility is assumed by the author and the publisher for any damage from any
use of any methods, instructions or ideas contained in the material herein.

1http://en.wikipedia.org/wiki/GPL
2http://en.wikipedia.org/wiki/CC-BY-SA



Contents

1 Interpolation 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Polynomial interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Spline interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Quadratic spline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3 Cubic spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.4 Akima sub-spline interpolation . . . . . . . . . . . . . . . . . . . 8

1.4 Other forms of interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Multivariate interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Nearest-neighbor interpolation . . . . . . . . . . . . . . . . . . . 10
1.5.2 Piecewise-linear interpolation . . . . . . . . . . . . . . . . . . . . 10
1.5.3 Bi-linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Systems of linear equations 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Triangular systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Reduction to triangular form . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 QR-decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 LU-decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Cholesky decomposition . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Determinant of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Matrix inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Eigenvalues and eigenvectors 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Similarity transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Jacobi eigenvalue algorithm . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 QR/QL algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



iv CONTENTS

3.3 Eigenvalues of updated matrix . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Rank-1 update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Symmetric row/column update . . . . . . . . . . . . . . . . . . . 30
3.3.3 Symmetric rank-2 update . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Ordinary least squares 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Linear least-squares problem . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Solution via QR-decomposition . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Ordinary least-squares curve fitting . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 Variances and correlations of fitting parameters . . . . . . . . . . 37
4.5 Singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Nonlinear equations 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Quasi-Newton methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Broyden’s method . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.2 Symmetric rank-1 update . . . . . . . . . . . . . . . . . . . . . . 44

6 Minimization and optimization 47
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Local minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2.1 Newton’s methods . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.2 Quasi-Newton methods . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.3 Downhill simplex method . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Global optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.1 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.2 Quantum annealing . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.3 Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 Implementation in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Ordinary differential equations 59
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Error estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 Runge-Kutta methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.1 Embeded methods with error estimates . . . . . . . . . . . . . . 63
7.4 Multistep methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.4.1 Two-step method . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4.2 Two-step method with extra evaluation . . . . . . . . . . . . . . 66



CONTENTS v

7.5 Predictor-corrector methods . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.5.1 Two-step method with correction . . . . . . . . . . . . . . . . . . 67

7.6 Adaptive step-size control . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Numerical integration 71

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Rectangle and trapezium rules . . . . . . . . . . . . . . . . . . . . . . . 72

8.3 Quadratures with regularly spaced abscissas . . . . . . . . . . . . . . . . 73

8.3.1 Classical quadratures . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.4 Quadratures with optimized abscissas . . . . . . . . . . . . . . . . . . . 75

8.4.1 Gauss quadratures . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.4.2 Gauss-Kronrod quadratures . . . . . . . . . . . . . . . . . . . . . 79

8.5 Adaptive quadratures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.6 Variable transformation quadratures . . . . . . . . . . . . . . . . . . . . 81

8.7 Infinite intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9 Monte Carlo integration 85

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2 Plain Monte Carlo sampling . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.4 Stratified sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.5 Quasi-random (low-discrepancy) sampling . . . . . . . . . . . . . . . . . 88

9.5.1 Van der Corput and Halton sequences . . . . . . . . . . . . . . . 89

9.5.2 Lattice rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.6 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10 Power iteration methods and Krylov subspaces 93

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10.2 Krylov subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10.3 Arnoldi iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.4 Lanczos iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.5 Generalised minimum residual (GMRES) . . . . . . . . . . . . . . . . . 96

11 Fast Fourier transform 97

11.1 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 97

11.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

11.2 Cooley-Tukey algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

11.3 Multidimensional DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



vi CONTENTS

12 Multiprocessing 101
12.1 Pthreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



Chapter 1

Interpolation

1.1 Introduction

In practice one often meets a situation where the function of interest, f(x), is only
represented by a discrete set of tabulated points,

{xi, yi .= f(xi) | i = 1 . . . n} ,

obtained, for example, by sampling, experimentation, or extensive numerical calcula-
tions.

Interpolation means constructing a (smooth) function, called interpolating function
or interpolant, which passes exactly through the given points and (hopefully) approxi-
mates the tabulated function between the tabulated points. Interpolation is a specific
case of curve fitting in which the fitting function must go exactly through the data
points.

The interpolating function can be used for different practical needs like estimating
the tabulated function between the tabulated points and estimating the derivatives and
integrals involving the tabulated function.

1.2 Polynomial interpolation

Polynomial interpolation uses a polynomial as the interpolating function. Given a table
of n points, {xi, yi}, where no two xi are the same, one can construct a polynomial
P (x) of the order n − 1 which passes exactly through the points: P (xi) = yi. This

1



2 CHAPTER 1. INTERPOLATION

polynomial can be intuitively written in the Lagrange form,

P (x) =

n∑
i=1

yi

n∏
k 6=i

x− xk
xi − xk

. (1.1)

The Lagrange interpolating polynomial always exists and is unique.

Table 1.1: Polynomial interpolation in C

double p o l i n t e r p ( int n , double ∗x , double ∗y , double z ) {
double s =0,p ;
for ( int i =0; i<n ; i++) {
p=1; for ( int k=0;k<n ; k++) i f ( k!= i ) p∗=(z−x [ k ] ) / ( x [ i ]−x [ k ] ) ;
s+=y [ i ]∗p ; }

return s ; }

Higher order interpolating polynomials are susceptible to the Runge’s phenomenon:
erratic oscillations close to the end-points of the interval, see Figure 1.1.

−6 −4 −2 0 2 4 6

x

0

0.5

1

y

data points

polynomial

cubic spline

Figure 1.1: Lagrange interpolating polynomial, solid line, showing the Runge’s phe-
nomenon: large oscillations at the edges. For comparison the dashed line shows a cubic
spline.
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1.3 Spline interpolation

Spline interpolation uses a piecewise polynomial, S(x), called spline, as the interpolating
function,

S(x) = Si(x) if x ∈ [xi, xi+1]
∣∣∣
i=1,...,n−1

, (1.2)

where Si(x) is a polynomial of a given order k. Spline interpolation avoids the problem
of Runge’s phenomenon. Originally, “spline” was a term for elastic rulers that were
bent to pass through a number of predefined points. These were used to make technical
drawings by hand.

The spline of the order k ≥ 1 can be made continuous at the tabulated points,

Si(xi) = yi , Si(xi+1) = yi+1

∣∣∣
i=1,...,n−1

, (1.3)

together with its k − 1 derivatives,

S′i(xi+1) = S′i+1(xi+1) ,
S′′i (xi+1) = S′′i+1(xi+1) ,

...

S
(k−1)
i (xi+1) = S

(k−1)
i+1 (xi+1) .

∣∣∣∣∣∣∣∣∣ i = 1, . . . , n− 2 (1.4)

Continuity conditions (1.3) and (1.4) make kn + n − 2k linear equations for the
(n− 1)(k + 1) = kn+ n− k − 1 coefficients of n− 1 polynomials (1.2) of the order k.
The missing k − 1 conditions can be chosen (reasonably) arbitrarily.

The most popular is the cubic spline, where the polynomials Si(x) are of third order.
The cubic spline is a continuous function together with its first and second derivatives.
The cubic spline has a nice feature that it (sort of) minimizes the total curvature of
the interpolating function. This makes the cubic splines look good.

Quadratic splines—continuous with the first derivative—are not nearly as good as
cubic splines in most respects. In particular they might oscillate unpleasantly when a
quick change in the tabulated function is followed by a period where the function is
nearly a constant. Cubic splines are somewhat less susceptible to such oscillations.

Linear spline is simply a polygon drawn through the tabulated points.

1.3.1 Linear interpolation

Linear interpolation is a spline with linear polynomials. The continuity conditions (1.3)
can be satisfied by choosing the spline in the (intuitive) form

Si(x) = yi + pi(x− xi) , (1.5)
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where

pi =
∆yi
∆xi

, ∆yi
.
= yi+1 − yi , ∆xi

.
= xi+1 − xi . (1.6)

Table 1.2: Linear interpolation in C

#include<a s s e r t . h>
double l i n t e r p ( int n , double∗ x , double∗ y , double z ){

a s s e r t (n>1 && z>=x [ 0 ] && z<=x [ n−1 ] ) ;
int i =0, j=n−1; /∗ b inary search : ∗/
while ( j−i >1){ int m=( i+j ) / 2 ; i f ( z>x [m] ) i=m; else j=m;}
return y [ i ]+(y [ i +1]−y [ i ] ) / ( x [ i +1]−x [ i ] ) ∗ ( z−x [ i ] ) ;
}

Note that the search of the interval [xi ≤ x ≤ xi+1] in an ordered array {xi} should
be done with the binary search algorithm (also called half-interval search): the point
x is compared to the middle element of the array, if it is less than the middle element,
the algorithm repeats its action on the sub-array to the left of the middle element, if
it is greater, on the sub-array to the right. When the remaining sub-array is reduced
to two elements, the interval is found. The average number of operations for a binary
search is O(log n).

1.3.2 Quadratic spline

Quadratic spline is made of second order polynomials, conveniently written in the form

Si(x) = yi + pi(x− xi) + ci(x− xi)(x− xi+1)
∣∣∣
i=1,...,n−1

, (1.7)

which identically satisfies the continuity conditions

Si(xi) = yi , Si(xi+1) = yi+1

∣∣∣
i=1,...,n−1

. (1.8)

Substituting (1.7) into the derivative continuity condition,

S′i(xi+1) = S′i+1(xi+1)
∣∣∣
i=1,...,n−2

, (1.9)

gives n− 2 equations for n− 1 unknown coefficients ci,

pi + ci∆xi = pi+1 − ci+1∆xi+1

∣∣∣
i=1,...,n−2

. (1.10)
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One coefficient can be chosen arbitrarily, for example c1 = 0. The other coefficients
can now be calculated recursively from (1.10),

ci+1 =
1

∆xi+1
(pi+1 − pi − ci∆xi)

∣∣∣
i=1,...,n−2

. (1.11)

Alternatively, one can choose cn−1 = 0 and make the backward-recursion

ci =
1

∆xi
(pi+1 − pi − ci+1∆xi+1)

∣∣∣
i=n−2,...,1

. (1.12)

In practice, unless you know what your c1 (or cn−1) is, it is better to run both
recursions and then average the resulting c’s. This amounts to first running the forward-
recursion from c1 = 0 and then the backward recursion from 1

2cn−1.
The optimized form (1.7) of the quadratic spline can also be written in the ordinary

form suitable for differentiation and integration,

Si(x) = yi + bi(x− xi) + ci(x− xi)2 , where bi = pi − ci∆xi . (1.13)

An implementation of quadratic spline in C is listed in Table 1.3.2

1.3.3 Cubic spline

Cubic splines are made of third order polynomials,

Si(x) = yi + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 . (1.14)

This form automatically satisfies the first half of continuity conditions (1.3): Si(xi) =
yi. The second half of continuity conditions (1.3), Si(xi+1) = yi+1, and the continuity
of the first and second derivatives (1.4) give a set of equations,

yi + bihi + cih
2
i + dih

3
i = yi+1 , i = 1, . . . , n− 1

bi + 2cihi + 3dih
2
i = bi+1 , i = 1, . . . , n− 2

2ci + 6dihi = 2ci+1 , i = 1, . . . , n− 2 (1.15)

where hi
.
= xi+1 − xi.

The set of equations (1.15) is a set of 3n−5 linear equations for the 3(n−1) unknown
coefficients {ai, bi, ci | i = 1, . . . , n−1}. Therefore two more equations should be added
to the set to find the coefficients. If the two extra equations are also linear, the total
system is linear and can be easily solved.

The spline is called natural if the extra conditions are given as vanishing second
derivatives at the end-points,

S′′(x1) = S′′(xn) = 0 , (1.16)
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Table 1.3: Quadratic spline in C

#include <s t d l i b . h>
#include <a s s e r t . h>
typedef struct { int n ; double ∗x , ∗y , ∗b , ∗c ;} q s p l i n e ;
q s p l i n e ∗ q s p l i n e a l l o c ( int n , double∗ x , double∗ y ){ // b u i l d s q s p l i n e

q s p l i n e ∗ s = ( q s p l i n e ∗) mal loc ( s izeof ( q s p l i n e ) ) ; // s p l i n e
s−>b = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ; // b i
s−>c = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ; // c i
s−>x = (double∗) mal loc (n∗ s izeof (double ) ) ; // x i
s−>y = (double∗) mal loc (n∗ s izeof (double ) ) ; // y i
s−>n = n ; for ( int i =0; i<n ; i ++){s−>x [ i ]=x [ i ] ; s−>y [ i ]=y [ i ] ; }
int i ; double p [ n−1] , h [ n−1] ; //VLA from C99
for ( i =0; i<n−1; i ++){h [ i ]=x [ i +1]−x [ i ] ; p [ i ]=(y [ i +1]−y [ i ] ) / h [ i ] ; }
s−>c [ 0 ] = 0 ; // recurs ion up :
for ( i =0; i<n−2; i++)s−>c [ i +1]=(p [ i +1]−p [ i ]−s−>c [ i ]∗h [ i ] ) / h [ i +1] ;
s−>c [ n−2]/=2; // recurs ion down :
for ( i=n−3; i>=0; i−−)s−>c [ i ]=(p [ i +1]−p [ i ]−s−>c [ i +1]∗h [ i +1])/h [ i ] ;
for ( i =0; i<n−1; i++)s−>b [ i ]=p [ i ]−s−>c [ i ]∗h [ i ] ;
return s ; }

double q s p l i n e e v a l ( q s p l i n e ∗ s , double z ){ // eva l ua t e s s ( z )
a s s e r t ( z>=s−>x [ 0 ] && z<=s−>x [ s−>n−1 ] ) ;
int i =0, j=s−>n−1; // binary search :
while ( j−i >1){ int m=( i+j ) / 2 ; i f ( z>s−>x [m] ) i=m; else j=m;}
double h=z−s−>x [ i ] ;
return s−>y [ i ]+h∗( s−>b [ i ]+h∗ s−>c [ i ] ) ; }// i n e r po l a t i n g polynomial

void q s p l i n e f r e e ( q s p l i n e ∗ s ){ // f r e e the a l l o c a t e d memory
f r e e ( s−>x ) ; f r e e ( s−>y ) ; f r e e ( s−>b ) ; f r e e ( s−>c ) ; f r e e ( s ) ; }

which gives

c1 = 0 ,

cn−1 + 3dn−1hn−1 = 0 . (1.17)

Solving the first two equations in (1.15) for ci and di gives1

cihi = −2bi − bi+1 + 3pi ,

dih
2
i = bi + bi+1 − 2pi , (1.18)

where pi
.
= ∆yi

hi
. The natural conditions (1.17) and the third equation in (1.15) then

1introducing an auxiliary coefficient bn.
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produce the following tridiagonal system of n linear equations for the n coefficients bi,

2b1 + b2 = 3p1 ,

bi +

(
2
hi
hi+1

+ 2

)
bi+1 +

hi
hi+1

bi+2 = 3

(
pi + pi+1

hi
hi+1

) ∣∣∣
i=1,...,n−2

,

bn−1 + 2bn = 3pn−1 , (1.19)

or, in the matrix form,
D1 Q1 0 0 . . .
1 D2 Q2 0 . . .
0 1 D3 Q3 . . .
...

...
. . .

. . .
. . .

. . . . . . 0 1 Dn




b1
...
...
bn

 =


B1

...

...
Bn

 (1.20)

where the elements Di at the main diagonal are

D1 = 2 , Di+1 = 2
hi
hi+1

+ 2
∣∣∣
i=1,...,n−2

, Dn = 2 , (1.21)

the elements Qi at the above-main diagonal are

Q1 = 1 , Qi+1 =
hi
hi+1

∣∣∣
i=1,...,n−2

, (1.22)

and the right-hand side terms Bi are

B1 = 3p1 , Bi+1 = 3

(
pi + pi+1

hi
hi+1

) ∣∣∣
i=1,...,n−2

, Bn = 3pn−1 . (1.23)

This system can be solved by one run of Gauss elimination and then a run of
back-substitution. After a run of Gaussian elimination the system becomes

D̃1 Q1 0 0 . . .

0 D̃2 Q2 0 . . .

0 0 D̃3 Q3 . . .
...

...
. . .

. . .
. . .

. . . . . . 0 0 D̃n




b1
...
...
bn

 =


B̃1

...

...

B̃n

 , (1.24)

where

D̃1 = D1 , D̃i = Di −Qi−1/D̃i−1

∣∣∣
i=2,...,n

, (1.25)
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and
B̃1 = B1 , B̃i = Bi − B̃i−1/D̃i−1

∣∣∣
i=2,...,n

. (1.26)

The triangular system (1.24) can be solved by a run of back-substitution,

bn = B̃n/D̃n , bi = (B̃i −Qibi+1)/D̃i

∣∣∣
i=n−1,...,1

. (1.27)

A C-implementation of cubic spline is listed in Table 1.3.3

1.3.4 Akima sub-spline interpolation

Akima sub-spline [1] is an interpolating function in the form of a piecewise cubic poly-
nomial, similar to the cubic spline,

A(x)
∣∣∣
x∈[xi,xi+1]

= ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 .
= Ai(x) . (1.28)

However, unlike the cubic spline, Akima sub-spline dispenses with the demand of maxi-
mal differentiability of the spline—in this case, the continuity of the second derivative—
hence the name sub-spline. Instead of achieving maximal differentiability Akima sub-

−4 −3 −2 −1 0 1 2 3 4

x

−1

0

1

y

data points

cubic spline

Akima sub-spline

Figure 1.2: A cubic spline (solid line) showing the typical wiggles, compared to the
Akima sub-spline (dashed line) where the wiggles are essentially removed.

splines try to reduce the wiggling which the ordinary splines are typically prone to (see
Figure 1.2).
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First let us note that the coefficients {ai, bi, ci, di} in eq. (1.28) are determined
by the values of the derivatives A′i

.
= A′(xi) of the sub-spline through the continuity

conditions for the sub-spline and its first derivative,

Ai(xi) = yi, A
′
i(xi) = A′i, Ai(xi+1) = yi+1, A

′
i(xi+1) = A′i+1. (1.29)

Indeed, inserting (1.28) into (1.29) and solving for the coefficients gives

ai = yi, bi = A′i, ci =
3pi − 2A′i −A′i+1

∆xi
, di =

A′i +A′i+1 − 2pi

(∆xi)2
, (1.30)

where pi
.
= ∆yi/∆xi, ∆yi

.
= yi+1 − yi, ∆xi

.
= xi+1 − xi.

In the ordinary cubic spline the derivatives A′i are determined by the continuity
condition of the second derivative of the spline. Sub-splines do without this continuity
condition and can instead use the derivatives as free parameters to be chosen to satisfy
some other condition.

Akima suggested to minimize the wiggling by choosing the derivatives as linear
combinations of the nearest slopes,

A′i =
wi+1pi−1 + wi−1pi

wi+1 + wi−1
, if wi+1 + wi−1 6= 0 , (1.31)

A′i =
pi−1 + pi

2
, if wi+1 + wi−1 = 0 , (1.32)

where the weights wi are given as

wi = |pi − pi−1| . (1.33)

The idea is that if three points lie close to a line, the sub-spline in this vicinity has to
be close to this line. In other words, if |pi − pi−1| is small, the nearby derivatives must
be close to pi.

The first two and the last two points need a special prescription, for example
(naively) one can simply use

A′1 = p1, A′2 =
1

2
p1 +

1

2
p2, A′n = pn−1, A′n−1 =

1

2
pn−1 +

1

2
pn−2. (1.34)

Table (1.5) shows a C-implementation of this algorithm.

1.4 Other forms of interpolation

Other forms of interpolation can be constructed by choosing different classes of inter-
polating functions, for example, rational function interpolation, trigonometric interpo-
lation, wavelet interpolation etc.
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Sometimes not only the values of the function are tabulated but also the values of
its derivative. This extra information can be taken advantage of when constructing the
interpolation function.

1.5 Multivariate interpolation

Interpolation of a function in more than one variable is called multivariate interpolation.
The function of interest is represented as a set of discrete points in a multidimensional
space. The points may or may not lie on a regular grid.

1.5.1 Nearest-neighbor interpolation

Nearest-neighbor interpolation approximates the value of the function at a non-tabulated
point by the value at the nearest tabulated point, yielding a piecewise-constant inter-
polating function. It can be used for both regular and irregular grids.

1.5.2 Piecewise-linear interpolation

Piecewise-linear interpolation is used to interpolate functions of two variables tabulated
on irregular grids. The tabulated 2D region is triangulated – subdivided into a set of
non-intersecting triangles whose union is the original region. Inside each triangle the
interpolating function S(x, y) is taken in the linear form,

S(x, y) = a+ bx+ cy , (1.35)

where the three constants are determined by the three conditions that the interpolating
function is equal the tabulated values at the three vertexes of the triangle.

