
1 Numerical integration

1.1 Introduction

The term numerical integration refers to a broad family of algorithms to compute
a numerical approximation to a definite (Riemann) integral.

Generally, the integral is approximated by a weighted sum of function values
within the domain of integration,∫ b

a

f(x)dx ≈
n∑
i=1

wif(xi) . (1)

Expression (1) is often referred to as quadrature (cubature for multidimensional
integrals) or rule. The abscissas xi (also called nodes) and the weights wi of
a quadrature are usually optimized—using one of a large number of different
strategies—to suit a particular class of integration problems.

The best quadrature algorithm for a given problem depends on several fac-
tors, in particular on the integrand. Different classes of integrands generally
require different quadratures for the most effective calculation.

A popular numerical integration library is QUADPACK [?]. It includes gen-
eral purpose routines—like QAGS, based on an adaptive GaussKronrod quadra-
ture with acceleration—as well as a number of specialized routines. The GNU
scientific library [?] (GSL) implements most of the QUADPACK routines and
in addition includes a modern general-purpose adaptive routine CQUAD based
on Clenshaw-Curtis quadratures [?].

In the following we shall consider some of the popular numerical integration
algorithms.

1.2 Rectangle and trapezium rules

In mathematics, the Reimann integral is generally defined in terms of Riemann
sums [?]. If the integration interval [a, b] is partitioned into n subintervals,

a = t0 < t1 < t2 < · · · < tn = b . (2)

the Riemann sum is defined as

n∑
i=1

f(xi)∆xi , (3)
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where xi ∈ [ti−1, ti] and ∆xi = ti − ti−1. Geometrically a Riemann sum can be
interpreted as the area of a collection of adjucent rectangles with widths ∆xi
and heights f(xi).

The Rieman integral is defined as the limit of a Riemann sum as the mesh—
the length of the largest subinterval—of the partition approaches zero. Specifi-
cally, the number denoted as ∫ b

a

f(x)dx (4)

is called the Riemann integral, if for any ε > 0 there exists δ > 0 such that for
any partition (2) with max ∆xi < δ we have∣∣∣∣∣

n∑
i=1

f(xi)∆xi −
∫ b

a

f(x)dx

∣∣∣∣∣ < ε . (5)

A definite integral can be interpreted as the net signed area bounded by the
graph of the integrand.

Now, the n-point rectangle quadrature is simply the Riemann sum (3),∫ b

a

f(x)dx ≈
n∑
i=1

f(xi)∆xi , (6)

where the node xi is often (but not always) taken in the middle of the corre-
sponding subinterval, xi = ti−1 + 1

2∆xi, and the subintervals are often (but not
always) chosen equal, ∆xi = (b − a)/n. Geometrically the n-point rectangle
rule is an approximation to the integral given by the area of a collection of n
adjucent equal rectangles whose heights are determined by the values of the
function (at the middle of the rectangle).

An n-point trapezium rule uses instead a collection of trapezia fitted under
the graph, ∫ b

a

f(x)dx ≈
n∑
i=1

f(ti−1) + f(ti)

2
∆xi . (7)

Importantly, the trapezium rule is the average of two Riemann sums,

n∑
i=1

f(ti−1) + f(ti)

2
∆xi =

1

2

n∑
i=1

f(ti−1)∆xi +
1

2

n∑
i=1

f(ti)∆xi . (8)

Rectangle and trapezium quadratures both have the important feature of
closely following the very mathematical definition of the integral as the limit
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of the Riemann sums. Therefore—disregarding the round-off errors—these two
rules cannot fail if the integral exists.

For certain partitions of the interval the rectangle and trapezium rules co-
incide. For example, for the nodes

xi = a+ (b− a)
i− 1

2

n
, i = 1, . . . , n (9)

both rules give the same quadrature with equal weights, wi = (b− a)/n,∫ b

a

f(x)dx ≈ b− a
n

n∑
i=1

f

(
a+ (b− a)

i− 1
2

n

)
. (10)

Rectangle and trapezium quadratures are rarely used on their own—because
of the slow convergence—but they often serve as the basis for more advanced
quadratures, for example adaptive quadratures and variable transformation
quadratures considered below.

