1 Ordinary least squares

1.1 Introduction

A system of linear equations is considered overdetermined if there are more equations than unknown variables. If all equations of an overdetermined system are linearly independent, the system has no exact solution.

An ordinary least-squares problem (also called linear least-squares problem) is the problem of finding an approximate solution to an overdetermined linear system. It often arises in applications where a theoretical model is fitted to experimental data.

1.2 Linear least-squares problem

Consider a linear system

$$
\begin{equation*}
\mathbf{A} \mathbf{c}=\mathbf{b} \tag{1}
\end{equation*}
$$

where \mathbf{A} is a $n \times m$ matrix, \mathbf{c} is an m-component vector of unknown variables and \mathbf{b} is an n-component vector of the right-hand side terms. If the number of equations n is larger than the number of unknowns m, the system is overdetermined and generally has no solution.

However, it is still possible to find an approximate solution - the one where Ac is only approximately equal \mathbf{b} - in the sence that the Euclidean norm of the difference between $\mathbf{A c}$ and \mathbf{b} is minimized,

$$
\begin{equation*}
\mathbf{c}: \min _{\mathbf{c}}\|\mathbf{A c}-\mathbf{b}\|^{2} \tag{2}
\end{equation*}
$$

The problem (2) is called the ordinary least-squares problem and the vector \mathbf{c} that minimizes $\|\mathbf{A c}-\mathbf{b}\|^{2}$ is called the least-squares solution.

1.3 Solution via QR-decomposition

The linear least-squares problem can be solved by QR-decomposition. The matrix \mathbf{A} is factorized as $\mathbf{A}=\mathbf{Q R}$, where \mathbf{Q} is $n \times m$ matrix with orthogonal columns, $\mathbf{Q}^{\top} \mathbf{Q}=1$, and \mathbf{R} is an $m \times m$ upper triangular matrix. The Euclidean norm $\|\mathbf{A c}-\mathbf{b}\|^{2}$ can then be rewritten as

$$
\begin{align*}
\|\mathbf{A} \mathbf{c}-\mathbf{b}\|^{2} & =\|\mathbf{Q R} \mathbf{c}-\mathbf{b}\|^{2} \tag{3}\\
& =\left\|\mathbf{R} \mathbf{c}-\mathbf{Q}^{\top} \mathbf{b}\right\|^{2}+\left\|\left(1-\mathbf{Q Q}^{\top}\right) \mathbf{b}\right\|^{2} \geq\left\|\left(1-\mathbf{Q Q}^{\top}\right) \mathbf{b}\right\|^{2} .
\end{align*}
$$

The term $\left\|\left(1-\mathbf{Q Q}^{\boldsymbol{\top}}\right) \mathbf{b}\right\|^{2}$ is independent of the variables \mathbf{c} and can not be reduced by their variations. However, the term $\left\|\mathbf{R c}-\mathbf{Q}^{\top} \mathbf{b}\right\|^{2}$ can be reduced down to zero by solving the $m \times m$ system of linear equations

$$
\begin{equation*}
\mathbf{R} \mathbf{c}=\mathbf{Q}^{\top} \mathbf{b} \tag{4}
\end{equation*}
$$

The system is right-triangular and can be readily solved by back-substitution.
Thus the solution to the ordinary least-squares problem (2) is given by the solution of the triangular system (4).

1.4 Ordinary least-squares curve fitting

Ordinary least-squares curve fitting is a problem of fitting n (experimental) data points $\left\{x_{i}, y_{i} \pm \Delta y_{i}\right\}_{i=1, \ldots, n}$, where Δy_{i} are experimental errors, by a linear combination, $F_{\mathbf{c}}$, of m functions $\left\{f_{k}(x)\right\}_{k=1, \ldots, m}$,

$$
\begin{equation*}
F_{\mathbf{c}}(x)=\sum_{k=1}^{m} c_{k} f_{k}(x) \tag{5}
\end{equation*}
$$

where the coefficients c_{k} are the fitting parameters.
The objective of the least-squares fit is to minimize the square deviation, called χ^{2}, between the fitting function $F_{\mathbf{c}}(x)$ and the experimental data,

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{n}\left(\frac{F\left(x_{i}\right)-y_{i}}{\Delta y_{i}}\right)^{2} \tag{6}
\end{equation*}
$$

where the individual deviations from experimental points are weighted with their inverse errors in order to promote contributions from the more precise measurements.