1.5.3 Bi-linear interpolation

Bi-linear interpolation is used to interpolate functions of two variables tabulated on
regular rectilinear 2D grids. The interpolating function B(x, y) inside each of the grid
rectangles is taken as a bilinear function of x and y,

B(x, y) = a+ bx+ cy + dxy , (1.36)

where the four constants a, b, c, d are obtained from the four conditions that the in-
terpolating function is equal the tabulated values at the four nearest tabulated points
(which are the vertexes of the given grid rectangle).
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Table 1.4: Cubic spline in C

#include<s t d l i b . h>
#include<a s s e r t . h>
#include<s t d i o . h>
typedef struct { int n ; double ∗x ,∗ y ,∗b ,∗ c ,∗d ;} c u b i c s p l i n e ;
c u b i c s p l i n e ∗ c u b i c s p l i n e a l l o c ( int n , double ∗x , double ∗y )
{// b u i l d s na tura l cub ic s p l i n e

c u b i c s p l i n e ∗ s = ( c u b i c s p l i n e ∗) mal loc ( s izeof ( c u b i c s p l i n e ) ) ;
s−>x = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>y = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>b = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>c = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ;
s−>d = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ;
s−>n = n ; for ( int i =0; i<n ; i ++){s−>x [ i ]=x [ i ] ; s−>y [ i ]=y [ i ] ; }
double h [ n−1] ,p [ n−1] ; // VLA
for ( int i =0; i<n−1; i ++){h [ i ]=x [ i +1]−x [ i ] ; a s s e r t (h [ i ]>0) ;}
for ( int i =0; i<n−1; i++) p [ i ]=(y [ i +1]−y [ i ] ) / h [ i ] ;
double D[ n ] , Q[ n−1] , B[ n ] ; // bu i l d i n g the t r i d i a g ona l system :
D[ 0 ] = 2 ; for ( int i =0; i<n−2; i++)D[ i +1]=2∗h [ i ] / h [ i +1]+2; D[ n−1]=2;
Q[ 0 ] = 1 ; for ( int i =0; i<n−2; i++)Q[ i +1]=h [ i ] / h [ i +1] ;
for ( int i =0; i<n−2; i++)B[ i +1]=3∗(p [ i ]+p [ i +1]∗h [ i ] / h [ i +1 ] ) ;
B[0 ]=3∗p [ 0 ] ; B[ n−1]=3∗p [ n−2] ; //Gauss e l im ina t i on :
for ( int i =1; i<n ; i ++){ D[ i ]−=Q[ i −1]/D[ i −1] ; B[ i ]−=B[ i −1]/D[ i −1] ; }
s−>b [ n−1]=B[ n−1]/D[ n−1] ; //back−s u b s t i t u t i o n :
for ( int i=n−2; i>=0; i−−) s−>b [ i ]=(B[ i ]−Q[ i ]∗ s−>b [ i +1])/D[ i ] ;
for ( int i =0; i<n−1; i ++){

s−>c [ i ]=(−2∗s−>b [ i ]−s−>b [ i +1]+3∗p [ i ] ) / h [ i ] ;
s−>d [ i ]=( s−>b [ i ]+s−>b [ i +1]−2∗p [ i ] ) / h [ i ] / h [ i ] ;
}
return s ;
}
double c u b i c s p l i n e e v a l ( c u b i c s p l i n e ∗ s , double z ){

a s s e r t ( z>=s−>x [ 0 ] && z<=s−>x [ s−>n−1 ] ) ;
int i =0, j=s−>n−1;// binary search fo r the i n t e r v a l f o r z :
while ( j−i >1){ int m=( i+j ) / 2 ; i f ( z>s−>x [m] ) i=m; else j=m; }
double h=z−s−>x [ i ] ; // c a l c u l a t e the i n e r po l a t i n g s p l i n e :
return s−>y [ i ]+h∗( s−>b [ i ]+h∗( s−>c [ i ]+h∗ s−>d [ i ] ) ) ;

}
void c u b i c s p l i n e f r e e ( c u b i c s p l i n e ∗ s ){ // f r e e the a l l o c a t e d memory

f r e e ( s−>x ) ; f r e e ( s−>y ) ; f r e e ( s−>b ) ; f r e e ( s−>c ) ; f r e e ( s−>d ) ; f r e e ( s ) ; }
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Table 1.5: Akima sub-spline in C

#include<a s s e r t . h>
#include<s t d l i b . h>
#include<math . h>
typedef struct { int n ; double ∗x ,∗ y ,∗b ,∗ c ,∗d ;} ak ima sp l ine ;
ak ima sp l ine ∗ a k i m a s p l i n e a l l o c ( int n , double ∗x , double ∗y ){

a s s e r t (n>2); double h [ n−1] ,p [ n−1] ; /∗ VLA ∗/
for ( int i =0; i<n−1; i ++){h [ i ]=x [ i +1]−x [ i ] ; a s s e r t (h [ i ]>0) ;}
for ( int i =0; i<n−1; i++) p [ i ]=(y [ i +1]−y [ i ] ) / h [ i ] ;
ak ima sp l ine ∗ s = ( ak ima sp l ine ∗) mal loc ( s izeof ( ak ima sp l ine ) ) ;
s−>x = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>y = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>b = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>c = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ;
s−>d = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ;
s−>n = n ; for ( int i =0; i<n ; i ++){s−>x [ i ]=x [ i ] ; s−>y [ i ]=y [ i ] ; }
s−>b [ 0 ] =p [ 0 ] ; s−>b [ 1 ] =(p [0 ]+p [ 1 ] ) / 2 ;
s−>b [ n−1]=p [ n−2] ; s−>b [ n−2]=(p [ n−2]+p [ n−3 ] )/2 ;
for ( int i =2; i<n−2; i ++){
double w1=fabs (p [ i +1]−p [ i ] ) , w2=fabs (p [ i−1]−p [ i −2 ] ) ;
i f (w1+w2==0) s−>b [ i ]=(p [ i−1]+p [ i ] ) / 2 ;
else s−>b [ i ]=(w1∗p [ i−1]+w2∗p [ i ] ) / ( w1+w2 ) ;
}
for ( int i =0; i<n−1; i ++){

s−>c [ i ]=(3∗p [ i ]−2∗ s−>b [ i ]−s−>b [ i +1])/h [ i ] ;
s−>d [ i ]=( s−>b [ i +1]+s−>b [ i ]−2∗p [ i ] ) / h [ i ] / h [ i ] ;
}
return s ;
}
double a k i m a s p l i n e e v a l ( ak ima sp l ine ∗ s , double z ){

a s s e r t ( z>=s−>x [ 0 ] && z<=s−>x [ s−>n−1 ] ) ;
int i =0, j=s−>n−1;
while ( j−i >1){ int m=( i+j ) / 2 ; i f ( z>s−>x [m] ) i=m; else j=m;}
double h=z−s−>x [ i ] ;
return s−>y [ i ]+h∗( s−>b [ i ]+h∗( s−>c [ i ]+h∗ s−>d [ i ] ) ) ;
}
void a k i m a s p l i n e f r e e ( ak ima sp l ine ∗ s ){

f r e e ( s−>x ) ; f r e e ( s−>y ) ; f r e e ( s−>b ) ; f r e e ( s−>c ) ; f r e e ( s−>d ) ; f r e e ( s ) ; }



Chapter 2

Systems of linear equations

2.1 Introduction

A system of linear equations (or linear system) is a collection of linear equations involv-
ing the same set of unknown variables. A general system of n linear equations with m
unknowns can be written as

A11x1 + A12x2 + · · · + A1mxm = b1
A21x1 + A22x2 + · · · + A2mxm = b2

...
...

...
...

An1x1 + An2x2 + · · · + Anmxm = bn

, (2.1)

where x1, x2, . . . , xm are the unknown variables, A11, A12, . . . , Anm are the (constant)
coefficients, and b1, b2, . . . , bn are the (constant) right-hand side terms.

The system can be equivalently written in the matrix form,

Ax = b , (2.2)

where A
.
= {Aij} is the n×m matrix of the coefficients, x

.
= {xj} is the size-m column-

vector of the unknown variables, and b
.
= {bi} is the size-n column-vector of right-hand

side terms.
A solution to a linear system is a set of values for the variables x which satisfies all

equations.
Systems of linear equations occur quite regularly in applied mathematics. Therefore

computational algorithms for finding solutions of linear systems are an important part
of numerical methods. A system of non-linear equations can often be approximated by
a linear system – a helpful technique (called linearization) in creating a mathematical
model of an otherwise a more complex system.

13
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If m = n the matrix A is called square. A square system has a unique solution if
A is invertible.

2.2 Triangular systems

An efficient algorithm to numerically solve a square system of linear equations is to
transform the original system into an equivalent triangular system,

Ty = c , (2.3)

where T is a triangular matrix – a special kind of square matrix where the matrix
elements either below (upper triangular) or above (lower triangular) the main diagonal
are zero.

Indeed, an upper triangular system Uy = c can be easily solved by back-substitution,

yi =
1

Uii

(
ci −

n∑
k=i+1

Uikyk

)
, i = n, n− 1, . . . , 1 , (2.4)

where one first computes yn = bn/Unn, then substitutes back into the previous equation
to solve for yn−1, and repeats through y1.

Here is a C-function implementing in-place1 back-substitution2:

#include<g s l / g s l v e c t o r . h>
#include<g s l / g s l m a t r i x . h>
void backsub ( g s l m a t r i x ∗U, g s l v e c t o r ∗c ){
for ( int i=c−>s i z e −1; i>=0; i−−){
double s=g s l v e c t o r g e t ( c , i ) ;
for ( int k=i +1;k<c−>s i z e ; k++)

s−=g s l m a t r i x g e t (U, i , k )∗ g s l v e c t o r g e t ( c , k ) ;
g s l v e c t o r s e t ( c , i , s / g s l m a t r i x g e t (U, i , i ) ) ; }}

For a lower triangular system Ly = c the equivalent procedure is called forward-
substitution,

yi =
1

Lii

(
ci −

i−1∑
k=1

Likyk

)
, i = 1, 2, . . . , n . (2.5)

2.3 Reduction to triangular form

Popular algorithms for reducing a square system of linear equations to a triangular
form are LU-decomposition and QR-decomposition.

1here in-place means the right-hand side c is replaced by the solution y.
2the functions gsl vector get, gsl vector set, and gsl matrix get are assumed to implement

fetching and setting the vector- and matrix-elements.
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2.3.1 QR-decomposition

QR-decomposition is a factorization of a matrix into a product of an orthogonal matrix
Q, such that QTQ = 1, where T denotes transposition, and a right triangular matrix
R,

A = QR . (2.6)

QR-decomposition can be used to convert a linear system Ax = b into the triangular
form (by multiplying with QT from the left),

Rx = QTb , (2.7)

which can be solved directly by back-substitution.
QR-decomposition can also be performed on non-square matrices with few long

columns. Generally speaking a rectangular n ×m matrix A can be represented as a
product, A = QR, of an orthogonal n×m matrix Q, QTQ = 1, and a right-triangular
m×m matrix R.

QR-decomposition of a matrix can be computed using several methods, such as
Gram-Schmidt orthogonalization, Householder transformation [10], or Givens rota-
tion [6].

Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization is an algorithm for orthogonalization of a set of vectors
in a given inner product space. It takes a linearly independent set of vectors A =
{a1, . . . ,am} and generates an orthogonal set Q = {q1, . . . ,qm} which spans the same
subspace as A. The algorithm is given as

for i = 1 to m :
qi ← ai/‖ai‖
for j = i+ 1 to m : aj ← aj − 〈qi|aj〉qi

where 〈a|b〉 is the inner product of two vectors, and ‖a‖ .=
√
〈a|a〉 is the vector’s norm.

This variant of the algorithm, where all remaining vectors aj are made orthogonal to qi
as soon as the latter is calculated, is considered to be numerically stable and is referred
to as stabilized or modified.

Stabilized Gram-Schmidt orthogonalization can be used to compute QR-decomposition
of a matrix A by orthogonalization of its column-vectors ai with the inner product

〈a|b〉 = aTb ≡
n∑
k=1

(a)k(b)k , (2.8)

where n is the length of column-vectors a and b, and (a)k is the kth element of the
column-vector,
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for i = 1 to m :

Rii =
√

aT
i ai ; qi = ai/Rii

for j = i+ 1 to m :
Rij = qT

i aj ; aj = aj − qiRij .

After orthogonalization the matrices Q = {q1 . . .qm} and R are the sought orthogonal
and right-triangular factors of matrix A.

The factorization is unique under requirement that the diagonal elements of R are
positive. For a n×m matrix the complexity of the algorithm is O(m2n).

Householder transformation

A square matrix H of the form

H = 1− 2

uTu
uuT (2.9)

is called Householder matrix, where the vector u is called a Householder vector. House-
holder matrices are symmetric and orthogonal,

HT = H , HTH = 1 . (2.10)

The transformation induced by the Householder matrix on a given vector a,

a→ Ha , (2.11)

is called a Householder transformation or Householder reflection. The transformation
changes the sign of the affected vector’s component in the u direction, or, in other
words, makes a reflection of the vector about the hyperplane perpendicular to u, hence
the name.

Householder transformation can be used to zero selected components of a given
vector a. For example, one can zero all components but the first one, such that

Ha = γe1 , (2.12)

where γ is a number and e1 is the unit vector in the first direction. The factor γ can
be easily calculated,

‖a‖2 .
= aTa = aTHTHa = (γe1)T(γe1) = γ2 , (2.13)

⇒ γ = ±‖a‖ . (2.14)

To find the Householder vector, we notice that

a = HTHa = HTγe1 = γe1 −
2(u)1

uTu
u , (2.15)
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⇒ 2(u)1

uTu
u = γe1 − a , (2.16)

where (u)1 is the first component of the vector u. One usually chooses (u)1 = 1 (for
the sake of the possibility to store the other components of the Householder vector in
the zeroed elements of the vector a) and stores the factor

2

uTu
≡ τ (2.17)

separately. With this convention one readily finds τ from the first component of equa-
tion (2.16),

τ = γ − (a)1 . (2.18)

where (a)1 is the first element of the vector a. For the sake of numerical stability the
sign of γ has to be chosen opposite to the sign of (a)1,

γ = −sign ((a)1) ‖a‖ . (2.19)

Finally, the Householder reflection, which zeroes all component of a vector a but the
first, is given as

H = 1− τuuT , τ = −sign((a)1)‖a‖ − (a)1 , (u)1 = 1 , (u)i>1 = −1

τ
(a)i . (2.20)

Now, a QR-decomposition of an n × n matrix A by Householder transformations
can be performed in the following way:

1. Build the size-n Householder vector u1 which zeroes the sub-diagonal elements
of the first column of matrix A, such that

H1A =


? ? . . . ?
0
... A1

0

 , (2.21)

where H1 = 1−τ1u1u
T
1 and where ? denotes (generally) non-zero matrix elements.

In practice one does not build the matrix H1 explicitly, but rather calculates
the matrix H1A in-place, consecutively applying the Householder reflection to
columns the matrix A, thus avoiding computationally expensive matrix-matrix
operations. The zeroed sub-diagonal elements of the first column of the matrix A
can be used to store the elements of the Householder vector u1 while the factor
τ1 has to be stored separately in a special array. This is the storage scheme used
by LAPACK and GSL.
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2. Similarly, build the size-(n − 1) Householder vector u2 which zeroes the sub-
diagonal elements of the first column of matrix A1 from eq. (2.21). With the
transformation matrix H2 defined as

H2 =


1 0 · · · 0
0
... 1− τ2u2u

T
2

0

 . (2.22)

the two transformations together zero the sub-diagonal elements of the two first
columns of matrix A,

H2H1A =


? ? ? · · · ?
0 ? ? · · · ?
0 0
...

... A3

0 0

 , (2.23)

3. Repeating the process zero the sub-diagonal elements of the remaining columns.
For column k the corresponding Householder matrix is

Hk =

 Ik−1 0

0 1− τkukuT
k

 , (2.24)

where Ik−1 is an identity matrix of size k− 1, uk is the size-(n-k+1) Householder
vector that zeroes the sub-diagonal elements of matrix Ak−1 from the previous
step. The corresponding transformation step is

Hk . . .H2H1A =

[
Rk ?
0 Ak

]
, (2.25)

where Rk is a size-k right-triangular matrix.

After n−1 steps the matrix A will be transformed into a right triangular matrix,

Hn−1 · · ·H2H1A = R . (2.26)

4. Finally, introducing an orthogonal matrix Q = HT
1 HT

2 . . .H
T
n−1 and multiplying

eq. (2.26) by Q from the left, we get the sought QR-decomposition,

A = QR . (2.27)

In practice one does not explicitly builds the Q matrix but rather applies the
successive Householder reflections stored during the decomposition.
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Givens rotations

A Givens rotation is a transformation in the form

A→ G(p, q, θ)A , (2.28)

where A is the object to be transformed—matrix of vector—and G(p, q, θ) is the Givens
rotation matrix (also known as Jacobi rotation matrix): an orthogonal matrix in the
form

G(p, q, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · sin θ · · · 0
...

...
. . .

...
...

0 · · · − sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


← row p

← row q
. (2.29)

When a Givens rotation matrix G(p, q, θ) multiplies a vector x, only elements xp and
xq are affected. Considering only these two affected elements, the Givens rotation is
given explicitely as[

x′p
x′q

]
=

[
cos θ sin θ
− sin θ cos θ

] [
xp
xq

]
=

[
xp cos θ + xq sin θ
−xp sin θ + xq cos θ

]
. (2.30)

Apparently the rotation can zero the element x′q, if the angle θ is chosen as

tan θ =
xq
xp
⇒ θ = atan2(xq, xp) . (2.31)

A sequence of Givens rotations,

G =

m∏
n≥q>p=1

G(p, q, θqp) , (2.32)

(where n × m is the dimension of the matrix A) can zero all elements of a matrix
below the main diagonal if the angles θqp are chosen to zero the elements with indices
q, p of the partially transformed matrix just before applying the matrix G(p, q, θqp).
The resulting matrix is obviously the R-matrix of the sought QR-decomposition of the
matrix A where G = QT.

In practice one does not explicitly builds the G matrix but rather stores the θ angles
in the places of the corresponding zeroed elements of the original matrix:
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#include<g s l / g s l m a t r i x . h>
#include<math . h>
void g i v e n s q r ( g s l m a t r i x ∗ A){ /∗ A <− Q,R ∗/
for ( int q=0;q<A−>s i z e 2 ; q++)for ( int p=q+1;p<A−>s i z e 1 ; p++){
double theta=atan2 ( g s l m a t r i x g e t (A, p , q ) , g s l m a t r i x g e t (A, q , q ) ) ;
for ( int k=q ; k<A−>s i z e 2 ; k++){
double xq=g s l m a t r i x g e t (A, q , k ) , xp=g s l m a t r i x g e t (A, p , k ) ;
g s l m a t r i x s e t (A, q , k , xq∗ cos ( theta )+xp∗ s i n ( theta ) ) ;
g s l m a t r i x s e t (A, p , k,−xq∗ s i n ( theta )+xp∗ cos ( theta ) ) ; }

g s l m a t r i x s e t (A, p , q , theta ) ; } }

When solving the linear system Ax = b one transforms it into the equivalent
triangular system Rx = Gb where one calculates Gb by successively applying the
individual Givens rotations with the stored θ-angles:

#include<g s l / g s l v e c t o r . h>
#include<g s l / g s l m a t r i x . h>
#include<math . h>
void givens qr QTvec ( g s l m a t r i x ∗ QR, g s l v e c t o r ∗ v ){ /∗ v <− QˆTv ∗/
for ( int q=0; q<QR−>s i z e 2 ; q++)for ( int p=q+1; p<QR−>s i z e 1 ; p++){
double theta = g s l m a t r i x g e t (QR, p , q ) ;
double vq=g s l v e c t o r g e t (v , q ) , vp=g s l v e c t o r g e t (v , p ) ;
g s l v e c t o r s e t (v , q , vq∗ cos ( theta )+vp∗ s i n ( theta ) ) ;
g s l v e c t o r s e t (v , p,−vq∗ s i n ( theta )+vp∗ cos ( theta ) ) ; } }

The triangular system Rx = Gb is then solved by the ordinary backsubstitution:

#include<g s l / g s l m a t r i x . h>
#include” g i v e n s q r . h”
void g i v e n s q r s o l v e ( g s l m a t r i x ∗ QR, g s l v e c t o r ∗ b){

givens qr QTvec (QR, b ) ;
backsub (QR, b ) ; }

If one needs to build the Q-matrix explicitly, one uses

Qij = eT
i Qej = eT

j QTei , (2.33)

where ei is the unit vector in the direction i and where again one can use the succesive
rotations to calculate QTei,

#include<g s l / g s l v e c t o r . h>
#include<g s l / g s l m a t r i x . h>
#include” g i v e n s q r . h”
void givens qr unpack Q ( g s l m a t r i x ∗ QR, g s l m a t r i x ∗ Q){

g s l v e c t o r ∗ e i = g s l v e c t o r a l l o c (QR−>s i z e 1 ) ;
for ( int i =0; i<QR−>s i z e 1 ; i ++){

g s l v e c t o r s e t b a s i s ( e i , i ) ;
g ivens qr QTvec (QR, e i ) ;
for ( int j =0; j<QR−>s i z e 2 ; j++)
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g s l m a t r i x s e t (Q, i , j , g s l v e c t o r g e t ( e i , j ) ) ; }
g s l v e c t o r f r e e ( e i ) ; }

Since each Givens rotation only affects two rows of the matrix it is possible to apply
a set of rotations in parallel. Givens rotations are also more efficient on sparse matrices.