1.3 Quadratures with regularly spaced abscissas

A quadrature (1) with n predefined nodes xi has n free parameters: the weights
wi. A set of n parameters can generally be tuned to satisfy n conditions. The
archetypal set of conditions in quadratures is that the quadrature integrates
exactly a set of n functions,

{φ1(x), . . . , φn(x)} . (11)

This leads to a set of n equations,

n∑
i=1

wiφk(xi) = Ik

∣∣∣
k=1,...,n

, (12)

where the integrals

Ik
.
=

∫ b

a

φk(x)dx (13)

are assumed to be known. Equations (12) are linear in wi and can be easily
solved.

Since integration is a linear operation, the quadrature will then also integrate
exactly any linear combination of functions (11).
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A popular choice for predefined nodes is a closed set—that is, including the
end-points of the interval—of evenly spaced abscissas,

xi = a+
i− 1

n− 1
(b− a)

∣∣∣
i=1,...,n

. (14)

However, in practice it often happens that the integrand has an integrable sin-
fularity at one or both ends of the interval. In this case one can choose an open
set of equidistant nodes,

xi = a+
i− 1

2

n
(b− a)

∣∣∣
i=1,...,n

. (15)

The set of functions to be integrated exactly is generally chosen to suite the
properties of the integrands at hand: the integrands must be well represented
by linear combinations of the chosen functions.

1.3.1 Classical quadratures

Suppose the integrand can be well represented by the first few terms of its Taylor
series,

f(x) =

∞∑
k=0

f (k)(a)

k!
(x− a)k , (16)

where f (k) is the k-th derivative of the integrand. This is often the case for
analytic—that is, infinitely differentiable—functions. For such integrands one
can obviously choose polynomials

{1, x, x2, . . . , xn−1} (17)

as the set of functions to be integrated exactly.
This leads to the so called classical quadratures: quadratures with regularly

spaced abscissas and polynomials as exactly integrable functions.
An n-point classical quadrature integrates exactly the first n terms of the

function’s Taylor expansion (16). The xn order term will not be integrated
exactly and will lead to an error of the quadrature. Thus the error En of the
n-point classical quadrature is on the order of the integral of the xn term in (16),

En ≈
∫ b

a

f (n)(a)

n!
(x− a)ndx =

f (n)(a)

(n+ 1)!
hn+1 ∝ hn+1 , (18)
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Table 1: Maxima script to calculate analytically the weights of an n-point clas-
sical quadrature with predefined abscissas in the interval [0, 1].

n: 8; xs: makelist((i-1)/(n-1),i,1,n); /* nodes: adapt to your needs */

ws: makelist(concat(w,i),i,1,n);

ps: makelist(x^i,i,0,n-1); /* polynomials */

fs: makelist(buildq([i:i,ps:ps],lambda([x],ps[i])),i,1,n);

integ01: lambda([f],integrate(f(x),x,0,1));

Is: maplist(integ01,fs); /* calculate the integrals */

eq: lambda([f],lreduce("+",maplist(f,xs)*ws));

eqs: maplist(eq,fs)-Is; /* build equations */

solve(eqs,ws); /* solve for the weights */

where h = b− a is the length of the integration interval. A quadrature with the
error of the order hn+1 is often called a degree-n quadrature.

If the integrand is smooth enough and the length h is small enough a clas-
sical quadrature with not so large n can provide a good approximation for the
integral. However, for large n the weights of classical quadratures tend to have
alternating signs, which leads to large round-off errors, which in turn negates
the potentially higher accuracy of the quadrature. Again, if the integrand vio-
lates the assumption of Taylor expansion—for example by having an integrable
singularity inside the integration interval—the higher order quadratures may
perform poorly.

Classical quadratures are mostly of historical interest nowadays. Alternative
methods—such as quadratures with optimized abscissas, adaptive, and variable
transformation quadratures—are more stable and accurate and are normally
preferred to classical quadratures.

Classical quadratures with equally spaced abscissas—both closed and open
sets—are generally referred to as Newton-Cotes quadratures. An interested
reader can generate Newton-Cotes quadratures of any degree n using the Max-
ima script in Table (1).

1.4 Quadratures with optimized abscissas

In quadratures with optimized abscissas not only the weights wi but also the
abscissas xi are chosen optimally. The number of free parameters is thus 2n
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and one can choose a set of 2n functions,

{φ1(x), . . . , φ2n(x)} , (19)

to be integrated exactly. This gives a system of 2n equations, linear in wi and
non-linear in xi,

n∑
i=1

wiφk(xi) = Ik

∣∣∣
k=1,...,2n

, (20)

where again

Ik
.
=

∫ b

a

φk(x)dx . (21)

The weights and abscissas of the quadrature can be determined by solving this
system of equations1.