Minimization of χ^{2} with respect to the coefficiendt c_{k} in (5) is apparently equivalent to the least-squares problem (2) where

$$
\begin{equation*}
A_{i k}=\frac{f_{k}\left(x_{i}\right)}{\Delta y_{i}}, b_{i}=\frac{y_{i}}{\Delta y_{i}} . \tag{7}
\end{equation*}
$$

If $\mathbf{Q R}=\mathbf{A}$ is the QR -decomposition of the matrix \mathbf{A}, the formal least-squares solution to the fitting problem is

$$
\begin{equation*}
\mathbf{c}=\mathbf{R}^{-1} \mathbf{Q}^{\top} \mathbf{b} \tag{8}
\end{equation*}
$$

In practice of course one rather back-substitutes the right-triangular system $\mathbf{R c}=\mathbf{Q}^{\top} \mathbf{b}$.

1.4.1 Variances and correlations of fitting parameters

Suppose δy_{i} is a small deviation of the measured value of the physical observable at hand from its exact value. The corresponding deviation δc_{k} of the fitting coefficient is then given as

$$
\begin{equation*}
\delta c_{k}=\sum_{i} \frac{\partial c_{k}}{\partial y_{i}} \delta y_{i} \tag{9}
\end{equation*}
$$

In a good experiment the deviations δy_{i} are statistically independent and distributed normally with the standard deviations Δy_{i}. The deviations (9) are then also distributed normally with variances

$$
\begin{equation*}
\left\langle\delta c_{k} \delta c_{k}\right\rangle=\sum_{i}\left(\frac{\partial c_{k}}{\partial y_{i}} \Delta y_{i}\right)^{2}=\sum_{i}\left(\frac{\partial c_{k}}{\partial b_{i}}\right)^{2} . \tag{10}
\end{equation*}
$$

The standard errors in the fitting coefficients are then given as the square roots of variances,

$$
\begin{equation*}
\Delta c_{k}=\sqrt{\left\langle\delta c_{k} \delta c_{k}\right\rangle}=\sqrt{\sum_{i}\left(\frac{\partial c_{k}}{\partial b_{i}}\right)^{2}} . \tag{11}
\end{equation*}
$$

The variances are diagonal elements of the covariance matrix, Σ, made of covariances,

$$
\begin{equation*}
\Sigma_{k q} \equiv\left\langle\delta c_{k} \delta c_{q}\right\rangle=\sum_{i} \frac{\partial c_{k}}{\partial b_{i}} \frac{\partial c_{q}}{\partial b_{i}} . \tag{12}
\end{equation*}
$$

Covariances $\left\langle\delta c_{k} \delta c_{q}\right\rangle$ are measures of to what extent the coefficients c_{k} and c_{q} change together if the measured values y_{i} are varied. The normalized covariances,

$$
\begin{equation*}
\frac{\left\langle\delta c_{k} \delta c_{q}\right\rangle}{\sqrt{\left\langle\delta c_{k} \delta c_{k}\right\rangle\left\langle\delta c_{q} \delta c_{q}\right\rangle}} \tag{13}
\end{equation*}
$$

are called correlations.
Using (12) and (8) the covariance matrix can be calculated as

$$
\begin{equation*}
\Sigma=\left(\frac{\partial \mathbf{c}}{\partial \mathbf{b}}\right)\left(\frac{\partial \mathbf{c}}{\partial \mathbf{b}}\right)^{\top}=R^{-1}\left(R^{-1}\right)^{\top}=\left(R^{\top} R\right)^{-1}=\left(A^{\top} A\right)^{-1} \tag{14}
\end{equation*}
$$

The square roots of the diagonal elements of this matrix provide the estimates of the errors $\Delta \mathbf{c}$ of the fitting coefficients,

$$
\begin{equation*}
\Delta c_{k}=\left.\sqrt{\Sigma_{k k}}\right|_{k=1 \ldots m} \tag{15}
\end{equation*}
$$

and the (normalized) off-diagonal elements provide the estimates of their correlations.