2.3.2 LU-decomposition

LU-decomposition is a factorization of a square matrix A into a product of a lower
triangular matrix L and an upper triangular matrix U,

A = LU . (2.34)

The linear system Ax = b after LU-decomposition of the matrix A becomes LUx =
b and can be solved by first solving Ly = b for y and then Ux = y for x with two
runs of forward and backward substitutions.

If A is an n× n matrix, the condition (2.34) is a set of n2 equations,

n∑
k=1

LikUkj = Aij
∣∣
i,j=1...n

, (2.35)

for n2 + n unknown elements of the triangular matrices L and U. The decomposition
is thus not unique.

Usually the decomposition is made unique by providing extra n conditions e.g. by
the requirement that the elements of the main diagonal of the matrix L are equal one,

Lii = 1 , i = 1 . . . n . (2.36)

The system (2.35) with the extra conditions (2.36) can then be easily solved row
after row using the Doolittle’s algorithm,

for i = 1 . . . n :
Lii = 1
for j = i . . . n : Uij = Aij −

∑
k<i LikUkj

for j = i+ 1 . . . n : Lji = 1
Uii

(
Aji −

∑
k<j LjkUki

)
In a slightly different Crout’s algorithm it is the matrix U that has unit diagonal

elements,

for i = 1 . . . n :
Uii = 1
for j = i . . . n : Lji = Aji −

∑
k<i LjkUki

for j = i+ 1 . . . n : Uij = 1
Lii

(
Aji −

∑
k<j LjkUki

)
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Without a proper ordering (permutations) in the matrix, the factorization may fail.
For example, it is easy to verify that A11 = L11U11. If A11 = 0, then at least one of
L11 and U11 has to be zero, which implies either L or U is singular, which is impossible
if A is non-singular. This is however only a procedural problem. It can be removed
by simply reordering the rows of A so that the first element of the permuted matrix
is nonzero (or, even better, the largest in absolute value among all elements of the
column below the diagonal). The same problem in subsequent factorization steps can
be removed in a similar way. Such algorithm is refered to as partial pivoting. It requires
an extra integer array to keep track of row permutations.

2.3.3 Cholesky decomposition

The Cholesky decomposition of a Hermitian positive-definite matrix A is a decompo-
sition in the form

A = LL† , (2.37)

where L is a lower triangular matrix with real and positive diagonal elements, and L†

is the conjugate transpose of L.
For real symmetric positive-definite matrices the decomposition reads

A = LLT , (2.38)

where L is real.
The decomposition can be calculated using the following in-place algorithm,

Ljj =

√√√√Ajj −
j−1∑
k=1

L2
jk , Lij =

1

Ljj

(
Aij −

j−1∑
k=1

LikLjk

)∣∣∣∣∣
i>j

. (2.39)

The expression under the square root is always positive if A is real and positive-
definite.

When applicable, the Cholesky decomposition is about twice as efficient as LU-
decomposition for solving systems of linear equations.

2.4 Determinant of a matrix

LU- and QR-decompositions allow O(n3) calculation of the determinant of a square
matrix. Indeed, for the LU-decomposition,

det A = det LU = det L det U = det U =

n∏
i=1

Uii . (2.40)
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For the Gram-Schmidt QR-decomposition

det A = det QR = det Q det R . (2.41)

Since Q is an orthogonal matrix (det Q)2 = 1,

|det A| = |det R| =
∣∣∣∣∣
n∏
i=1

Rii

∣∣∣∣∣ . (2.42)

With Gram-Schmidt method one arbitrarily assigns positive sign to diagonal elements
of the R-matrix thus removing from the R-matrix the memory of the original sign of
the determinant.

However with Givens rotation method the determinant of the individual rotation
matrix—and thus the determinant of the total rotation matrix—is equal one, therefore
for a square matrix A the QR-decomposition A = GR via Givens rotations allows
calculation of the determinant with the correct sign,

det A = det R ≡
n∏
i=1

Rii (2.43)

2.5 Matrix inverse

The inverse A−1 of a square n × n matrix A can be calculated by solving n linear
equations

Axi = ei

∣∣∣
i=1,...,n

, (2.44)

where ei is the unit-vector in the i-direction: a column where all elements are equal
zero except for the element number i which is equal one. Thus the set of columns
{ei}i=1,...,n form the identity matrix. The matrix made of columns xi is apparently
the inverse of A.

Here is an implementation of this algorithm using the functions from the Givens
rotation chapter,

#include<g s l / g s l v e c t o r . h>
#include<g s l / g s l m a t r i x . h>
#include” g i v e n s q r . h”
void g i v e n s q r i n v e r s e ( g s l m a t r i x ∗ QR, g s l m a t r i x ∗ B){

g s l m a t r i x s e t i d e n t i t y (B) ;
for ( int i =0; i<QR−>s i z e 2 ; i ++){

g s l v e c t o r v i e w v = gs l matr ix co lumn (B, i ) ;
g i v e n s q r s o l v e (QR,&v . vec to r ) ; } }
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Chapter 3

Eigenvalues and eigenvectors

3.1 Introduction

A non-zero column-vector v is called the eigenvector of a matrix A with the eigenvalue
λ, if

Av = λv . (3.1)

If an n×n matrix A is real and symmetric, AT = A, then it has n real eigenvalues
λ1, . . . , λn, and its (orthogonalized) eigenvectors V = {v1, . . . ,vn} form a full basis,

VVT = VTV = 1 , (3.2)

in which the matrix is diagonal,

VTAV =


λ1 0 · · · 0

0 λ2

...
...

. . .

0 · · · λn

 . (3.3)

Matrix diagonalization means finding all eigenvalues and (optionally) eigenvectors
of a matrix.

Eigenvalues and eigenvectors enjoy a multitude of applications in different branches
of science and technology.

25



26 CHAPTER 3. EIGENVALUES AND EIGENVECTORS

3.2 Similarity transformations

Orthogonal transformations,

A→ QTAQ , (3.4)

where QTQ = 1, and, generally, similarity transformations,

A→ S−1AS , (3.5)

preserve eigenvalues and eigenvectors. Therefore one of the strategies to diagonalize a
matrix is to apply a sequence of similarity transformations (also called rotations) which
(iteratively) turn the matrix into diagonal form.

3.2.1 Jacobi eigenvalue algorithm

Jacobi eigenvalue algorithm is an iterative method to calculate the eigenvalues and
eigenvectors of a real symmetric matrix by a sequence of Jacobi rotations.

Jacobi rotation is an orthogonal transformation which zeroes a pair of the off-
diagonal elements of a (real symmetric) matrix A,

A→ A′ = J(p, q)TAJ(p, q) : A′pq = A′qp = 0 . (3.6)

The orthogonal matrix J(p, q) which eliminates the element Apq is called the Jacobi
rotation matrix. It is equal identity matrix except for the four elements with indices
pp, pq, qp, and qq,

J(p, q) =



1
. . . 0

cosφ · · · sinφ
...

. . .
...

− sinφ · · · cosφ

0
. . .

1


← row p

← row q
. (3.7)

Or explicitly,

J(p, q)ij = δij ∀ ij /∈ {pq, qp, pp, qq} ;

J(p, q)pp = cosφ = J(p, q)qq ;

J(p, q)pq = sinφ = −J(p, q)qp . (3.8)
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After a Jacobi rotation, A→ A′ = JTAJ, the matrix elements of A′ become

A′ij = Aij ∀ i 6= p, q ∧ j 6= p, q

A′pi = A′ip = cApi − sAqi ∀ i 6= p, q ;

A′qi = A′iq = sApi + cAqi ∀ i 6= p, q ;

A′pp = c2App − 2scApq + s2Aqq ;

A′qq = s2App + 2scApq + c2Aqq ;

A′pq = A′qp = sc(App −Aqq) + (c2 − s2)Apq , (3.9)

where c ≡ cosφ, s ≡ sinφ. The angle φ is chosen such that after rotation the matrix
element A′pq is zeroed,

tan(2φ) =
2Apq

Aqq −App
⇒ A′pq = 0 . (3.10)

A side effect of zeroing a given off-diagonal element Apq by a Jacobi rotation is
that other off-diagonal elements are changed. Namely, the elements of the rows and
columns with indices p and q. However, after the Jacobi rotation the sum of squares of
all off-diagonal elements is reduced. The algorithm repeatedly performs rotations until
the off-diagonal elements become sufficiently small.

The convergence of the Jacobi method can be proved for two strategies for choosing
the order in which the elements are zeroed:

1. Classical method: with each rotation the largest of the remaining off-diagonal
elements is zeroed.

2. Cyclic method: the off-diagonal elements are zeroed in strict order, e.g. row after
row.

Although the classical method allows the least number of rotations, it is typically
slower than the cyclic method since searching for the largest element is an O(n2) op-
eration. The count can be reduced by keeping an additional array with indexes of the
largest elements in each row. Updating this array after each rotation is only an O(n)
operation.

A sweep is a sequence of Jacobi rotations applied to all non-diagonal elements.
Typically the method converges after a small number of sweeps. The operation count
is O(n) for a Jacobi rotation and O(n3) for a sweep.

The typical convergence criterion is that the diagonal elements have not changed
after a sweep. Other criteria can also be used, like the sum of absolute values of the
off-diagonal elements is small,

∑
i<j |Aij | < ε, where ε is the required accuracy, or the

largest off-diagonal element is small, max |Ai<j | < ε.
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The eigenvectors can be calculated as V = 1J1J2..., where Ji are the successive
Jacobi matrices. At each stage the transformation is

Vij → Vij , j 6= p, q

Vip → cVip − sViq (3.11)

Viq → sVip + cViq

Alternatively, if only one (or few) eigenvector vk is needed, one can instead solve
the (singular) system (A− λk)v = 0.

3.2.2 QR/QL algorithm

An orthogonal transformation of a real symmetric matrix, A→ QTAQ = RQ, where
Q is from the QR-decomposition of A, partly turns the matrix A into diagonal form.
Successive iterations eventually make it diagonal. If there are degenerate eigenvalues
there will be a corresponding block-diagonal sub-matrix.

For convergence properties it is of advantage to use shifts: instead of QR[A] we do
QR[A− s1] and then A→ RQ + s1. The shift s can be chosen as Ann. As soon as an
eigenvalue is found the matrix is deflated, that is the corresponding row and column
are crossed out.

Accumulating the successive transformation matrices Qi into the total matrix Q =
Q1 . . .QN , such that QTAQ = Λ, gives the eigenvectors as columns of the Q matrix.

If only one (or few) eigenvector vk is needed one can instead solve the (singular)
system (A− λk)v = 0.

Tridiagonalization.

Each iteration of the QR/QL algorithm is an O(n3) operation. On a tridiagonal matrix
it is only O(n). Therefore the effective strategy is first to make the matrix tridiagonal
and then apply the QR/QL algorithm. Tridiagonalization of a matrix is a non-iterative
operation with a fixed number of steps.

3.3 Eigenvalues of updated matrix

In practice it happens quite often that the matrix A to be diagonalized is given in the
form of a diagonal matrix, D, plus an update matrix, W,

A = D + W , (3.12)

where the update W is a simpler, in a certain sense, matrix which allows a more
efficient calculation of the updated eigenvalues, as compared to general diagonalization
algorithms.
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The most common updates are

• symmetric rank-1 update,

W = uuT , (3.13)

where u is a columnt-vector;

• symmetric rank-2 update,

W = uvT + vuT ; (3.14)

• symmetric row/column update – a special case of rank-2 update,

W =



0 . . . u1 . . . 0
...

. . .
...

. . .
...

u1 . . . up . . . un
...

. . .
...

. . .
...

0 . . . un . . . 0

 ≡ e(p)uT + ue(p)T , (3.15)

where e(p) is the unit vector in the p-direction.

3.3.1 Rank-1 update

We assume that the size-n real symmetric matrix A to be diagonalized is given in the
form of a diagonal matrix plus a rank-1 update,

A = D + σuuT , (3.16)

where D is a diagonal matrix with diagonal elements {d1, . . . , dn} and u is a given
vector. The diagonalization of such matrix can be done in O(m2) operations, where
m ≤ n is the number of non-zero elements in the update vector u, as compared to
O(n3) operations for a general diagonalization [7].

The eigenvalue equation for the updated matrix reads(
D + σuuT

)
q = λq , (3.17)

where λ is an eigenvalue and q is the corresponding eigenvector. The equation can be
rewritten as

(D− λ1) q + σuuTq = 0 . (3.18)

Multiplying from the left with uT (D− λ1)
−1

gives

uTq + uT (D− λ1)
−1
σuuTq = 0 . (3.19)
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Finally, dividing by uTq leads to the (scalar) secular equation (or characteristic equa-
tion) in λ,

1 +

m∑
i=1

σu2
i

di − λ
= 0 , (3.20)

where the summation index counts the m non-zero components of the update vector
u. The m roots of this equation determine the (updated) eigenvalues1.

Finding a root of a rational function requires an iterative technique, such as the
Newton-Raphson method. Therefore diagonalization of an updated matrix is still an
iterative procedure. However, each root can be found in O(1) iterations, each iteration
requiring O(m) operations. Therefore the iterative part of this algorithm — finding all
m roots — needs O(m2) operations.

Finding roots of this particular secular equation can be simplified by utilizing the
fact that its roots are bounded by the eigenvalues di of the matrix D. Indeed if we
denote the roots as λ1, λ2, . . . , λn and assume that λi ≤ λi+1 and di ≤ di+1, it can be
shown that

1. if σ ≥ 0,

di ≤ λi ≤ di+1 , i = 1, . . . , n− 1 , (3.21)

dn ≤ λn ≤ dn + σuTu ; (3.22)

2. if σ ≤ 0,

di−1 ≤ λi ≤ di , i = 2, . . . , n , (3.23)

d1 + σuTu ≤ λ1 ≤ d1 . (3.24)

3.3.2 Symmetric row/column update

The matrix A to be diagonalized is given in the form

A = D + e(p)uT + ue(p)T =



d1 . . . u1 . . . 0
...

. . .
...

. . .
...

u1 . . . dp . . . un
...

. . .
...

. . .
...

0 . . . un . . . dn

 , (3.25)

where D is a diagonal matrix with diagonal elements {di|i = 1, . . . , n}, e(p) is the unit
vector in the p-direction, and u is a given update vector where the p-th element can be

1Multiplying this equation by
∏m

i=1(di−λ) leads to an equivalent polynomial equation of the order
m, which has exactly m roots.
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assumed to equal zero, up = 0, without loss of generality. Indeed, if the element is not
zero, one can simply redefine dp → dp + 2up, up → 0.

The eigenvalue equation for matrix A is given as

(D − λ)x + e(p)uTx + ue(p)Tx = 0 , (3.26)

where x is an eigenvector and λ is the corresponding eigenvalue. The component
number p of this vector-equation reads

(dp − λ)xp + uTx = 0 , (3.27)

while the component number k 6= p reads

(dk − λ)xk + ukxp = 0 , (3.28)

Dividing the last equation by (dk−λ), multiplying from the left with
∑n
k=1 uk, substi-

tuting uTx using equation (3.27) and dividing by xp gives the secular equation,

−(dp − λ) +

n∑
k 6=p

u2
k

dk − λ
= 0 , (3.29)

which determines the updated eigenvalues.

3.3.3 Symmetric rank-2 update

A symmetric rank-2 update can be represented as two consecutive rank-1 updates,

uvT + vuT = aaT − bbT , (3.30)

where

a =
1√
2

(u + v) , b =
1√
2

(u− v) . (3.31)

The eigenvalues can then be found by applying the rank-1 update method twice.

3.4 Singular Value Decomposition

Singular Value Decomposition (SVD) is a factorization of matrix A in the form

A = UDVT , (3.32)

where D is a diagonal matrix, and U and V are orthogonal matrices (UTU = 1 and
VTV = 1).
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The elements of the diagonal matrix D are called the singular values of matrix A.
Singular values can always be chosen non-negative by chaging the signs of the cor-
responding columns of matrix U. Singular values are equal the square roots of the
eigenvalues of the real symmetrix matrix ATA.

One algorithm to perform SVD is the two-sided Jacobi SVD algorithm which is a
generalization of the Jacobi eigenvalue algorithm. In the two-sided Jacobi SVD algo-
rithm one first applies a Givens rotation to symmetrize a pair of off-diagonal elements
of the matrix and then applies a Jacobi transformation to eliminate these off-diagonal
elements.

It is an iterative procedure where one starts with A0 = A and then iterates

Ak → Ak+1 = JTkGT
kAkJk . (3.33)

Just like in the Jacobi eigenvalue algorithm the iterations are performed in cyclic
sweeps over all non-diagonal elements of the matrix. At each iteration the matrix G
equalizes the correponding non-diagonal elements, and then the Jacobi transforma-
tion zeroes them. The iteration procedure stops when the diagonal elements remain
unchanged for a whole sweep.

For a 2×2 matrix the two-sided Jacobi SVD transformation is given as following:
first, one applies a Givens rotation to symmetrize two off-diagonal elements,

Ak ≡
[
w x
y z

]
→ A

′

k = GT
kAk =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
w x
y z

]
=

[
a b
b c

]
, (3.34)

where the rotation angle θ = atan2(y − x,w + z); and, second, one makes the usual
Jacobi transformation to eliminate the off-diagonal elements,

A
′

k → Ak+1 = JTkA
′

kJk

=

[
cos(φ) sin(φ)
− sin(φ) cos(φ)

] [
a b
b c

] [
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
=

[
d1 0
0 d1

]
. (3.35)

The matrices U and V are accumulated (from identity matrices) as

Uk+1 = UkGkJk , (3.36)

Vk+1 = VkJk . (3.37)

If the matrix A is a tall n×m non-square matrix (n > m), the first step should be
the QR-decomposition,

A = QR , (3.38)

where Q is the n×m orthogonal matrix and R is a square triangular m×m matrix.
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The second step is the normal SVD of the square matrix R,

R = U′DVT . (3.39)

Now the SVD of the original matrix A is given as

A = UDVT , (3.40)

where
U = QU′ . (3.41)
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Table 3.1: Jacobi diagonalization in C using gsl matrix and gsl vector as containers.

#include<math . h>
#include<g s l / g s l m a t r i x . h>
#include<g s l / g s l v e c t o r . h>
int j a c o b i ( g s l m a t r i x ∗ A, g s l v e c t o r ∗ e , g s l m a t r i x ∗ V){
/∗ Jacobi d i a g ona l i z a t i on ; upper t r i a n g l e o f A i s des t royed ;

e and V accumulate e i g enva l u e s and e i g enve c t o r s ∗/
int changed , sweeps =0, n=A−>s i z e 1 ;
for ( int i =0; i<n ; i++)g s l v e c t o r s e t ( e , i , g s l m a t r i x g e t (A, i , i ) ) ;
g s l m a t r i x s e t i d e n t i t y (V) ;
do{ changed =0; sweeps++; int p , q ;
for (p=0;p<n ; p++)for ( q=p+1;q<n ; q++){
double app=g s l v e c t o r g e t ( e , p ) ;
double aqq=g s l v e c t o r g e t ( e , q ) ;
double apq=g s l m a t r i x g e t (A, p , q ) ;
double phi =0.5∗ atan2 (2∗apq , aqq−app ) ;
double c = cos ( phi ) , s = s i n ( phi ) ;
double app1=c∗c∗app−2∗s ∗c∗apq+s ∗ s ∗aqq ;
double aqq1=s ∗ s ∗app+2∗s ∗c∗apq+c∗c∗aqq ;
i f ( app1!=app | | aqq1!=aqq ){ changed =1;

g s l v e c t o r s e t ( e , p , app1 ) ;
g s l v e c t o r s e t ( e , q , aqq1 ) ;
g s l m a t r i x s e t (A, p , q , 0 . 0 ) ;
for ( int i =0; i<p ; i ++){
double a ip=g s l m a t r i x g e t (A, i , p ) ;
double a iq=g s l m a t r i x g e t (A, i , q ) ;
g s l m a t r i x s e t (A, i , p , c∗aip−s ∗ a iq ) ;
g s l m a t r i x s e t (A, i , q , c∗ a iq+s ∗ a ip ) ; }

for ( int i=p+1; i<q ; i ++){
double api=g s l m a t r i x g e t (A, p , i ) ;
double a iq=g s l m a t r i x g e t (A, i , q ) ;
g s l m a t r i x s e t (A, p , i , c∗api−s ∗ a iq ) ;
g s l m a t r i x s e t (A, i , q , c∗ a iq+s ∗ api ) ; }

for ( int i=q+1; i<n ; i ++){
double api=g s l m a t r i x g e t (A, p , i ) ;
double aq i=g s l m a t r i x g e t (A, q , i ) ;
g s l m a t r i x s e t (A, p , i , c∗api−s ∗ aq i ) ;
g s l m a t r i x s e t (A, q , i , c∗ aq i+s ∗ api ) ; }

for ( int i =0; i<n ; i ++){
double vip=g s l m a t r i x g e t (V, i , p ) ;
double viq=g s l m a t r i x g e t (V, i , q ) ;
g s l m a t r i x s e t (V, i , p , c∗vip−s ∗ viq ) ;
g s l m a t r i x s e t (V, i , q , c∗ viq+s ∗ vip ) ; }
} } }while ( changed !=0) ;

return sweeps ; }



Chapter 4

Ordinary least squares

4.1 Introduction

A system of linear equations is considered overdetermined if there are more equations
than unknown variables. If all equations of an overdetermined system are linearly
independent, the system has no exact solution.

An ordinary least-squares problem (also called linear least-squares problem) is the
problem of finding an approximate solution to an overdetermined linear system. It
often arises in applications where a theoretical model is fitted to experimental data.

4.2 Linear least-squares problem

Consider a linear system
Ac = b , (4.1)

where A is a n ×m matrix, c is an m-component vector of unknown variables and b
is an n-component vector of the right-hand side terms. If the number of equations n
is larger than the number of unknowns m, the system is overdetermined and generally
has no solution.

However, it is still possible to find an approximate solution — the one where Ac is
only approximately equal b — in the sence that the Euclidean norm of the difference
between Ac and b is minimized,

c : min
c
‖Ac− b‖2 . (4.2)

The problem (4.2) is called the ordinary least-squares problem and the vector c that
minimizes ‖Ac− b‖2 is called the least-squares solution.
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4.3 Solution via QR-decomposition

The linear least-squares problem can be solved by QR-decomposition. The matrix A is
factorized as A = QR, where Q is n×m matrix with orthogonal columns, QTQ = 1,
and R is an m×m upper triangular matrix. The Euclidean norm ‖Ac−b‖2 can then
be rewritten as

‖Ac− b‖2 = ‖QRc− b‖2 (4.3)

= ‖Rc−QTb‖2 + ‖(1−QQT)b‖2 ≥ ‖(1−QQT)b‖2 .

The term ‖(1 − QQT)b‖2 is independent of the variables c and can not be reduced
by their variations. However, the term ‖Rc−QTb‖2 can be reduced down to zero by
solving the m×m system of linear equations

Rc = QTb . (4.4)

The system is right-triangular and can be readily solved by back-substitution.
Thus the solution to the ordinary least-squares problem (4.2) is given by the solution

of the triangular system (4.4).

4.4 Ordinary least-squares curve fitting

Ordinary least-squares curve fitting is a problem of fitting n (experimental) data points
{xi, yi ±∆yi}i=1,...,n, where ∆yi are experimental errors, by a linear combination, Fc,
of m functions {fk(x)}k=1,...,m ,

Fc(x) =

m∑
k=1

ckfk(x) , (4.5)

where the coefficients ck are the fitting parameters.
The objective of the least-squares fit is to minimize the square deviation, called χ2,

between the fitting function Fc(x) and the experimental data,

χ2 =

n∑
i=1

(
F (xi)− yi

∆yi

)2

. (4.6)

where the individual deviations from experimental points are weighted with their in-
verse errors in order to promote contributions from the more precise measurements.

Minimization of χ2 with respect to the coefficiendt ck in (4.5) is apparently equiv-
alent to the least-squares problem (4.2) where

Aik =
fk(xi)

∆yi
, bi =

yi
∆yi

. (4.7)
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If QR = A is the QR-decomposition of the matrix A, the formal least-squares solution
to the fitting problem is

c = R−1QTb . (4.8)

In practice of course one rather back-substitutes the right-triangular system Rc = QTb.

4.4.1 Variances and correlations of fitting parameters

Suppose δyi is a small deviation of the measured value of the physical observable at
hand from its exact value. The corresponding deviation δck of the fitting coefficient is
then given as

δck =
∑
i

∂ck
∂yi

δyi . (4.9)

In a good experiment the deviations δyi are statistically independent and distributed
normally with the standard deviations ∆yi. The deviations (4.9) are then also dis-
tributed normally with variances

〈δckδck〉 =
∑
i

(
∂ck
∂yi

∆yi

)2

=
∑
i

(
∂ck
∂bi

)2

. (4.10)

The standard errors in the fitting coefficients are then given as the square roots of
variances,

∆ck =
√
〈δckδck〉 =

√√√√∑
i

(
∂ck
∂bi

)2

. (4.11)

The variances are diagonal elements of the covariance matrix, Σ, made of covari-
ances,

Σkq ≡ 〈δckδcq〉 =
∑
i

∂ck
∂bi

∂cq
∂bi

. (4.12)

Covariances 〈δckδcq〉 are measures of to what extent the coefficients ck and cq change
together if the measured values yi are varied. The normalized covariances,

〈δckδcq〉√
〈δckδck〉〈δcqδcq〉

(4.13)

are called correlations.
Using (4.12) and (4.8) the covariance matrix can be calculated as

Σ =

(
∂c

∂b

)(
∂c

∂b

)T

= R−1(R−1)T = (RTR)−1 = (ATA)−1 . (4.14)
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The square roots of the diagonal elements of this matrix provide the estimates of the
errors ∆c of the fitting coefficients,

∆ck =
√

Σkk

∣∣∣
k=1...m

, (4.15)

and the (normalized) off-diagonal elements provide the estimates of their correlations.

Here is a Python implementation of the ordinary least squares fit via QR decom-
position,

def l s f i t ( f s : l i s t , x : vector , y : vector , dy : vec to r ) :
n = x . s i z e ; m = len ( f s )
A = matrix (n ,m)
b = vecto r (n)
for i in range (n ) :
b [ i ] = y [ i ] / dy [ i ]
for k in range (m) : A[ i , k ] = f s [ k ] ( x [ i ] ) / dy [ i ]

(Q,R) = gramschmidt . qr (A)
c = R. b a c k s u b s t i t u t e (Q.T()∗b)
inver se R = R. b a c k s u b s t i t u t e ( matrix . id matr ix (m) )
S = inver se R ∗ i nver se R .T( )
return ( c , S )

An illustration of a fit is shown on Figure 4.1 where a polynomial is fitted to a set
of data.

−1 −0.5 0 0.5 1

x

0

2

4

6

y

data
Fc(x)

Fc+∆c(x)

Fc−∆c(x)

Figure 4.1: Ordinary least squares fit of Fc(x) = c1 +c2x+c3x
2 to a set of data. Shown

are fits with optimal coefficiens c as well as with c + ∆c and c−∆c.
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4.5 Singular value decomposition

Under the thin singular value decomposition we shall understand a representation of a
tall n×m (n > m) matrix A in the form

A = USVT , (4.16)

where U is an orthogonal n × m matrix (UTU = 1), S is a square m × m diagonal
matrix with non-negative real numbers on the diagonal (called singular values of matrix
A), and V is a square m×m orthoginal matrix (VTV = 1).

Singular value decomposition can be used to solve our linear least squares problem
Ac = b. Indeed inserting the decomposition into the equation gives

USVTc = b . (4.17)

Multiplying from the left with UT and using the orthogonality of U one gets the
projected equation

SVTc = UTb . (4.18)

This is a square system which can be easily solved first by solving the diagonal system

Sy = UTb (4.19)

for y and then obtaining c as
c = Vy . (4.20)

The covariance matrix (4.14) can be calculated as

Σ = (ATA)−1 = (VS2VT)−1 = VS−2VT . (4.21)

Singular value decomposition can be found by diagonalising the m×m symmetric
positive semi-definite matrix ATA (although this method is not the best for practical
calculations, it would do as an educational tool),

ATA = VDVT , (4.22)

where D is a diagonal matrix with eigenvalues of the matrix ATA on the diagonal
and V is the matrix of the corresponding eigenvectors. Indeed it is easy to check that
the sought decomposition can the be constructed as A = USVT where S = D1/2,
U = AVD−1/2.
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Chapter 5

Nonlinear equations

5.1 Introduction

Non-linear equations (or root-finding) is a problem of finding a set of n variables x =
{x1, . . . , xn} which satisfy a system of n non-linear equations

fi(x1, ..., xn) = 0
∣∣∣
i=1,...,n

. (5.1)

In matrix notation the system is written as

f(x) = 0 , (5.2)

where f(x)
.
= {f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)}.

In one-dimension, n = 1, it is generally possible to plot the function in the region
of interest and see whether the graph crosses the x-axis. One can then be sure the root
exists and even figure out its approximate position to start one’s root-finding algorithm
from. In multi-dimensions one generally does not know if the root exists at all, until it
is found.

The root-finding algorithms generally proceed by iteration, starting from some ap-
proximate solution and making consecutive steps—hopefully in the direction of the
suspected root—until some convergence criterion is satisfied. The procedure is gener-
ally not even guaranteed to converge unless starting from a point close enough to the
sought root.

We shall only consider the multi-dimensional case here since i) the multi-dimensional
root-finding is more difficult, and ii) the multi-dimensional routines can also be used
in a one-dimensional case.
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5.2 Newton’s method

Newton’s method (also reffered to as Newton-Raphson method, after Isaac Newton and
Joseph Raphson) is a root-finding algorithm that uses the first term of the Taylor series
of the functions fi to linearise the system (5.1) in the vicinity of a suspected root. It is
one of the oldest and best known methods and is a basis of a number of more refined
methods.

Suppose that the point x = {x1, . . . , xn} is close to the root. The Newton’s algo-
rithm tries to find the step ∆x which would move the point towards the root, such
that

fi(x + ∆x) = 0
∣∣∣
i=1,...,n

. (5.3)

The first order Taylor expansion of (5.3) gives a system of linear equations,

fi(x) +

n∑
k=1

∂fi
∂xk

∆xk = 0
∣∣∣
i=1,...,n

, (5.4)

or, in the matrix form,
J∆x = −f(x), (5.5)

where J is the matrix of partial derivatives,

Jik
.
=
∂fi
∂xk

, (5.6)

called the Jacobian matrix. In practice, if derivatives are not available analytically, one
uses finite differences,

∂fi
∂xk

≈ fi(x1, . . . , xk−1, xk + δx, xk+1, . . . , xn)− fi(x1, . . . , xk, . . . , xn)

δx
, (5.7)

with δx� s with s being the typical scale of the problem at hand.
The solution ∆x to the linear system (5.5)—called the Newton’s step—gives the

approximate direction and the approximate step-size towards the solution.
The Newton’s method converges quadratically if sufficiently close to the solution.

Otherwise the full Newton’s step ∆x might actually diverge from the solution. There-
fore in practice a more conservative step, λ∆x with λ < 1, is usually taken. The
strategy of finding the optimal λ is referred to as line search.

It is typically not worth the effort to find λ which minimizes ‖f(x +λ∆x)‖ exactly,
since ∆x is only an approximate direction towards the root. Instead an inexact but
quick minimization strategy is usually used, like the backtracking line search where one
first attempts the full step, λ = 1, and then backtracks, λ← λ/2, until the condition

‖f(x + λ∆x)‖ <
(

1− λ

2

)
‖f(x)‖ (5.8)
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is satisfied. If the condition is not satisfied for sufficiently small λmin the step is taken
with λmin simply to step away from this diffictul place and try again.

Following is a typical algrorithm of the Newton’s method with backtracking line
search and condition (5.8),

repeat
solve J∆x = −f(x) for ∆x
λ← 1
while

(
‖f(x + λ∆x)‖ >

(
1− λ

2

)
‖f(x)‖ and λ > 1

64

)
do λ← λ/2

x← x + λ∆x
until converged (e.g. ‖f(x)‖ < tolerance)

A somewhat more refined backtracking linesearch is based on an approximate min-
imization of the function

g(λ)
.
=

1

2
‖f(x + λ∆x)‖2 (5.9)

using interpolation. The values g(0) = 1
2‖f(x)‖2 and g′(0) = −‖f(x)‖2 are already

known (check this). If the previous step with certain λtrial was rejected, we also have
g(λtrial). These three quantities allow to build a quadratic approximation,

g(λ) ≈ g(0) + g′(0)λ+ cλ2 , (5.10)

where

c =
g(λtrial)− g(0)− g′(0)λtrial

λ2
trial

. (5.11)

The minimum of this approximation (determined by the condition g′(λ) = 0),

λnext = −g
′(0)

2c
, (5.12)

becomes the next trial step-size.

The procedure is repeated recursively until either condition (5.8) is satisfied or the
step becomes too small (in which case it is taken unconditionally in order to simply get
away from the difficult place).

5.3 Quasi-Newton methods

The Newton’s method requires calculation of the Jacobian matrix at every iteration.
This is generally an expensive operation. Quasi-Newton methods avoid calculation of
the Jacobian matrix at the new point x + ∆x, instead trying to use certain approxi-
mations, typically rank-1 updates.
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5.3.1 Broyden’s method

Broyden’s algorithm estimates the Jacobian J + ∆J at the point x + ∆x using the
finite-difference approximation,

(J + ∆J)∆x = ∆f , (5.13)

where ∆f
.
= f(x + ∆x)− f(x) and J is the Jacobian at the point x.

The matrix equation (5.13) is under-determined in more than one dimension as it
contains only n equations to determine n2 matrix elements of ∆J. Broyden suggested
to choose ∆J as a rank-1 update, linear in ∆x,

∆J = c ∆xT , (5.14)

where the unknown vector c can be found by substituting (5.14) into (5.13), which
gives

∆J =
(∆f − J∆x)∆xT

∆xT∆x
. (5.15)

In practice if one wanders too far from the point where J was first calculated the
accuracy of the updates may decrease significantly. In such case one might need to
recalculate J anew. For example, two successive steps with λmin might be interpreted
as a sign of accuracy loss in J and subsequently trigger its recalculation.

It also possible to update directly the inverse of the Jacobian matrix using the
Sherman-Morrison formula for the inverse of a rank-1 updated matrix,

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (5.16)

5.3.2 Symmetric rank-1 update

The symmetric rank-1 update is chosen in the form

∆J = uuT , (5.17)

where the vector u is found from the condition (5.13). The update is then given as

∆J =
(∆f − J∆x)(∆f − J∆x)T

(∆f − J∆x)T∆x
. (5.18)
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Table 5.1: Python implementation of Newton’s root-finding algorithm with back-
tracking.

def newton ( f : ” func t i on ” , x s t a r t : vector , eps : f loat=1e−3,dx : f loat=1e−6):
x=x s t a r t . copy ( ) ; n=x . s i z e ; J = matrix (n , n)
while True :

fx=f ( x )
for j in range (n) :
x [ j ]+=dx
df=f ( x)− fx
for i in range (n) : J [ i , j ] = df [ i ] / dx
x [ j ]−=dx

g ivens . qr ( J )
Dx = givens . s o l v e (J,− fx )
s=2
while True :

s/=2
y=x+Dx∗ s
fy=f ( y )
i f fy . norm()<(1− s /2)∗ fx . norm ( ) or s<0.02 : break

x=y ; fx=fy
i f Dx. norm()<dx or fx . norm()< eps : break

return x ;
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Chapter 6

Minimization and
optimization

6.1 Introduction

Minimization (maximization) is a problem of finding the minimum (maximum) of a
given — generally non-linear — real valued function φ(x) (often called the objective
function) of an n-dimensional argument x

.
= {x1, . . . , xn}.

Minimization is a simple case of a more general poblem — optimization — which
includes finding best available values of the objective function within a given domain
and subject to given constrains.

Minimization is not unrelated to root-finding: at the minimum all partial derivatives
of the objective function vanish,

∂φ

∂xi
= 0

∣∣∣∣
i=1,...,n

, (6.1)

and one can alternatively solve this system of (non-linear) equations.

6.2 Local minimization

6.2.1 Newton’s methods

Newton’s method is based on the quadratic approximation of the objective function f
in the vicinity of the suspected minimum,

φ(x + ∆x) ≈ φ(x) +∇φ(x)T∆x +
1

2
∆xTH(x)∆x , (6.2)
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where the vector ∇φ(x) is the gradient of the objective function at the point x,

∇φ(x)
.
=

{
∂φ(x)

∂xi

}
i=1,...,n

, (6.3)

and H(x) is the Hessian matrix – a square matrix of second-order partial derivatives
of the objective function at the point x,

H(x)
.
=

{
∂2φ(x)

∂xi∂xj

}
i,j∈1,...,n

. (6.4)

The minimum of this quadratic form, as function of ∆x, is found at the point where
its gradient with respect to ∆x vanishes,

∇φ(x) + H(x)∆x = 0 . (6.5)

This gives an approximate step towards the minimum, called the Newton’s step,

∆x = −H(x)−1∇φ(x) . (6.6)

The original Newton’s method is simply the iteration,

xk+1 = xk −H(xk)−1∇φ(xk) , (6.7)

where at each iteration the full Newton’s step is taken and the Hessian matrix is recalcu-
lated. In practice, instead of calculating H−1 one rather solves the linear equation (6.5).

Usually Newton’s method is modified to take a smaller step s,

s = λ∆x, (6.8)

with 0 < λ < 1. The factor λ can be found by a backtracking algoritm similar to that
in the Newton’s method for root-finding. One starts with λ = 1 and than backtracks,
λ← λ/2, until the Armijo condition,

φ(x + s) < φ(x) + αsT∇φ(x) , (6.9)

is satisfied (or the minimal λ is reached, in which case the step is taken unconditionally).
The parameter α can be chosen as small as 10−4.

6.2.2 Quasi-Newton methods

Quasi-Newton methods are variations of the Newton’s method which attempt to avoid
recalculation of the Hessian matrix at each iteration, trying instead certain updates
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based on the analysis of the gradient vectors. The update δH is usually chosen to
satisfy the condition

∇φ(x + s) = ∇φ(x) + (H + δH)s , (6.10)

called secant equation, which is the Taylor expansion of the gradient.

The secant equation is under-determined in more than one dimension as it consists of
only n equations for the n2 unknown elements of the update δH. Various quasi-Newton
methods use different choices for the form of the solution of the secant equation.

In practice one typically uses the inverse Hessian matrix (often denoted as B) and
applies the updates directly to the inverse matrix thus avoiding the need to solve the
linear equation (6.5) at each iteration.

For the inverse Hessian matrix the secant equation (6.10) reads

(B + δB)y = s , (6.11)

or, in short,

δBy = u , (6.12)

where B
.
= H−1, y

.
= ∇φ(x + s)−∇φ(x), and u

.
= s−By.

One usually starts with the identity matrix as the zeroth approximation for the
inverse Hessian matrix and then applies the updates.

If the minimal λ is reached during the bactracking line-search—which might be a
signal of lost precision in the approximate (inverse) Hessian matrix—it is advisable to
reset the current inverse Hessian matrix to identity matrix.

Broyden’s update

The Broyden’s update is chosen in the form

δB = csT . (6.13)

where the vector c is found from the condition (6.12),

c =
u

sTy
. (6.14)

Sometimes the dot-product sTy becomes very small or even zero which results in
serious numerical difficulties. One can avoid this by only performing update if the
condition |sTy| > ε is satisfied where ε is a small number, say 10−6.
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Symmetric Broyden’s update

The Broyden’s update (6.13) is not symmetric (while the Hessian matrix should be)
which is an obvious drawback. Therefore a beter approximation might be the symmetric
Broyden’s update,

δB = asT + saT . (6.15)

The vector a is again found from the condition (6.12),

a =
u− γs

sTy
, (6.16)

where γ = (uTy)/(2sTy).
Again one only performs the update if |sTy| > ε.

SR1 update

The symmetric-rank-1 update (SR1) in chosen in the form

δB = vvT , (6.17)

where the vector v is again found from the condition (6.10), which gives

δB =
uuT

uTy
. (6.18)

Again, one only performs the update if denominator is not too small, that is, |uTy| >
ε.

Other popular updates

The wikipedia article “Quasi-Newton method” list several other popular updates.