Here is a Python implementation of the ordinary least squares fit via QR decomposition,

```
def lsfit(fs:list, x:vector, y:vector, dy:vector) :
    n = x.size; m= len(fs)
    A = matrix (n,m)
    b = vector(n)
    for i in range(n):
        b[i] = y[i]/dy[i]
    for k in range(m): A[i,k] = fs[k](x[i])/dy[i]
    (Q,R) = gramschmidt.qr(A)
    c = R.back_substitute(Q.T()*b)
    inverse_R = R.back_substitute(matrix.id_matrix (m))
    S = inverse_R*inverse_R.T()
    return (c,S)
```

An illustration of a fit is shown on Figure 1 where a polynomial is fitted to a set of data.

Figure 1: Ordinary least squares fit of $F_{\mathbf{c}}(x)=c_{1}+c_{2} x+c_{3} x^{2}$ to a set of data. Shown are fits with optimal coefficiens \mathbf{c} as well as with $\mathbf{c}+\Delta \mathbf{c}$ and $\mathbf{c}-\Delta \mathbf{c}$.

1.5 Singular value decomposition

Under the thin singular value decomposition we shall understand a representation of a tall $n \times m(n>m)$ matrix \mathbf{A} in the form

$$
\begin{equation*}
\mathbf{A}=\mathbf{U S V}^{\top} \tag{16}
\end{equation*}
$$

where \mathbf{U} is an orthogonal $n \times m$ matrix $\left(\mathbf{U}^{\top} \mathbf{U}=\mathbf{1}\right)$, \mathbf{S} is a square $m \times m$ diagonal matrix with non-negative real numbers on the diagonal (called singular values of matrix \mathbf{A}), and \mathbf{V} is a square $m \times m$ orthoginal matrix $\left(\mathbf{V}^{\top} \mathbf{V}=\mathbf{1}\right)$.

Singular value decomposition can be used to solve our linear least squares problem $\mathbf{A c}=\mathbf{b}$. Indeed inserting the decomposition into the equation gives

$$
\begin{equation*}
\mathbf{U S V}^{\top} \mathbf{c}=\mathbf{b} \tag{17}
\end{equation*}
$$

Multiplying from the left with \mathbf{U}^{\top} and using the orthogonality of \mathbf{U} one gets the projected equation

$$
\begin{equation*}
\mathbf{S V}^{\top} \mathbf{c}=\mathbf{U}^{\top} \mathbf{b} \tag{18}
\end{equation*}
$$

This is a square system which can be easily solved first by solving the diagonal system

$$
\begin{equation*}
\mathbf{S y}=\mathbf{U}^{\top} \mathbf{b} \tag{19}
\end{equation*}
$$

for \mathbf{y} and then obtaining \mathbf{c} as

$$
\begin{equation*}
\mathbf{c}=\mathbf{V} \mathbf{y} \tag{20}
\end{equation*}
$$

The covariance matrix (14) can be calculated as

$$
\begin{equation*}
\boldsymbol{\Sigma}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1}=\left(\mathbf{V S}^{2} \mathbf{V}^{\boldsymbol{\top}}\right)^{-1}=\mathbf{V} \mathbf{S}^{-2} \mathbf{V}^{T} \tag{21}
\end{equation*}
$$

Singular value decomposition can be found by diagonalising the $m \times m$ symmetric positive semi-definite matrix $\mathbf{A}^{\top} \mathbf{A}$ (although this method is not the best for practical calculations, it would do as an educational tool),

$$
\begin{equation*}
\mathbf{A}^{\top} \mathbf{A}=\mathbf{V D V}^{\top} \tag{22}
\end{equation*}
$$

where \mathbf{D} is a diagonal matrix with eigenvalues of the matrix $\mathbf{A}^{\top} \mathbf{A}$ on the diagonal and \mathbf{V} is the matrix of the corresponding eigenvectors. Indeed it is easy to check that the sought decomposition can the be constructed as $\mathbf{A}=\mathbf{U S V}^{\boldsymbol{\top}}$ where $\mathbf{S}=\mathbf{D}^{1 / 2}, \mathbf{U}=\mathbf{A V D} \mathbf{D}^{-1 / 2}$.