6.2.3 Downhill simplex method

The downhill simplex method (also called “Nelder-Mead” or “amoeba”) is a commonnly
used minimization algorithm where the minimum of a function in an n-dimensional
space is found by transforming a simplex—a polytope with n+1 vertexes—according
to the function values at the vertexes, moving it downhill until it converges towards
the minimum.

The advantages of the downhill simplex method is its stability and the lack of use
of derivatives. However, the convergence is realtively slow as compared to Newton’s
methods.

In order to introduce the algorithm we need the following definitions:
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• Simplex: a figure (polytope) represented by n+1 points, called vertexes, {p1, . . . ,pn+1}
(where each point pk is an n-dimensional vector).

• Highest point: the vertex, phi, with the highest value of the function: φ(phi) =
maxk φ(pk).

• Lowest point: the vertex, plo, with the lowest value of the function: φ(plo) =
mink φ(pk).

• Centroid: the center of gravity of all points, except for the highest: pce =
1
n

∑
(k 6=hi) pk

The simplex is moved downhill by a combination of the following elementary oper-
ations:

1. Reflection: the highest point is reflected against the centroid, phi → pre = pce +
(pce − phi).

2. Expansion: the highest point reflects and then doubles its distance from the
centroid, phi → pex = pce + 2(pce − phi).

3. Contraction: the highest point halves its distance from the centroid, phi → pco =
pce + 1

2 (phi − pce).

4. Reduction: all points, except for the lowest, move towards the lowest points
halving the distance. pk 6=lo → 1

2 (pk + plo).

Table 6.1 shows one possible algorithm for the downhill simplex method, and a
C-implementation of simplex operations and the amoeba algorithm can be bound in
Table 6.4 and Table 6.4.

6.3 Global optimization

Global optimization is the problem of locating (a good approximation to) the global
minimum of a given objective function in a search space large enough to prohibit
exhaustive enumeration.

When only a small sub-space of the search space can be realistically sampled the
stochastic methods usually come to the fore.

A good local minimizer converges to the nearest local miminum relatively fast, so
one possible global minimizer can be constructed by simply starting the local miminizer
from different random starting points.

In the following several popular global minimization algorithms are shortly de-
scribed.
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Table 6.1: Downhill simplex (Nelder-Mead) algorithm

REPEAT :
f i n d highest , lowest , and cen t r o id po in t s o f the s implex
try r e f l e c t i o n
IF φ(reflected) < φ(lowest) :

t ry expansion
IF φ(expanded) < φ(reflected) :

accept expansion
ELSE :

accept r e f l e c t i o n
ELSE :

IF φ(reflected) < φ(highest) :
accept r e f l e c t i o n

ELSE :
t ry con t r a c t i on
IF φ(contracted) < φ(highest) :

accept con t r a c t i on
ELSE :

do r educt i on
UNTIL converged ( e . g . s i z e ( s implex)< t o l e r a n c e )

6.3.1 Simulated annealing

Simulated annealing is a stochastic metaheuristic algorithm for global minimization.
The name and inspiration come from annealing—heating up and cooling slowly—in
material science. The slow cooling allows a piece of material to reach a state with
”lowest energy”.

The objective function in the space of states is interpreted as some sort of potential
energy and the states—the points in the search space—are interpeted as physical states
of some physical system. The system attempts to make transitions from its current state
to some randomly sampled nearest states with the goal to eventually reach the state
with minimal energy – the global minimum.

The system is attached to a thermal resevoir with certain temperature. Each time
the energy of the system is measured the reservoir supplies it with a random amount
of thermal energy sampled from the Boltzmann distribution,

P (E) = Te−E/T . (6.19)

If the temperature equals zero the system can only make transitions to the neigh-
boring states with lower potential energy. In this case the algorithm turns merely into
a local minimizer with random sampling.

If temperature is finite the system is able to climb up the ridges of the potential
energy—about as high as the current temperature—and thus escape from local minima
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Table 6.2: Simulated annealing algorithm

s t a t e ← s t a r t s t a t e
T ← s t a r t t empera tu r e
energy ← E( s t a t e )
REPEAT :

new state ← neighbour ( s t a t e )
new energy ← E( new state )
IF new energy < energy :

s t a t e ← new state
energy ← new energy

ELSE :

do with p r o b a b i l i t y exp
(
−newenergy−energy

T

)
:

s t a t e ← new state
energy ← new energy

r educe t empe ra tu r e a c co rd ing to s chedu l e (T)
UNTIL terminated

and hopefully eventually reach the global minimum.

One typically starts the simulation with some finite temperature on the order of
the height of the typical hills of the potential energy surface, letting the system to
wander almost unhindered around the landscape with a good chance to locate if not
the best then at least a good enough minimum. The temperature is then slowly reduced
following some annealing schedule which may be supplied by the user but must end
with T = 0 towards the end of the alloted time budget.

Table 6.2 lists one possible variant of the algorithm.

The function neigbour(state) should return a randomly chosen neighbour of the
given state.

Downhill simplex method can incorporate simulated annealing by adding the stochas-
tic thermal energy to the values of the objective function at the verices.

6.3.2 Quantum annealing

Quantum annealing is a general global minimization algorithm which—like simulated
annealing—also allows the search path to escape from local minima. However instead
of the thermal jumps over the potential barriers quantum annealing allows the system
to tunnel through the barriers.

In its simple incarnation the quantum annealing algorithm allows the system to
attempt transitions not only to the nearest states but also to distant states within
certain ”tunneling distance” from the current state. The transition is accepted only if
it reduces the potential energy of the system.
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Table 6.3: Quantum annealing algorithm

s t a t e ← s t a r t s t a t e
energy ← E( s t a t e )
R ← s t a r t r a d i u s
REPEAT :

new state ← random ne ighbour with in rad ius ( s ta te ,R)
new energy ← E( new state )
IF new energy < energy :

s t a t e ← new state
energy ← new energy

r e d u c e r a d i u s a c c o r d i n g t o s c h e d u l e (R)
UNTIL terminated

At the beginning of the minimization procedure the tunnelling distance is large—
on the order of the size of the region where the global minimum is suspected to be
localed—allowing the system to explore the region. The tunneling distance is then
slowly reduced according to a schedule such that by the end of the alloted time the
tunnelling distance reduces to zero at which point the system hopefully is in the state
with minimal energy.

6.3.3 Evolutionary algorithms

Unlike annealing algorithms, which follow the motion of only one point in the search
space, the evolutionary algorithms typically follow a set of points called a population
of individuals. A bit like the downhill simplex method which follows the motion of a
set of points – the simplex.

The population evolves towards more fit individuals where fitness is understood in
the sence of minimizing the objective functions. The parameters of the individuals
(for example, the coordinates of the points in multi-dimentional minimization of a
continuous objective function) are called genes.

The algorithm proceeds iteratively with the population in each iteration called a
generation. In each generation the fitness of each individual—typically, the value of
the objective function—is evaluated and the new generation is generated stochastically
from the gene pool of the current generation through crossovers and mutations such
that the genes of more fit individuals have a better chance of propagating into the next
generation.

Each new individual in the next generation is produced from a pair of ”parent”
individuals of the current generation. The use of two ”parents” is biologically inspired,
in practice more than two ”parents” can be used as well. The parents for a new
individual are selected from the individuals of the current generation through a fitness
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based stochastic process where fitter individuals are more likely to be selected.
The ”child” individual shares many characteristics of its ”parents”. In the simplest

case the ”child” may get its genes by simply averaging the genes of its parents. Then a
certain amount of mutations—random changes in the genes—are added to the ”child’s”
genes.

Generation of ”children” continues until the population of the new generation
reaches the appropriate size after which the iteration repeats itself.

The algorithm is terminated when the fitness level of the population is deemed
sufficient or when the allocated budget is exhausted.

6.4 Implementation in C
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Table 6.4: C implementation of simplex operations

void r e f l e c t i o n
(double∗ highest , double∗ cent ro id , int dim , double∗ r e f l e c t e d ){
for ( int i =0; i<dim ; i++) r e f l e c t e d [ i ]=2∗ c en t r o id [ i ]− h ighe s t [ i ] ;

}
void expansion

(double∗ highest , double∗ cent ro id , int dim , double∗ expanded ) {
for ( int i =0; i<dim ; i++) expanded [ i ]=3∗ c en t r o id [ i ]−2∗ h ighe s t [ i ] ;

}
void con t r a c t i on

(double∗ highest , double∗ cent ro id , int dim , double∗ contrac ted ){
for ( int i =0; i<dim ; i++)

contrac ted [ i ]=0.5∗ c en t r o id [ i ]+0.5∗ h ighe s t [ i ] ;
}
void r educt i on ( double∗∗ simplex , int dim , int l o ){

for ( int k=0;k<dim+1;k++) i f ( k!= l o ) for ( int i =0; i<dim ; i++)
simplex [ k ] [ i ]=0 .5∗ ( s implex [ k ] [ i ]+ s implex [ l o ] [ i ] ) ;

}
double d i s t ance (double∗ a , double∗ b , int dim){

double s =0; for ( int i =0; i<dim ; i++) s+=pow(b [ i ]−a [ i ] , 2 ) ;
return s q r t ( s ) ;

}
double s i z e (double∗∗ simplex , int dim){

double s =0; for ( int k=1;k<dim+1;k++){
double d i s t=d i s t ance ( s implex [ 0 ] , s implex [ k ] , dim ) ;
i f ( d i s t>s ) s=d i s t ; }

return s ;
}

void s implex update (double∗∗ simplex , double∗ f v a l u e s , int d ,
int∗ hi , int∗ lo , double∗ c en t r o id ) {
∗ hi =0; ∗ l o =0; double h ighe s t=f v a l u e s [ 0 ] , l owest =f v a l u e s [ 0 ] ;
for ( int k=1;k<d+1;k++) {
double next=f v a l u e s [ k ] ;
i f ( next>h ighe s t ){ h ighe s t=next ;∗ hi=k ;}
i f ( next<l owest ) { l owest=next ; ∗ l o=k ;} }

for ( int i =0; i<d ; i++) {
double s =0; for ( int k=0;k<d+1;k++) i f ( k!=∗ hi ) s+=simplex [ k ] [ i ] ;
c en t r o id [ i ]= s /d ; }

}
void s i m p l e x i n i t i a t e (
double fun (double ∗ ) , double∗∗ simplex , double∗ f v a l u e s , int d ,
int∗ hi , int∗ lo , double∗ c en t r o id ) {

for ( int k=0;k<d+1;k++) f v a l u e s [ k]= fun ( s implex [ k ] ) ;
s implex update ( simplex , f v a l u e s , d , hi , lo , c en t r o id ) ;

}
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Table 6.5: C implementation of downhill simplex algorithm

int downh i l l s imp l ex (
double F(double ∗ ) ,double∗∗ simplex , int d , double s i m p l e x s i z e g o a l )

{
int hi , lo , k=0; double c en t r o id [ d ] , F value [ d+1] , p1 [ d ] , p2 [ d ] ;
s i m p l e x i n i t i a t e (F , simplex , F value , d,& hi ,& lo , c en t r o id ) ;
while ( s i z e ( simplex , d)> s i m p l e x s i z e g o a l ){

s implex update ( simplex , F value , d,& hi ,& lo , c en t r o id ) ;
r e f l e c t i o n ( s implex [ h i ] , c ent ro id , d , p1 ) ; double f r e=F( p1 ) ;
i f ( f r e<F value [ l o ] ) { // r e f l e c t i o n l ook s good : t r y expansion

expansion ( s implex [ h i ] , c ent ro id , d , p2 ) ; double f e x=F( p2 ) ;
i f ( f ex<f r e ){ // accept expansion

for ( int i =0; i<d ; i++)s implex [ h i ] [ i ]=p2 [ i ] ; F value [ h i ]= f e x ;}
else { // r e j e c t expansion and accept r e f l e c t i o n

for ( int i =0; i<d ; i++)s implex [ h i ] [ i ]=p1 [ i ] ; F value [ h i ]= f r e ;}}
else { // r e f l e c t i o n wasn ’ t good

i f ( f r e<F value [ h i ] ) { // ok , accept r e f l e c t i o n
for ( int i =0; i<d ; i++)s implex [ h i ] [ i ]=p1 [ i ] ; F value [ h i ]= f r e ;}

else { // t ry con t rac t ion
con t r a c t i on ( s implex [ h i ] , c ent ro id , d , p1 ) ; double f c o=F( p1 ) ;
i f ( f co<F value [ h i ] ) { // accept con t rac t i on

for ( int i =0; i<d ; i++)s implex [ h i ] [ i ]=p1 [ i ] ; F value [ h i ]= f c o ;}
else { // do reduc t ion

r educt i on ( simplex , d , l o ) ;
s i m p l e x i n i t i a t e (F , simplex , F value , d,& hi ,& lo , c en t r o id ) ;}}}

k++;} return k ;
}



58 CHAPTER 6. MINIMIZATION AND OPTIMIZATION



Chapter 7

Ordinary differential equations

7.1 Introduction

Ordinary differential equations (ODE) are generally defined as differential equations in
one variable where the highest order derivative enters linearly. Such equations invari-
ably arise in many different contexts throughout mathematics and science as soon as
changes in the phenomena at hand are considered, usually with respect to variations
of certain parameters.

Systems of ordinary differential equations can be generally reformulated as systems
of first-order ordinary differential equations,

y′(x) = f(x,y) , (7.1)

where y′
.
= dy/dx, and the variables y and the right-hand side function f(x,y) are

understood as column-vectors. For example, a second order differential equation in the
form

u′′ = g(x, u, u′) (7.2)

can be rewritten as a system of two first-order equations,{
y′1 = y2

y′2 = g(x, y1, y2)
, (7.3)

using the variable substitution y1 = u, y2 = u′.
In practice ODEs are usually supplemented with boundary conditions which pick

out a certain class or a unique solution of the ODE. In the following we shall mostly
consider initial value problems : an ODE with the boundary condition in the form of
an initial condition at a given point a,

y(a) = y0 . (7.4)

59
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The problem then is to find the value of the solution y at some other point b. Finding
a solution to an ODE is often referred to as integrating the ODE.

An integration algorighm typically advances the solution from the initial point a to
the final point b in a number of discrete steps

{x0
.
= a, x1, . . . , xn−1, xn

.
= b}. (7.5)

An efficient algorithm tries to integrate an ODE using as few steps as possible under
the constraint of the given accuracy goal. For this purpose the algorthm should contin-
uously adjust the step-size during the integration, using few larger steps in the regions
where the solution is smooth and perhaps many smaller steps in more treacherous
regions.

Typically, an adaptive step-size ODE integrator is implemented as two routines.
One of them—called driver—monitors the local errors and tolerances and adjusts the
step-sizes. To actually perform a step the driver calls a separate routine—the stepper—
which advances the solution by one step, using one of the many available algorithms,
and estimates the local error. The GNU Scientific Library, GSL, implements about a
dozen of different steppers and a tunable adaptive driver.

In the following we shall discuss several of the popular driving algorithms and
stepping methods for solving initial-value ODE problems.

7.2 Error estimate

In an adaptive step-size algorithm the stepping routine must provide an estimate of
the integration error, upon which the driver bases its strategy to determine the optimal
step-size for a user-specified accuracy goal.

A stepping method is generally characterized by its order : a method has order p if
it can integrate exactly an ODE where the solution is a polynomial of order p. In other
words, for small h the error of the order-p method is O(hp+1).

For sufficiently small steps the error δy of an integration step for a method of a
given order p can be estimated by comparing the solution yfull step, obtained with one
full-step integration, against a potentially more precise solution, ytwo half steps, obtained
with two consecutive half-step integrations,

δy =
yfull step − ytwo half steps

2p − 1
. (7.6)

where p is the order of the algorithm used. Indeed, if the step-size h is small, we can
assume

δyfull step = Chp+1 , (7.7)

δytwo half steps = 2C

(
h

2

)p+1

=
Chp+1

2p
, (7.8)
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where δyfull step and δytwo half steps are the errors of the full-step and two half-steps
integrations, and C is an unknown constant. The two can be combined as

yfull step − ytwo half steps = δyfull step − δytwo half steps

=
Chp+1

2p
(2p − 1) , (7.9)

from which it follows that

Chp+1

2p
=

yfull step − ytwo half steps

2p − 1
. (7.10)

One has, of course, to take the potentially more precise ytwo half steps as the approx-
imation to the solution y. Its error is then given as

δytwo half steps =
Chp+1

2p
=

yfull step − ytwo half steps

2p − 1
, (7.11)

which had to be demonstrated. This prescription is often referred to as the Runge’s
principle.

One drawback of the Runge’s principle is that the full-step and the two half-step
calculations generally do not share evaluations of the right-hand side function f(x,y),
and therefore many extra evaluations are needed to estimate the error.

An alternative prescription for error estimation is to make the same step-size in-
tegration using two methods of different orders, with the difference between the two
solutions providing the estimate of the error. If the lower order method mostly uses the
same evaluations of the right-hand side function—in which case it is called embedded
in the higher order method—the error estimate does not need additional evaluations.

Predictor-corrector methods are naturally of embedded type: the correction—which
generally increases the order of the method—itself can serve as the estimate of the error.

7.3 Runge-Kutta methods

Runge-Kutta methods are one-step methods which advance the solution over the cur-
rent step using only the information gathered from withing the step itself. The solution
y is advanced from the point xi to xi+1 = xi + h, where h is the step-size, using a
one-step formula,

yi+1 = yi + hk, (7.12)

where yi+1 is the approximation to y(xi+1), and the value k is chosen such that the
method integrates exactly an ODE whose solution is a polynomial of the highest possible
order.
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The Runge-Kutta methods are distinguished by their order. Again, a method has
order p if it can integrate exactly an ODE where the solution is a polynomial of order
p (or if for small h the error of the method is O(hp+1)).

The first order Runge-Kutta method is the Euler’s method,

k = f(x0,y0) . (7.13)

Second order Runge-Kutta methods advance the solution by an auxiliary evaluation
of the derivative. For example, the mid-point method,

k0 = f(x0,y0) ,

k1/2 = f(x0 + 1
2h,y0 + 1

2hk0) ,

k = k1/2 , (7.14)

or the two-point method, also called the Heun’s method

k0 = f(x0,y0),

k1 = f(x0 + h,y0 + hk0),

k =
1

2
(k0 + k1) . (7.15)

These two methods can be combined into a third order method,

k =
1

6
k0 +

4

6
k1/2 +

1

6
k1 . (7.16)

The most commont is the fourth-order method, which is called RK4 or simply the
Runge-Kutta method,

k0 = f(x0,y0) ,

k1 = f(x0 + 1
2h,y0 + 1

2hk0) ,

k2 = f(x0 + 1
2h,y0 + 1

2hk1) ,

k3 = f(x0 + h,y0 + hk2) ,

k = 1
6k0 + 1

3k1 + 1
3k2 + 1

6k3 . (7.17)

A general Runge-Kutta method can be written as

yn+1 = yn +

s∑
i=1

biKi , (7.18)
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where

K1 = hf(xn,yn) ,

K2 = hf(xn + c2h,yn + a21K1) ,

K3 = hf(xn + c3h,yn + a31K1 + a32K2) , (7.19)

...

Ks = hf(xn + csh,yn + as1K1 + as2K2 + · · ·+ as,s−1Ks−1) .

Here the upper case Ki are simply the lower case ki multiplied for convenience by the
step-size h.

To specify a particular Runge-Kutta method one needs to provide the coefficients
{aij |1 ≤ j < i ≤ s}, {bi|i = 1..s} and {ci|i = 1..s}. The matrix [aij ] is called the
Runge-Kutta matrix, while the coefficients bi and ci are known as the weights and the
nodes. These data are usually arranged in the so called Butcher’s tableau,

0
c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

. (7.20)

For example, the Butcher’s tableau for the RK4 method is

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

. (7.21)

7.3.1 Embeded methods with error estimates

The embedded Runge-Kutta methods in addition to advancing the solution by one
step also produce an estimate of the local error of the step. This is done by having two
methods in the tableau, one with a certain order p and another one with order p − 1.
The difference bitween the two methods gives the the estimate of the local error. The
lower order method is embedded in the higher order method, that is, it uses the same
K-values. This allows a very effective estimate of the error.

The embedded lower order method is written as

y∗n+1 = yn +

s∑
i=1

b∗iKi , (7.22)
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where Ki are the same as for the higher order method. The error estimate is then given
as

en = yn+1 − y∗n+1 =

s∑
i=1

(bi − b∗i )Ki . (7.23)

The Butcher’s tableau for this kind of method is extended by one row to give the
values of b∗i .

The simplest embedded methods are Heun-Euler method,

0
1 1

1/2 1/2
1 0

, (7.24)

and midpoint-Euler method,
0

1/2 1/2
0 1
1 0

, (7.25)

which both combine methods of orders 2 and 1. Following is a C-language implemen-
tation of the embedded midpoint-Euler method with error estimate.

void rks tep12 (void f ( int n , double x , double∗yx , double∗dydx ) ,
int n , double x , double∗ yx , double h , double∗ yh , double∗ dy ){

int i ; double k0 [ n ] , yt [ n ] , k12 [ n ] ; /∗ VLA: gcc −s t d=c99 ∗/
f (n , x , yx , k0 ) ; for ( i =0; i<n ; i++) yt [ i ]=yx [ i ]+ k0 [ i ]∗h /2 ;
f (n , x+h/2 , yt , k12 ) ; for ( i =0; i<n ; i++) yh [ i ]=yx [ i ]+k12 [ i ]∗h ;
for ( i =0; i<n ; i++) dy [ i ]=( k0 [ i ]−k12 [ i ] ) ∗ h /2 ; /∗ op t im i s t i c ∗/

}

The Bogacki-Shampine method [2] combines methods of orders 3 and 2,

0
1/2 1/2
3/4 0 3/4
1 2/9 1/3 4/9

2/9 1/3 4/9 0
7/24 1/4 1/3 1/8

. (7.26)

Bogacki and Shampine argue that their method has better stability properties and
actually outperforms higher order methods at lower accuracy goal calculations. This
method has the FSAL—First Same As Last—property: the value k4 at one step equals
k1 at the next step; thus only three function evaluations are needed per step. Fol-
lowing is a simple implementation which does not utilise this property for the sake of
presentational clarity.
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void rkstep23 ( void f ( int n , double x , double∗ y , double∗ dydx ) ,
int n , double x , double∗ yx , double h , double∗ yh , double∗ dy ){
int i ; double k1 [ n ] , k2 [ n ] , k3 [ n ] , k4 [ n ] , yt [ n ] ; /∗ VLA: −s t d=c99 ∗/
f (n , x , yx , k1 ) ; for ( i =0; i<n ; i++) yt [ i ]=yx [ i ]+1./2∗ k1 [ i ]∗h ;
f (n , x+1./2∗h , yt , k2 ) ; for ( i =0; i<n ; i++) yt [ i ]=yx [ i ]+3./4∗ k2 [ i ]∗h ;
f (n , x+3./4∗h , yt , k3 ) ; for ( i =0; i<n ; i++)
yh [ i ]=yx [ i ]+(2 ./9 ∗k1 [ i ]+1./3∗ k2 [ i ]+4./9∗ k3 [ i ] ) ∗ h ;

f (n , x+h ,yh , k4 ) ; for ( i =0; i<n ; i ++){
yt [ i ]=yx [ i ]+(7 ./24∗ k1 [ i ]+1./4∗ k2 [ i ]+1./3∗ k3 [ i ]+1./8∗ k4 [ i ] ) ∗ h ;
dy [ i ]=yh [ i ]−yt [ i ] ;
}

}

The Runge-Kutta-Fehlberg method [5]—called RKF45—implemented in the renowned
rkf45 Fortran routine, has two methods of orders 5 and 4:

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40

16/135 0 6656/12825 28561/56430 −9/50 2/55
25/216 0 1408/2565 2197/4104 −1/5 0

7.4 Multistep methods

Multistep methods try to use the information about the function gathered at the pre-
vious steps. They are generally not self-starting as there are no previous steps at the
start of the integration. The first step must be done with a one-step method like
Runge-Kutta.

A number of multistep methods have been devised (and named after different math-
ematicians); we shall only consider a few simple ones here to get the idea of how it
works.

7.4.1 Two-step method

Given the previous point, (xi−1,yi−1), in addition to the current point (xi,yi), the
sought function y can be approximated in the vicinity of the point xi as

ȳ(x) = yi + y′i · (x− xi) + c · (x− xi)2, (7.27)
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where y′i = f(xi,yi) and the coefficient c can be found from the condition ȳ(xi−1) =
yi−1, which gives

c =
yi−1 − yi + y′i · (xi − xi−1)

(xi − xi−1)2
. (7.28)

The value yi+1 of the function at the next point, xi+1
.
= xi + h, can now be estimated

as yi+1 = ȳ(xi+1) from (7.27).
The error of this second-order two-step stepper can be estimated by a comparison

with the first-order Euler’s step, which is given by the linear part of (7.27). The
correction term ch2 can serve as the error estimate,

δy = ch2 . (7.29)

7.4.2 Two-step method with extra evaluation

One can further increase the order of the approximation (7.27) by adding a third order
term,

¯̄y(x) = ȳ(x) + d · (x− xi)2(x− xi−1) . (7.30)

The coefficient d can be found from the matching condition at a certain point t inside
the inverval,

¯̄y′(t) = f(t, ȳ(t))
.
= f̄t , (7.31)

where xi < t < xi + h. This gives

d =
f̄t − y′i − 2c · (t− xi)

2(t− xi)(t− xi−1) + (t− xi)2
. (7.32)

The error estimate at the point xi+1
.
= x0 + h is again given as the difference between

the higher and the lower order methods,

δy = ¯̄y(xi+1)− ȳ(xi+1) . (7.33)

7.5 Predictor-corrector methods

A predictor-corrector method uses extra iterations to improve the solution. It is an
algorithm that proceeds in two steps. First, the predictor step calculates a rough
approximation of y(x+h). Second, the corrector step refines the initial approximation.
Aditionally the corrector step can be repeated in the hope that this achieves an even
better approximation to the true solution.

For example, the two-point Runge-Kutta method (7.15) is as actually a predictor-
corrector method, as it first calculates the prediction ỹi+1 for y(xi+1),

ỹi+1 = yi + hf(xi,yi) , (7.34)
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and then uses this prediction in a correction step,

ˇ̃yi+1 = yi + h
1

2
(f(xi,yi) + f(xi+1, ỹi+1)) . (7.35)

7.5.1 Two-step method with correction

Similarly, one can use the two-step approximation (7.27) as a predictor, and then
improve it by one order with a correction step, namely

ˇ̄y(x) = ȳ(x) + ď · (x− xi)2(x− xi−1). (7.36)

The coefficient ď can be found from the condition ˇ̄y′(xi+1) = f̄i+1, where f̄i+1
.
=

f(xi+1, ȳ(xi+1)),

ď =
f̄i+1 − y′i − 2c · (xi+1 − xi)

2(xi+1 − xi)(xi+1 − xi−1) + (xi+1 − xi)2
. (7.37)

Equation (7.36) gives a better estimate, yi+1 = ˇ̄y(xi+1), of the sought function at
the point xi+1. In this context the formula (7.27) serves as predictor, and (7.36) as
corrector. The difference between the two gives an estimate of the error.

This method is equivalent to the two-step method with an extra evaluation where
the extra evaluation is done at the full step.

7.6 Adaptive step-size control

Let tolerance τ be the maximal accepted error consistent with the required accuracy to
be achieved in the integration of an ODE. Suppose the inegration is done in n steps of
size hi such that

∑n
i=1 hi = b− a. Under assumption that the errors at the integration

steps are random and statistically uncorrelated, the local tolerance τi for the step i has
to scale as the square root of the step-size,

τi = τ

√
hi
b− a. (7.38)

Indeed, if the local error ei on the step i is less than the local tolerance, ei ≤ τi, the
total error E will be consistent with the total tolerance τ ,

E ≈

√√√√ n∑
i=1

e2
i ≤

√√√√ n∑
i=1

τ2
i = τ

√√√√ n∑
i=1

hi
b− a = τ . (7.39)
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The current step hi is accepted if the local error ei is smaller than the local tolerance
τi, after which the next step is attempted with the step-size adjusted according to the
following empirical prescription [4],

hi+1 = hi ×
(
τi
ei

)Power

× Safety, (7.40)

where Power ≈ 0.25 and Safety ≈ 0.95.
If the local error is larger than the local tolerance the step is rejected and a new

step is attempted with the step-size adjusted according to the same prescription (7.40).
One simple prescription for the local tolerance τi and the local error ei to be used

in (7.40) is

τi = (ε‖yi‖+ δ)

√
hi
b− a , ei = ‖δyi‖ , (7.41)

where δ and ε are the required absolute and relative precision and δyi is the estimate
of the integration error at the step i.

A more elaborate prescription considers components of the solution separately,

(τi)k =
(
ε|(yi)k|+ δ

)√ hi
b− a , (ei)k = |(δyi)k| , (7.42)

where the index k runs over the components of the solution. In this case the step
acceptence criterion also becomes component-wise: the step is accepted, if

∀k : (ei)k < (τi)k . (7.43)

The factor τi/ei in the step adjustment formula (7.40) is then replaced by

τi
ei
→ min

k

(τi)k
(ei)k

. (7.44)

Yet another refinement is to include the derivatives y′ of the solution into the local
tolerance estimate, either overally,

τi =
(
εα‖yi‖+ εβ‖y′i‖+ δ

)√ hi
b− a , (7.45)

or commponent-wise,

(τi)k =
(
εα|(yi)k|+ εβ|(y′i)k|+ δ

)√ hi
b− a . (7.46)

The weights α and β are chosen by the user.
Following is a simple C-language implementation of the described algorithm.
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int o d e d r i v e r (void f ( int n , f loat x , f loat ∗y , f loat ∗dydx ) ,
int n , f loat ∗ x l i s t , f loat ∗∗ y l i s t ,
f loat b , f loat h , f loat acc , f loat eps , int max){

int i , k=0; f loat x ,∗ y , s , err , normy , to l , a=x l i s t [ 0 ] , yh [ n ] , dy [ n ] ;
while ( x l i s t [ k]<b){

x=x l i s t [ k ] , y=y l i s t [ k ] ; i f ( x+h>b) h=b−x ;
ode s t epper ( f , n , x , y , h , yh , dy ) ;
s =0; for ( i =0; i<n ; i++) s+=dy [ i ]∗ dy [ i ] ; e r r =s q r t ( s ) ;
s =0; for ( i =0; i<n ; i++) s+=yh [ i ]∗ yh [ i ] ; normy=s q r t ( s ) ;
t o l =(normy∗ eps+acc )∗ s q r t (h/(b−a ) ) ;
i f ( err<t o l ){ /∗ accept s t ep and cont inue ∗/

k++; i f (k>max−1) return −k ; /∗ uups ∗/
x l i s t [ k]=x+h ; for ( i =0; i<n ; i++) y l i s t [ k ] [ i ]=yh [ i ] ;
}

i f ( err >0) h∗=pow( t o l / err , 0 . 2 5 ) ∗ 0 . 9 5 ; else h∗=2;
} /∗ end wh i l e ∗/

return k+1; } /∗ re turn the number o f e n t r i e s in x l i s t / y l i s t ∗/
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Chapter 8

Numerical integration

8.1 Introduction

The term numerical integration refers to a broad family of algorithms to compute a
numerical approximation to a definite (Riemann) integral.

Generally, the integral is approximated by a weighted sum of function values within
the domain of integration,

∫ b

a

f(x)dx ≈
n∑
i=1

wif(xi) . (8.1)

Expression (8.1) is often referred to as quadrature (cubature for multidimensional inte-
grals) or rule. The abscissas xi (also called nodes) and the weights wi of a quadrature
are usually optimized—using one of a large number of different strategies—to suit a
particular class of integration problems.

The best quadrature algorithm for a given problem depends on several factors, in
particular on the integrand. Different classes of integrands generally require different
quadratures for the most effective calculation.

A popular numerical integration library is QUADPACK [14]. It includes general
purpose routines—like QAGS, based on an adaptive Gauss–Kronrod quadrature with
acceleration—as well as a number of specialized routines. The GNU scientific library [4]
(GSL) implements most of the QUADPACK routines and in addition includes a modern
general-purpose adaptive routine CQUAD based on Clenshaw-Curtis quadratures [9].

In the following we shall consider some of the popular numerical integration algo-
rithms.

71
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8.2 Rectangle and trapezium rules

In mathematics, the Reimann integral is generally defined in terms of Riemann sums [15].
If the integration interval [a, b] is partitioned into n subintervals,

a = t0 < t1 < t2 < · · · < tn = b . (8.2)

the Riemann sum is defined as
n∑
i=1

f(xi)∆xi , (8.3)

where xi ∈ [ti−1, ti] and ∆xi = ti − ti−1. Geometrically a Riemann sum can be
interpreted as the area of a collection of adjucent rectangles with widths ∆xi and
heights f(xi).

The Rieman integral is defined as the limit of a Riemann sum as the mesh—the
length of the largest subinterval—of the partition approaches zero. Specifically, the
number denoted as ∫ b

a

f(x)dx (8.4)

is called the Riemann integral, if for any ε > 0 there exists δ > 0 such that for any
partition (8.2) with max ∆xi < δ we have∣∣∣∣∣

n∑
i=1

f(xi)∆xi −
∫ b

a

f(x)dx

∣∣∣∣∣ < ε . (8.5)

A definite integral can be interpreted as the net signed area bounded by the graph of
the integrand.

Now, the n-point rectangle quadrature is simply the Riemann sum (8.3),∫ b

a

f(x)dx ≈
n∑
i=1

f(xi)∆xi , (8.6)

where the node xi is often (but not always) taken in the middle of the corresponding
subinterval, xi = ti−1 + 1

2∆xi, and the subintervals are often (but not always) chosen
equal, ∆xi = (b− a)/n. Geometrically the n-point rectangle rule is an approximation
to the integral given by the area of a collection of n adjucent equal rectangles whose
heights are determined by the values of the function (at the middle of the rectangle).

An n-point trapezium rule uses instead a collection of trapezia fitted under the
graph, ∫ b

a

f(x)dx ≈
n∑
i=1

f(ti−1) + f(ti)

2
∆xi . (8.7)
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Importantly, the trapezium rule is the average of two Riemann sums,

n∑
i=1

f(ti−1) + f(ti)

2
∆xi =

1

2

n∑
i=1

f(ti−1)∆xi +
1

2

n∑
i=1

f(ti)∆xi . (8.8)

Rectangle and trapezium quadratures both have the important feature of closely
following the very mathematical definition of the integral as the limit of the Riemann
sums. Therefore—disregarding the round-off errors—these two rules cannot fail if the
integral exists.

For certain partitions of the interval the rectangle and trapezium rules coincide.
For example, for the nodes

xi = a+ (b− a)
i− 1

2

n
, i = 1, . . . , n (8.9)

both rules give the same quadrature with equal weights, wi = (b− a)/n,∫ b

a

f(x)dx ≈ b− a
n

n∑
i=1

f

(
a+ (b− a)

i− 1
2

n

)
. (8.10)

Rectangle and trapezium quadratures are rarely used on their own—because of the
slow convergence—but they often serve as the basis for more advanced quadratures,
for example adaptive quadratures and variable transformation quadratures considered
below.

8.3 Quadratures with regularly spaced abscissas

A quadrature (8.1) with n predefined nodes xi has n free parameters: the weights wi.
A set of n parameters can generally be tuned to satisfy n conditions. The archetypal
set of conditions in quadratures is that the quadrature integrates exactly a set of n
functions,

{φ1(x), . . . , φn(x)} . (8.11)

This leads to a set of n equations,

n∑
i=1

wiφk(xi) = Ik

∣∣∣
k=1,...,n

, (8.12)

where the integrals

Ik
.
=

∫ b

a

φk(x)dx (8.13)
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are assumed to be known. Equations (8.12) are linear in wi and can be easily solved.
Since integration is a linear operation, the quadrature will then also integrate exactly

any linear combination of functions (8.11).
A popular choice for predefined nodes is a closed set—that is, including the end-

points of the interval—of evenly spaced abscissas,

xi = a+
i− 1

n− 1
(b− a)

∣∣∣
i=1,...,n

. (8.14)

However, in practice it often happens that the integrand has an integrable sinfularity at
one or both ends of the interval. In this case one can choose an open set of equidistant
nodes,

xi = a+
i− 1

2

n
(b− a)

∣∣∣
i=1,...,n

. (8.15)

The set of functions to be integrated exactly is generally chosen to suite the prop-
erties of the integrands at hand: the integrands must be well represented by linear
combinations of the chosen functions.

8.3.1 Classical quadratures

Suppose the integrand can be well represented by the first few terms of its Taylor series,

f(x) =

∞∑
k=0

f (k)(a)

k!
(x− a)k , (8.16)

where f (k) is the k-th derivative of the integrand. This is often the case for analytic—
that is, infinitely differentiable—functions. For such integrands one can obviously
choose polynomials

{1, x, x2, . . . , xn−1} (8.17)

as the set of functions to be integrated exactly.
This leads to the so called classical quadratures: quadratures with regularly spaced

abscissas and polynomials as exactly integrable functions.
An n-point classical quadrature integrates exactly the first n terms of the function’s

Taylor expansion (8.16). The xn order term will not be integrated exactly and will lead
to an error of the quadrature. Thus the error En of the n-point classical quadrature is
on the order of the integral of the xn term in (8.16),

En ≈
∫ b

a

f (n)(a)

n!
(x− a)ndx =

f (n)(a)

(n+ 1)!
hn+1 ∝ hn+1 , (8.18)

where h = b− a is the length of the integration interval. A quadrature with the error
of the order hn+1 is often called a degree-n quadrature.
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Table 8.1: Maxima script to calculate analytically the weights of an n-point classical
quadrature with predefined abscissas in the interval [0, 1].

n: 8; xs: makelist((i-1)/(n-1),i,1,n); /* nodes: adapt to your needs */

ws: makelist(concat(w,i),i,1,n);

ps: makelist(x^i,i,0,n-1); /* polynomials */

fs: makelist(buildq([i:i,ps:ps],lambda([x],ps[i])),i,1,n);

integ01: lambda([f],integrate(f(x),x,0,1));

Is: maplist(integ01,fs); /* calculate the integrals */

eq: lambda([f],lreduce("+",maplist(f,xs)*ws));

eqs: maplist(eq,fs)-Is; /* build equations */

solve(eqs,ws); /* solve for the weights */

If the integrand is smooth enough and the length h is small enough a classical
quadrature with not so large n can provide a good approximation for the integral.
However, for large n the weights of classical quadratures tend to have alternating signs,
which leads to large round-off errors, which in turn negates the potentially higher
accuracy of the quadrature. Again, if the integrand violates the assumption of Tay-
lor expansion—for example by having an integrable singularity inside the integration
interval—the higher order quadratures may perform poorly.

Classical quadratures are mostly of historical interest nowadays. Alternative methods—
such as quadratures with optimized abscissas, adaptive, and variable transformation
quadratures—are more stable and accurate and are normally preferred to classical
quadratures.

Classical quadratures with equally spaced abscissas—both closed and open sets—are
generally referred to as Newton-Cotes quadratures. An interested reader can generate
Newton—Cotes quadratures of any degree n using the Maxima script in Table (8.1).

8.4 Quadratures with optimized abscissas

In quadratures with optimized abscissas not only the weights wi but also the abscissas
xi are chosen optimally. The number of free parameters is thus 2n and one can choose
a set of 2n functions,

{φ1(x), . . . , φ2n(x)} , (8.19)

to be integrated exactly. This gives a system of 2n equations, linear in wi and non-linear
in xi,

n∑
i=1

wiφk(xi) = Ik

∣∣∣
k=1,...,2n

, (8.20)
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where again

Ik
.
=

∫ b

a

φk(x)dx . (8.21)

The weights and abscissas of the quadrature can be determined by solving this system
of equations1.

Although quadratures with optimized abcissas are generally of much higher order,
2n − 1 compared to n − 1 for non-optimal abscissas, the optimal points generally can
not be reused at the next iteration in an adaptive algorithm.

8.4.1 Gauss quadratures

Gauss quadratures deal with a slightly more general form of integrals,∫ b

a

ω(x)f(x)dx , (8.23)

where ω(x) is a positive weight function. For ω(x) = 1 the problem is the same
as considered above. Popular choices of the weight function include ω(x) = (1 −
x2)±1/2, exp(−x), exp(−x2) and others. The idea is to represent the integrand as a
product ω(x)f(x) such that all the difficulties go into the weight function ω(x) while
the remaining factor f(x) is smooth and well represented by polynomials.

An N -point Gauss quadrature is a quadrature with optimized abcissas,∫ b

a

ω(x)f(x)dx ≈
N∑
i=1

wif(xi) , (8.24)

which integrates exactly a set of 2N polynomials of the orders 1, . . . , 2N − 1 with the
given weight ω(x).

Fundamental theorem

There is a theorem stating that there exists a set of polynomials pn(x), orthogonal on
the interval [a, b] with the weight function ω(x),∫ b

a

ω(x)pn(x)pk(x) ∝ δnk . (8.25)

1Here is, for example, an n = 2 quadrature with optimized abscissas,∫ 1

−1
f(x)dx ≈ f

(
−
√

1
3

)
+ f

(
+
√

1
3

)
. (8.22)
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Now, one can prove that the optimal nodes for the N -point Gauss quadrature are
the roots of the polynomial pN (x),

pN (xi) = 0 . (8.26)

The idea behind the proof is to consider the integral∫ b

a

ω(x)q(x)pN (x)dx = 0 , (8.27)

where q(x) is an arbitrary polynomial of degree less than N . The quadrature should
represent this integral exactly,

N∑
i=1

wiq(xi)pN (xi) = 0 . (8.28)

Apparently this is only possible if xi are the roots of pN �.

Calculation of nodes and weights

A neat algorithm—usually refered to as Golub-Welsch [8] algorithm—for calculation of
the nodes and weights of a Gauss quadrature is based on the symmetric form of the
three-term reccurence relation for orthogonal polynomials,

xpn−1(x) = βnpn(x) + αnpn−1(x) + βn−1pn−2(x) , (8.29)

where p−1(x)
.
= 0, p1(x)

.
= 1, and n = 1, . . . , N . This reccurence relation can be

written in the matrix form,

xp(x) = Jp(x) + βNpN (x)eN , (8.30)

where p(x)
.
= {p0(x), . . . , pN−1(x)}T , eN = {0, . . . , 0, 1}T , and the tridiagonal matrix

J — usually refered to as Jacobi matrix or Jacobi operator — is given as

J =


α1 β1

β1 α2 β2

β2 α3 β3

. . .
. . .

βN−1 αN

 . (8.31)

Substituting the roots xi of pN — that is, the set {xi | pN (xi) = 0} — into the
matrix equation (8.30) leads to eigenvalue problem for the Jacobi matrix,

Jp(xi) = xip(xi) . (8.32)
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Thus, the nodes of an N -point Gauss quadrature (the roots of the polynomial pN ) are
the eigenvalues of the Jacobi matrix J and can be calculated by a standard diagonal-
ization2 routine �.

The weights can be obtained considering N integrals,∫ b

a

ω(x)pn(x)dx = δn0

∫ b

a

ω(x)dx , n = 0, . . . , N − 1 . (8.33)

Applying our quadrature gives the matrix equation,

Pw = e1

∫ b

a

ω(x)dx , (8.34)

where w
.
= {w1, . . . , wN}T , e1 = {1, 0, . . . , 0}T , and

P
.
=


p0(x1) . . . p0(xN )
p1(x1) . . . p1(xN )
. . . . . . . . .

pN−1(x1) . . . pN−1(xN )

 . (8.35)

Equation (8.34) is linear in wi and can be solved directly. However, if diagonalization
of the Jacobi matrix provided the normalized eigenvectors, the weigths can be readily
obtained using the following method.

The matrix P apparently consists of non-normalized column eigenvectors of the
matrix J. The eigenvectors are orthogonal and therefore PTP is a diagonal matrix
with positive elements. Multiplying (8.34) by PT and then by (PTP)−1 from the left
gives

w = (PTP)−1PTe1

∫ b

a

ω(x)dx . (8.36)

From p0(x) = 1 it follows that PTe1 = {1, . . . , 1}T and therefore

wi =
1

(PTP)ii

∫ b

a

ω(x)dx . (8.37)

Let the matrix V be the set of the normalized column eigenvectors of the matrix J. The
matrix V is then connected with the matrix P through the normalization equation,

V =
√

(PTP)−1P . (8.38)

Therefore, again taking into account that p0(x) = 1, equation (8.37) can be written as

wi = (V1i)
2

∫ b

a

ω(x)dx �. (8.39)

2A symmetric tridiagonal matrix can be diagonalized very effectively using the QR/RL algorithm.
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Table 8.2: An Octave function that calculates the nodes and weights of the N -point
Gauss-Legendre quadrature and then integrates a given function.

function Q = g au s s l e g en d r e ( f , a , b ,N)
beta = . 5 . / sqrt (1−(2∗(1:N−1)) .ˆ( −2)) ; % reccurence r e l a t i o n
J = diag (beta , 1 ) + diag (beta ,−1) ; % Jacobi matrix
[V,D] = eig ( J ) ; % d ia gona l i z a t i on o f J
x = diag (D) ; [ x , i ] = sort ( x ) ; % sor t ed nodes
w = V(1 , i ) . ˆ 2 ∗ 2 ; % weigh t s
Q = w∗ f ( ( a+b)/2+(b−a )/2∗x )∗ ( b−a ) / 2 ; % in t e g r a l
endfunction ;

Example: Gauss-Legendre quadrature

Gauss-Legendre quadrature deals with the weight ω(x) = 1 on the interval [−1, 1].
The associated polynomials are Legendre polynomials Pn(x), hence the name. Their
reccurence relation is usually given as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x) . (8.40)

Rescaling the polynomials (preserving p0(x) = 1) as
√

2n+ 1Pn(x) = pn(x) (8.41)

reduces this reccurence relation to the symmetric form (8.29),

xpn−1(x) =
1

2

1√
1− (2n)−2

pn(x) +
1

2

1√
1− (2(n− 1))−2

pn−2(x) . (8.42)

Correspondingly, the coefficients in the matrix J are

αn = 0 , βn =
1

2

1√
1− (2n)−2

. (8.43)

The problem of finding the nodes and the weights of the N -point Gauss-Legendre
quadrature is thus reduced to the eigenvalue problem for the Jacobi matrix with coef-
ficients (8.43).

As an illustration of this algorithm Table (8.2) shows an Octave function which
calculates the nodes and the weights of the N -point Gauss-Legendre quadrature and
then integrates a given function.

8.4.2 Gauss-Kronrod quadratures

Generally, the error of a numerical integration is estimated by comparing the results
from two rules of different orders. However, for ordinary Gauss quadratures the nodes
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for two rules of different orders almost never coinside. This means that one can not
reuse the points of the lower order rule when calculating the hihger order rule.

Gauss-Kronrod algorithm [11] remedies this inefficiency. The points inherited from
the lower order rule are reused in the higher order rule as predefined nodes (with n
weights as free parameters), and then m more optimal points are added (m abscissas
and m weights as free parameters). The order of the method is n+ 2m− 1. The lower
order rule becomes embedded—that is, it uses a subset of the nodes—into the higher
order rule. On the next iteration the procedure is repeated.

Patterson [13] has tabulated nodes and weigths for several sequences of embedded
Gauss-Kronrod rules.

8.5 Adaptive quadratures

Higher order quadratures suffer from round-off errors as the weights wi generally have
alternating signs. Again, using high order polynomials is dangerous as they typically
oscillate wildly and may lead to Runge’s phenomenon. Therefore, if the error of the
quadrature is yet too large for a quadrature with sufficiently large n, the best strategy
is to subdivide the interval in two and then use the quadrature on the half-intervals.
Indeed, if the error is of the order hk, the subdivision would lead to reduced error,
2 (h/2)

k
< hk, if k > 1.

An adaptive quadrature is an algorithm where the integration interval is subdivided
into adaptively refined subintervals until the given accuracy goal is reached.

Adaptive algorithms are usually built on pairs of quadrature rules – a higher order
rule,

Q =
∑
i

wif(xi), (8.44)

where wi are the weights of the higher order rule and Q is the higher order estimate of
the integral, and a lower order rule,

q =
∑
i

vif(xi), (8.45)

where vi are the weights of the lower order rule and q is the the lower order estimate
of the integral. The difference between the higher order rule and the lower order rule
gives an estimate of the error,

δQ = |Q− q| . (8.46)

The integration result is accepted, if the error δQ is smaller than tolerance,

δQ < δ + ε|Q| , (8.47)
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where δ is the absolute accuracy goal and ε is the relative accuracy goal of the integra-
tion.

If the error estimate is larger than tolerance, the interval is subdivided into two half-
intervals and the procedure applies recursively to subintervals with the same relative
accuracy goal ε and rescaled absolute accuracy goal δ/

√
2.

The points xi are usually chosen such that the two quadratures use the same points,
and that the points can be reused in the subsequent recursive steps. The reuse of the
function evaluations made at the previous step of adaptive integration is very important
for the efficiency of the algorithm. The equally-spaced abscissas naturally provide for
such a reuse.

As an example, Table 8.3 shows an implementation of the described algorithm using

xi =

{
1

6
,

2

6
,

4

6
,

5

6

}
(easily reusable points) , (8.48)

wi =

{
2

6
,

1

6
,

1

6
,

2

6

}
(trapezium rule) , (8.49)

vi =

{
1

4
,

1

4
,

1

4
,

1

4

}
(rectangle rule) . (8.50)

During recursion the function values at the points #2 and #3 are inherited from the
previous step and need not be recalculated.

The points and weights are cited for the rescaled integration interval [0, 1]. The
transformation of the points and weights to the original interval [a, b] is given as

xi → a+ (b− a)xi ,

wi → (b− a)wi . (8.51)

This implementation calculates directly the Riemann sums and can therefore deal
with integrable singularities, although rather inefficiently.

More efficient adaptive routines keep track of the subdivisions of the interval and
the local errors [9]. This allows detection of singularities and switching in their vicinity
to specifically tuned quadratures. It also allows better estimates of local and global
errors.

8.6 Variable transformation quadratures

The idea behind variable transformation quadratures is to apply the given quadrature—
either with optimimized or regularly spaced nodes—not to the original integral, but to
a variable transformed integral [12],∫ b

a

f(x)dx =

∫ tb

ta

f
(
g(t)

)
g′(t)dt ≈

N∑
i=1

wif
(
g(ti)

)
g′(ti) , (8.52)
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Table 8.3: Recursive adaptive integrator in C

#include<math . h>
#include<a s s e r t . h>
#include<s t d i o . h>
double adapt24 (double f (double ) ,double a , double b ,
double acc , double eps , double f2 , double f3 , int nrec ){

a s s e r t ( nrec <1000000);
double f 1=f ( a+(b−a )/6 ) , f 4=f ( a+5∗(b−a ) / 6 ) ;
double Q=(2∗ f 1+f2+f3+2∗ f 4 )/6∗ (b−a ) , q=( f1+f4+f2+f3 )/4∗ (b−a ) ;
double t o l e r a n c e=acc+eps ∗ f abs (Q) , e r r o r=fabs (Q−q ) ;
i f ( e r r o r < t o l e r a n c e ) return Q;
else {
double Q1=adapt24 ( f , a , ( a+b )/2 , acc / s q r t ( 2 . ) , eps , f1 , f2 , nrec +1);
double Q2=adapt24 ( f , ( a+b )/2 ,b , acc / s q r t ( 2 . ) , eps , f3 , f4 , nrec +1);
return Q1+Q2 ; }

}
double adapt (
double f (double ) ,double a , double b , double acc , double eps ){
double f 2=f ( a+2∗(b−a )/6 ) , f 3=f ( a+4∗(b−a ) / 6 ) ; int nrec =0;
return adapt24 ( f , a , b , acc , eps , f2 , f3 , nrec ) ;
}
int main ( ){ // uses gcc nes ted func t i ons
int c a l l s =0; double a=0,b=1, acc =0.001 , eps =0.001;
double f (double x ){ c a l l s ++; return 1/ s q r t ( x ) ; } ; // nes ted func t i on
double Q=adapt ( f , a , b , acc , eps ) ; p r i n t f ( ”Q=%g c a l l s=%d\n” ,Q, c a l l s ) ;
return 0 ; }

where the transformation x = g(t) is chosen such that the transformed integral better
suits the given quadrature. Here g′ denotes the derivative and [ta, tb] is the correspond-
ing interval in the new variable.

For example, the Gauss-Legendre quadrature assumes the integrand can be well
represented with polynomials and performs poorly on integrals with integrable singu-
larities like

I =

∫ 1

0

1

2
√
x
dx . (8.53)

However, a simple varibale transformation x = t2 removes the singularity,

I =

∫ 1

0

dt , (8.54)

and the Gauss-Legendre quadrature for the transformed integral gives exact result. The
price is that the transformed quadrature performs less effectively on smooth functions.

Some of the popular variable transformation quadratures are Clenshaw-Curtis [3],
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based on the transformation∫ 1

−1

f(x)dx =

∫ π

0

f(cos θ) sin θdθ , (8.55)

and “tanh-sinh” quadrature [12], based on the transformation∫ 1

−1

f(x)dx =

∫ ∞
−∞

f
(

tanh
(π

2
sinh(t)

)) π
2

cosh(t)

cosh2
(
π
2 sinh(t)

)dt . (8.56)

Generally, the equally spaced trapezium rule is used after the transformation.

8.7 Infinite intervals

One way to calculate an integral over infinite interval is to transform it by a variable
sustitution into an integral over a finite interval. The latter can then be evaluated by
ordinary integration methods. Table 8.4 lists several of such transformation.

Table 8.4: Variable transformations reducing infinite interval integrals into integrals
over finite intervals.

∫ +∞

−∞
f(x)dx =

∫ +1

−1

f

(
t

1− t2
)

1 + t2

(1− t2)2
dt , (8.57)∫ +∞

−∞
f(x)dx =

∫ 1

0

(
f

(
1− t
t

)
+ f

(
−1− t

t

))
dt

t2
, (8.58)∫ +∞

a

f(x)dx =

∫ 1

0

f

(
a+

t

1− t

)
1

(1− t)2
dt , (8.59)∫ +∞

a

f(x)dx =

∫ 1

0

f

(
a+

1− t
t

)
dt

t2
, (8.60)∫ a

−∞
f(x)dx =

∫ 0

−1

f

(
a+

t

1 + t

)
1

(1 + t)2
dt , (8.61)∫ a

−∞
f(x)dx =

∫ 1

0

f

(
a− 1− t

t

)
dt

t2
. (8.62)
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Chapter 9

Monte Carlo integration

9.1 Introduction

Monte Carlo integration is a quadrature (cubature) where the nodes are chosen ran-
domly. Typically no assumptions are made about the smoothness of the integrand, not
even that it is continuous.

Monte Carlo algorithms are particularly suited for multi-dimensional integrations
where one of the problems is that the integration region, Ω, often has quite complicated
boundary which can not be easily described by simple functions. However, it is usually
much easier to find out whether a given point lies within the integration region or not.
Therefore a popular strategy is to create an auxiliary rectangular volume, V , which
encompasses the integration volume Ω, and an auxiliary function which coincides with
the integrand inside the volume Ω and is equal zero outside. Then the integral of the
auxiliary function over the auxiliary volume is equal the original integral.

However, the auxiliary function is generally non-continuous at the boundary; thus
ordinary quadratures which assume continuity of the integrand are bound to have
difficulties here. One the contrary the Monte-Carlo quadratures will do just as good
(or as bad) as with continuous integrands.

A typical implementation of a Monte Carlo algorithm integrates the given function
over a rectangular volume, specified by the coordinates of its ”lower-left” and ”upper-
right” vertices, assuming the user has provided the encompassing volume with the
auxiliary function.

Plain Monte Carlo algorithm distributes points uniformly throughout the integra-
tion region using uncorrelated pseudo-random sequences of points.

Adaptive algorithms, such as VEGAS and MISER, distribute points non-uniformly
in an attempt to reduce integration error using correspondingly importance and strati-
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fied sampling.
Yet another strategy to reduce the error is to use correlated quasi-random sequences.
The GNU Scientific Library, GSL, implements a plain Monte Carlo integration

algorithm; a stratified sampling algorithm, MISER; an importance sampling algorithm,
VEGAS; and a number of quasi-random generators.

9.2 Plain Monte Carlo sampling

Plain Monte Carlo is a quadrature with random abscissas and equal weights,∫
V

f(x)dV ≈ w
N∑
i=1

f(xi) , (9.1)

where x is a point in the multi-dimensional integration space. One free parameter, w,
allows one condition to be satisfied: the quadrature must integrate exactly a constant
function. This gives w = V/N ,∫

V

f(x)dV ≈ V

N

N∑
i=1

f(xi)
.
= V 〈f〉 . (9.2)

Under the assumptions of the central limit theorem the error of the integration can be
estimated as

error = V
σ√
N

, (9.3)

where σ is the variance of the sample,

σ2 = 〈f2〉 − 〈f〉2 . (9.4)

The familiar 1/
√
N convergence of a random walk process is quite slow: to reduce the

error by a factor 10 requires 100-fold increase in the number of sample points.
Expression (9.3) provides only a statistical estimate of the error, which is not a strict

bound; random sampling may not uncover all the important features of the function,
resulting in an underestimate of the error.

A simple implementation of the plain Monte Carlo algorithm is shown in Table 9.1.

9.3 Importance sampling

Suppose the points are distributed not uniformly but with some density ρ(x) . That
is, the number of points ∆n in the volume ∆V around point x is given as

∆n =
N

V
ρ(x)∆V, (9.5)
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Table 9.1: Plain Monte Carlo integrator

#include <math . h>
#include <s t d l i b . h>
#define RND ( (double ) rand ( )/RAND MAX)
void randomx ( int dim , double ∗a , double ∗b , double ∗x )
{ for ( int i =0; i<dim ; i++) x [ i ]=a [ i ]+RND∗(b [ i ]−a [ i ] ) ; }

void plainmc ( int dim , double ∗a , double ∗b ,
double f (double∗ x ) , int N, double∗ r e s u l t , double∗ e r r o r )
{ double V=1; for ( int i =0; i<dim ; i++) V∗=b [ i ]−a [ i ] ;
double sum=0, sum2=0, fx , x [ dim ] ;
for ( int i =0; i<N; i ++){ randomx (dim , a , b , x ) ; fx=f ( x ) ;

sum+=fx ; sum2+=fx ∗ fx ; }
double avr = sum/N, var = sum2/N−avr∗avr ;
∗ r e s u l t = avr∗V; ∗ e r r o r = s q r t ( var /N)∗V;
}

where ρ is normalised such that
∫
V
ρdV = V .

The estimate of the integral is then given as

∫
V

f(x)dV ≈
N∑
i=1

f(xi)∆Vi =

N∑
i=1

f(xi)
V

Nρ(xi)
= V

〈
f

ρ

〉
, (9.6)

where

∆Vi =
V

Nρ(xi)
(9.7)

is the volume-per-point at the point xi.

The corresponding variance is now given by

σ2 =

〈(
f

ρ

)2
〉
−
〈
f

ρ

〉2

. (9.8)

Apparently if the ratio f/ρ is close to a constant, the variance is reduced.

It is tempting to take ρ = |f | and sample directly from the integrand. However
in practice evaluations of the integrand are typically expensive. Therefore a bet-
ter strategy is to build an approximate density in the product form, ρ(x, y, . . . , z) =
ρx(x)ρy(y) . . . ρz(z), and then sample from this approximate density. A popular routine
of this sort is called VEGAS.
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9.4 Stratified sampling

Stratified sampling is a generalisation of the recursive adaptive integration algorithm
to random quadratures in multi-dimensional spaces.

Table 9.2: Recursive stratified sampling algorithm

sample N random po in t s with p l a i n Monte Carlo ;
e s t imate the average and the e r r o r ;
IF the e r r o r i s acceptab l e :

RETURN the average and the e r r o r ;
ELSE :

FOR EACH dimension :
subd iv ide the volume in two along the dimension ;
e s t imate the sub−va r i ance s in the two sub−volumes ;

p ick the dimension with the l a r g e s t sub−var iance ;
subd iv ide the volume in two along t h i s dimension ;
d i spatch two r e c u r s i v e c a l l s to each o f the sub−volumes ;
e s t imate the grand average and grand e r r o r ;
RETURN the grand average and grand e r r o r ;

The ordinary “dividing by two” strategy does not work for multi-dimensional in-
tegrations as the number of sub-volumes grows way too fast to keep track of. Instead
one estimates along which dimension a subdivision should bring the most dividends
and only subdivides along this dimension. Such strategy is called recursive stratified
sampling. A simple variant of this algorithm is presented in Table 9.2.

In a stratified sample the points are concentrated in the regions where the variance
of the function is largest, see an illustration in Figure 9.1.

9.5 Quasi-random (low-discrepancy) sampling

Pseudo-random sampling has high discrepancy1: it typically creates regions with hight
density of points and other regions with low density of points, see an illustration on
Figure 9.2 (left). With pseudo-random sampling there is a finite probability that all
the N points would fall into one half of the region and none into the other half.

Quasi-random sequences avoid this phenomenon by distributing points in a highly
correlated manner with a specific requirement of low discrepancy, see Figure 9.2 for
an example. Quasi-random sampling is like a computation on a grid where the grid
constant must not be known in advance as the grid is ever gradually refined and the
points are always distributed uniformly over the region. The computation can be
stopped at any time.

1discrepancy is a measure of how unevenly the points are distributed over the region.
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Figure 9.1: Stratified sample of a discontinuous function, f(x, y) = 1 if x2 + y2 < 0.92

otherwise f(x, y) = 0, built with the algorithm in Table 9.2.

By placing points more evenly than at random, the quasi-random sequences try to
improve on the 1/

√
N convergence rate of pseudo-random sampling.

The central limit theorem does not apply in this case as the points are not statisti-
cally independent. Therefore the variance can not be used as an estimate of the error.
The error estimation is actually not trivial. In practice one can employ two different
sequences and use the difference in the resulting integrals as an error estimate.

9.5.1 Van der Corput and Halton sequences

A van der Corput sequence is a low-discrepancy sequence over the unit interval. It is
constructed by reversing the base-b representation of the sequence of natural numbers
(1, 2, 3, . . . ). For example, the decimal van der Corput sequence begins as

0.1, 0.2, 0.3, . . . , 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, . . . , 0.91, 0.02, 0.12, . . . . (9.9)

In a base-b representation a natural number n with s digits {di | i = 1 . . . s, 0 ≤
di < b} is given as

n =

s∑
k=1

dkb
k−1 . (9.10)
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Figure 9.2: Typical distributions of pseudo-random points (left), and quasi-random
low-discrepancy points: lattice (center) and base-2/3 Halton (right) sequences. The
first thousand points are plotted in each case.

The corresponding base-b van der Corput number qb(n) is then given as

qb(n) =

s∑
k=1

dkb
−k . (9.11)

Here is a C implementation of this algorithm,

double corput ( int n , int base ){
double q=0, bk=(double )1/ base ;
while (n>0){ q += (n % base )∗bk ; n /= base ; bk /= base ; }
return q ; }

The van der Corput numbers of any base are uniformly distributed over the unit
interval. They also form a dense set in the unit interval: there exists a subsequence of
the van der Corput sequence which converges to any given real number in [0, 1].

The Halton sequence is a generalization of the van der Corput sequence to d-
dimensional spaces. One chooses a set of coprime bases b1, . . . , bd and then for each
dimension i generates a van der Corput sequence with its own base bi. The n-th Halton
d-dimentional point x in the unit volume is then given as

xb1,...,bd(n) = {qb1(n), . . . , qbd(n)} . (9.12)

Here is a C implementation which calls the corput function listed above,

#include<a s s e r t . h>
void halton ( int n , int d , double ∗x ){

int base [ ]={2 ,3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67} ;
int maxd=s izeof ( base )/ s izeof ( int ) ; a s s e r t (d <= maxd ) ;
for ( int i =0; i<d ; i++) x [ i ]= corput (n , base [ i ] ) ; }
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9.5.2 Lattice rules

In the simplest incarnation a lattice rule can be defined as follows. Let the generating
vector z = {αi | i = 1, . . . , d}— where d is the dimension of the integration space — be
a set of cleverly chosen irrational numbers. Then the n-th point (in the unit volume)
of the sequence is given as

x(n) = frac(nz) ≡ {frac(nα1), . . . , frac(nαd)} , (9.13)

where frac(x) is the fractional part of x.
An implementation of this algorithm in C is given in Table 9.3 and an illustration

of such sequence is shown on Figure 9.2 (center).

Table 9.3: Lattice low-disrepancy quasi-random sequence in C.

#define f r a c l ( x ) ( ( x)− f l o o r l ( x ) )
#define r e a l long double
void l a t t i c e ( int d , double ∗x ){

stat ic int dim=0, n=−1; stat ic r e a l ∗ alpha ; int i ;
i f (d<0){ /∗ d<0 i s the s i g n a l to ( re−) i n i t i a l i z e the l a t t i c e ∗/

dim=−d ; n=0; alpha=( r e a l ∗) r e a l l o c ( alpha , dim∗ s izeof ( r e a l ) ) ;
for ( i =0; i<dim ; i++) alpha [ i ]= f r a c l ( s q r t l ( ( r e a l )13∗ ( i +1)) ) ;
}

else i f (d>0){
n++; a s s e r t (d==dim && n>0);
for ( i =0; i<dim ; i++)x [ i ]= f r a c l (n∗ alpha [ i ] ) ;
}

else i f ( alpha !=NULL) f r e e ( alpha ) ;
return ;

}

9.6 Implementations
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Table 9.4: Javascript implementation of the stratified sampling algorithm.

Array . prototype . i t e r a t o r =func t i on ( ){
for ( var i =0; i<t h i s . l ength ; i++) y i e l d i ;}

f unc t i on s t r a t a ( f , a , b , acc , eps ,N, o ld s ta t ,V)
{
var randomx=func t i on ( a , b ) [ a [ i ]+Math . random ( )∗ ( b [ i ]−a [ i ] ) for ( i in a ) ]
var range =func t i on (n) { for ( var i =0; i<n ; i++) y i e l d i }
var s t a t s =func t i on ( xs ){

var n=xs . l ength ;
var average=xs . reduce ( func t i on ( a , b) a+b , 0 ) / n ;
var var i ance=xs . reduce ( func t i on (a , b) a+b∗b , 0 ) / n−average ∗ average ;
return [ average , var iance , n ] ;
}

i f ( typeo f (N)==” undef ined ” )N=42;
i f ( typeo f ( o l d s t a t)==” undef ined ” ){ // f i r s t c a l l : s e t t i n g up o ld s t a t s

var V=1; for ( l e t k in a ) V∗=(b [ k]−a [ k ] ) ;
var xs =[randomx ( a , b) for ( i in range (N) ) ] ;
var ys =[ f ( xs [ i ] ) for ( i in xs ) ] ;
var o l d s t a t=s t a t s ( ys ) ;
}

var xs =[randomx ( a , b) for ( i in range (N) ) ] // new po in t s
var ys =[ f ( xs [ i ] ) for ( i in xs ) ] // new func t ion va lue s
var [ average , var iance , ]= s t a t s ( ys ) // average and var iance
var [ oaverage , ovar iance , oN]= o l d s t a t
var i n t eg=V∗( average ∗N+oaverage ∗oN)/(N+oN) // i n t e g r a l and error
var e r r o r=V∗Math . s q r t ( ( var i ance ∗N+ovar iance ∗oN)/(N+oN)/(N+oN) )
i f ( e r ro r<acc+eps ∗Math . abs ( i n t eg ) ) return [ integ , e r r o r ] ; // done
else { // not done : need to d i spa t ch a r e cu r s i v e c a l l

var vmax=−1, kmax=0
for ( l e t k in a ){ // look in a l l dimensions with i s b e s t to b i s e c t

var [ al , vl , n l ]=
s t a t s ( [ ys [ i ] for ( i in xs ) i f ( xs [ i ] [ k]< ( a [ k]+b [ k ] ) / 2 ) ] )

var [ ar , vr , nr ]=
s t a t s ( [ ys [ i ] for ( i in xs ) i f ( xs [ i ] [ k]>=(a [ k]+b [ k ] ) / 2 ) ] )

var v=Math . abs ( al−ar ) // take the one with l a r g e s t v a r i a t i on
i f (v>vmax){ // remember the va lue s

vmax=v ; kmax=k ;
var o l d s t a t l =[ al , vl , n l ] , o l d s t a t r =[ar , vr , nr ]
}

} // now d i spa t ch two r e cu r s i v e c a l l s
var a2=a . s l i c e ( ) ; a2 [ kmax]=(a [ kmax]+b [ kmax ] ) / 2
var b2=b . s l i c e ( ) ; b2 [ kmax]=(a [ kmax]+b [ kmax ] ) / 2
var [ i1 , e1 ]= s t r a t a ( f , a , b2 , acc /1 .414 , eps ,N, o l d s t a t l ,V/2)
var [ i2 , e2 ]= s t r a t a ( f , a2 , b , acc /1 .414 , eps ,N, o l d s t a t r ,V/2)
return [ i 1+i2 , Math . s q r t ( e1∗ e1+e2∗ e2 ) ] // return r e s u l t s
}

}



Chapter 10

Power iteration methods and
Krylov subspaces

10.1 Introduction

Power method is an iterative method to calculate an eigenvalue and the corresponding
eigenvector of a matrix A using the power iteration

xi+1 = Axi . (10.1)

The iteration converges to the eigenvector with the largest eigenvalue.
The eigenvalue can be estimated using the Rayleigh quotient

λ[xi] =
xTi Axi
xTi xi

=
xTi+1xi

xTi xi
. (10.2)

Alternatively, the inverse power iteration with the inverse matrix,

xi+1 = A−1xi , (10.3)

converges to the smallest eigenvalue of matrix A.
Finally, the shifted inverse iteration,

xi+1 = (A− s1)−1xi , (10.4)

where 1 signifies the identity matrix of the same size as A, converges to the eigenvalue
closest to the given number s.
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The inverse iteration method is a refinement of the inverse power method where the
trick is not to invert the matrix in (10.4) but rather solve the linear system

(A− s1)xi+1 = xi (10.5)

using e.g. QR-decomposition.

The better approximation s to the sought eigenvalue is chosen, the faster conver-
gence one gets. However, incorrect choice of s can lead to slow convergence or to the
convergence to a different eigenvector. In practice the method is usually used when
good approximation for the eigenvalue is known, and hence one needs only few (quite
often just one) iteration.

One can update the estimate for the eigenvalue using the Rayleigh quotient λ[xi]
after each iteration and get faster convergence for the price of O(n3) operations per
QR-decomposition; or one can instead make more iterations (with O(n2) operations
per iteration) using the same matrix (A − s1). The optimal strategy is probably an
update after several iterations.

10.2 Krylov subspaces

When calculating an eigenvalue of a matrix A using the power method, one starts with
an initial random vector b and then computes iteratively the sequence Ab,A2b, . . . ,An−1b
normalising and storing the result in b on each iteration. The sequence converges to
the eigenvector of the largest eigenvalue of A.

The set of vectors

Kn =
{
b,Ab,A2b, . . . ,An−1b

}
, (10.6)

where n < rank(A), is called the order-n Krylov matrix, and the subspace spanned by
these vectors is called the order-n Krylov subspace. The vectors are not orthogonal but
can be made so e.g. by Gram-Schmidt orthogonalisation.

For the same reason that An−1b approximates the dominant eigenvector one can
expect that the other orthogonalised vectors approximate the eigenvectors of the n
largest eigenvalues.

Krylov subspaces are the basis of several successful iterative methods in numerical
linear algebra, in particular: Arnoldi and Lanczos methods for finding one (or a few)
eigenvalues of a matrix; and GMRES (Generalised Minimum RESidual) method for
solving systems of linear equations.

These methods are particularly suitable for large sparse matrices as they avoid
matrix-matrix operations but rather multiply vectors by matrices and work with the
resulting vectors and matrices in Krylov subspaces of modest sizes.
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10.3 Arnoldi iteration

Arnoldi iteration is an algorithm where the order-n orthogonalised Krylov matrix Qn

for a given matrix A is built using stabilised Gram-Schmidt process:

start with a set Q = {q1} consisting of one random normalised vector q1;
repeat for k = 2 to n :

make a new vector qk = Aqk−1

orthogonalise qk to all vectors qi ∈ Q storing qi
†qk → hi,k−1

normalise qk storing ‖qk‖ → hk,k−1

add qk to the set Q

By construction the matrix Hn made of the elements hjk is an upper Hessenberg matrix,

Hn =


h1,1 h1,2 h1,3 · · · h1,n

h2,1 h2,2 h2,3 · · · h2,n

0 h3,2 h3,3 · · · h3,n

...
. . .

. . .
. . .

...
0 · · · 0 hn,n−1 hn,n

 , (10.7)

which is a partial orthogonal reduction of A into Hessenberg form,

Hn = Q†nAQn . (10.8)

The matrix Hn can be viewed as a representation of A in the Krylov subspace Kn.
The eigenvalues and eigenvectors of the matrix Hn approximate the largest eigenvalues
of matrix A.

Since Hn is a Hessenberg matrix of modest size its eigenvalues can be relatively
easily computed with standard algorithms.

In practice if the size n of the Krylov subspace becomes too large the method is
restarted.

10.4 Lanczos iteration

Lanczos iteration is Arnoldi iteration for Hermitian matrices, in which case the Hes-
senberg matrix Hn of Arnoldi method becomes a tridiagonal matrix Tn.

The Lanczos algorithm thus reduces the original hermitian N × N matrix A into
a smaller n × n tridiagonal matrix Tn by an orthogonal projection onto the order-n
Krylov subspace. The eigenvalues and eigenvectors of a tridiagonal matrix of a modest
size can be easily found by e.g. the QR-diagonalisation method.

In practice the Lanczos method is not very stable due to round-off errors leading
to quick loss of orthogonality. The eigenvalues of the resulting tridiagonal matrix may
then not be a good approximation to the original matrix. Library implementations fight



96 CHAPTER 10. POWER ITERATION METHODS AND KRYLOV SUBSPACES

the stability issues by trying to prevent the loss of orthogonality and/or to recover the
orthogonality after the basis is generated.

10.5 Generalised minimum residual (GMRES)

GMRES is an iterative method for the numerical solution of a system of linear equa-
tions,

Ax = b , (10.9)

where the exact solution x is approximated by the vector xn ∈ Kn that minimises the
residual Axn − b in the Krylov subspace Kn of matrix A,

x ≈ xn ← min
x∈Kn

‖Ax− b‖ . (10.10)

The vector xn ∈ Kn can be represented as xn = Qnyn where Qn is the projector
on the space Kn and yn is an n-dimensional vector. Substituting xn ∈ Kn gives an
overdetermined system

AQnyn = b , (10.11)

which can be solved by the ordinary least-squares method.
One can also project equation (10.11) onto Krylov subspace Kn which gives a square

system
Hnyn = Q†nb , (10.12)

where Hn = Q†AQn.
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Fast Fourier transform

Fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier
transform (DFT).

Computing DFT of N points in the näıve way, using the definition, takes O(N2)
arithmetic operations, while an FFT can compute the same result in only O(N logN)
operations. The difference in speed can be substantial, especially for large data sets.
This improvement made many DFT-based algorithms practical.

Since the inverse of a DFT is also a DFT any FFT algorithm can be used in for the
inverse DFT as well.

The most well known FFT algorithms, like the Cooley-Tukey algorithm, depend
upon the factorization of N . However, there are FFTs with O(N logN) complexity for
all N , even for prime N .

11.1 Discrete Fourier Transform

For a set of complex numbers xn, n = 0, . . . , N − 1, the DFT is defined as a set of
complex numbers ck,

ck =

N−1∑
n=0

xne
−2πinkN , k = 0, . . . , N − 1 . (11.1)

The inverse DFT is given by

xn =
1

N

N−1∑
k=0

cke
+2πinkN . (11.2)
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These transformations can be viewed as expansion of the vector xn in terms of the
orthogonal basis of vectors e2πi knN ,

N−1∑
n=0

(
e2πi knN

)(
e−2πi k

′n
N

)
= Nδkk′ . (11.3)

The DFT represent the amplitude and phase of the different sinusoidal components
in the input data xn.

The DFT is widely used in different fields, like spectral analysis, data compression,
solution of partial differential equations and others.

11.1.1 Applications

Data compression

Several lossy (that is, with certain loss of data) image and sound compression methods
employ DFT as an approximation for the Fourier series. The signal is discretized
and transformed, and then the Fourier coefficients of high/low frequencies, which are
assumed to be unnoticeable, are discarded. The decompressor computes the inverse
transform based on this reduced number of Fourier coefficients.

Partial differential equations

Discrete Fourier transforms are often used to solve partial differential equations, where
the DFT is used as an approximation for the Fourier series (which is recovered in the
limit of infinite N). The advantage of this approach is that it expands the signal in
complex exponentials einx, which are eigenfunctions of differentiation: d

dxe
inx = ineinx.

Thus, in the Fourier representation, differentiation is simply multiplication by in.
A linear differential equation with constant coefficients is transformed into an easily

solvable algebraic equation. One then uses the inverse DFT to transform the result
back into the ordinary spatial representation. Such an approach is called a spectral
method.

Convolution and Deconvolution

FFT can be used to efficiently compute convolutions of two sequences. A convolution
is the pairwise product of elements from two different sequences, such as in multiplying
two polynomials or multiplying two long integers.

Another example comes from data acquisition processes where the detector intro-
duces certain (typically Gaussian) blurring to the sampled signal. A reconstruction
of the original signal can be obtained by deconvoluting the acquired signal with the
detector’s blurring function.
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11.2 Cooley-Tukey algorithm

In its simplest incarnation this algorithm re-expresses the DFT of size N = 2M in
terms of two DFTs of size M ,

ck =

N−1∑
n=0

xne
−2πinkN

=
M−1∑
m=0

x2me
−2πimkM + e−2πi kN

M−1∑
m=0

x2m+1e
−2πimkM

=

{
c
(even)
k + e−2πi kN c

(odd)
k , k < M

c
(even)
k−M − e−2πi k−MN c

(odd)
k−M , k ≥M

, (11.4)

where c(even) and c(odd) are the DFTs of the even- and odd-numbered sub-sets of x.
This re-expression of a size-N DFT as two size-N2 DFTs is sometimes called the

Danielson-Lanczos lemma. The exponents e−2πi kN are called twiddle factors.
The operation count by application of the lemma is reduced from the original N2

down to 2(N/2)2 +N/2 = N2/2 +N/2 < N2.
For N = 2p Danielson-Lanczos lemma can be applied recursively until the data

sets are reduced to one datum each. The number of operations is then reduced to
O(N lnN) compared to the original O(N2). The established library FFT routines,
like FFTW and GSL, further reduce the operation count (by a constant factor) us-
ing advanced programming techniques like precomputing the twiddle factors, effective
memory management and others.

11.3 Multidimensional DFT

For example, a two-dimensional set of data xn1n2 , n1 = 1 . . . N1, n2 = 1 . . . N2 has the
discrete Fourier transform

ck1k2 =

N1−1∑
n1=0

N2−1∑
n2=0

xn1n2e
−2πi

n1k1
N1 e−2πi

n2k2
N2 . (11.5)
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Chapter 12

Multiprocessing

Symmetric multiprocessing (SMP) referes to computer hardware where two or more
identical processors are connected to a single shared main memory and are controlled
by a single instance of an operating system. Most ordinary computers today use the
SMP architecture.

When a program uses two or more processors—to share the workload and speedup
execution—on an SMP computer it is broadly refered to as multiprocessing or parallel
computing.

A part of the program that runs on a single processor is refered to in this context as
a thread. Multiprocessing is generally achieved when the master thread of a program
forks off a number of extra threads which execute blocks of code in parallel on the
available processors.

12.1 Pthreads

The POSIX standard defines an application programming interface—usually referred
to as Posix threads or Pthreads—for creating and manipulating threads. Here is an
example,

#include<pthread . h> // gcc −pthread
#include<math . h> // −lm
#include<s t d i o . h>
void∗ bar (void∗ arg ){

double ∗x=(double∗) arg ;
for ( int i =0; i<1e8 ; i++) ∗x=cos (∗x ) ; // Do your s t u f f here .
return NULL;}

int main ( ) {
pthread t thread ; double x=0,y=100;
int f l a g=pthr ead c r ea t e ( // Create another thread
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&thread ,NULL, bar , ( void∗)&x ) ; // and run ”bar” in i t .
bar ( ( void∗)&y ) ; // Meanwhile in the master thread . . .
f l a g = p t h r e a d j o i n ( thread ,NULL) ; // Join threads .
p r i n t f ( ”x=%g\ny=%g\n” ,x , y ) ;
return 0 ; }

12.2 OpenMP

One relatively easy way to do multiprocessing is to use “OpenMP” – an industry stan-
dard programming interface that supports shared-memory multiprocessing program-
ming in C, C++, and Fortran. The GNU compilers gcc, g++, and gfortran support
the latest OpenMP specifictaion (as do several others compilers).

With OpenMP the user simply marks the sections of code that are meant to run in
parallel with the corresponding preprocessor directives and the compiler does all the
low-level programming for creating the thread-tasks and running the threads.

In C/C++ OpenMP markings are done with “#pragma omp” preprocessor direc-
tive, in Fortran77 with “C$OMP” and in Fortran90 with “!$omp”. The directives must
be on their own lines.

The full OpenMP specification is available from “openmp.org”.
Here is an simple example of running two chunks of code in parallel,

#include <omp . h> // −fopenmp −lgomp
#include <math . h> // −lm
#include <s t d i o . h>
int main ( )
{
double x=0,y=100;
#pragma omp p a r a l l e l s e c t i o n s
// the f o l l ow i n g s e c t i on s w i l be run p a r a l l e l l y in separa te threads
{
#pragma omp s e c t i o n // f i r s t thread w i l l run t h i s b l o c k o f code
{
for ( int i =0; i<1e8 ; i++) x=cos ( x ) ;
}

#pragma omp s e c t i o n // second thread w i l l run t h i s b l o c k o f code
{
for ( int i =0; i<1e8 ; i++) y=cos ( y ) ;
}

}
p r i n t f ( ”x=%g y=%g\n” ,x , y ) ;
}
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