Although quadratures with optimized abcissas are generally of much higher
order, 2n − 1 compared to n − 1 for non-optimal abscissas, the optimal points
generally can not be reused at the next iteration in an adaptive algorithm.

1.4.1 Gauss quadratures

Gauss quadratures deal with a slightly more general form of integrals,∫ b

a

ω(x)f(x)dx , (23)

where ω(x) is a positive weight function. For ω(x) = 1 the problem is the
same as considered above. Popular choices of the weight function include
ω(x) = (1 − x2)±1/2, exp(−x), exp(−x2) and others. The idea is to repre-
sent the integrand as a product ω(x)f(x) such that all the difficulties go into
the weight function ω(x) while the remaining factor f(x) is smooth and well
represented by polynomials.

An N -point Gauss quadrature is a quadrature with optimized abcissas,∫ b

a

ω(x)f(x)dx ≈
N∑
i=1

wif(xi) , (24)

which integrates exactly a set of 2N polynomials of the orders 1, . . . , 2N − 1
with the given weight ω(x).

1Here is, for example, an n = 2 quadrature with optimized abscissas,∫ 1

−1
f(x)dx ≈ f

(
−
√

1
3

)
+ f

(
+
√

1
3

)
. (22)
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Fundamental theorem There is a theorem stating that there exists a set
of polynomials pn(x), orthogonal on the interval [a, b] with the weight function
ω(x), ∫ b

a

ω(x)pn(x)pk(x) ∝ δnk . (25)

Now, one can prove that the optimal nodes for the N -point Gauss quadrature
are the roots of the polynomial pN (x),

pN (xi) = 0 . (26)

The idea behind the proof is to consider the integral∫ b

a

ω(x)q(x)pN (x)dx = 0 , (27)

where q(x) is an arbitrary polynomial of degree less than N . The quadrature
should represent this integral exactly,

N∑
i=1

wiq(xi)pN (xi) = 0 . (28)

Apparently this is only possible if xi are the roots of pN �.

Calculation of nodes and weights A neat algorithm—usually refered to
as Golub-Welsch [?] algorithm—for calculation of the nodes and weights of a
Gauss quadrature is based on the symmetric form of the three-term reccurence
relation for orthogonal polynomials,

xpn−1(x) = βnpn(x) + αnpn−1(x) + βn−1pn−2(x) , (29)

where p−1(x)
.
= 0, p1(x)

.
= 1, and n = 1, . . . , N . This reccurence relation can

be written in the matrix form,

xp(x) = Jp(x) + βNpN (x)eN , (30)

where p(x)
.
= {p0(x), . . . , pN−1(x)}T , eN = {0, . . . , 0, 1}T , and the tridiagonal

matrix J — usually refered to as Jacobi matrix or Jacobi operator — is given as

J =


α1 β1
β1 α2 β2

β2 α3 β3
. . .

. . .

βN−1 αN

 . (31)
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Substituting the roots xi of pN — that is, the set {xi | pN (xi) = 0} — into
the matrix equation (30) leads to eigenvalue problem for the Jacobi matrix,

Jp(xi) = xip(xi) . (32)

Thus, the nodes of an N -point Gauss quadrature (the roots of the polynomial
pN ) are the eigenvalues of the Jacobi matrix J and can be calculated by a
standard diagonalization2 routine �.

The weights can be obtained considering N integrals,∫ b

a

ω(x)pn(x)dx = δn0

∫ b

a

ω(x)dx , n = 0, . . . , N − 1 . (33)

Applying our quadrature gives the matrix equation,

Pw = e1

∫ b

a

ω(x)dx , (34)

where w
.
= {w1, . . . , wN}T , e1 = {1, 0, . . . , 0}T , and

P
.
=


p0(x1) . . . p0(xN )
p1(x1) . . . p1(xN )
. . . . . . . . .

pN−1(x1) . . . pN−1(xN )

 . (35)

Equation (34) is linear in wi and can be solved directly. However, if diagonal-
ization of the Jacobi matrix provided the normalized eigenvectors, the weigths
can be readily obtained using the following method.

The matrix P apparently consists of non-normalized column eigenvectors of
the matrix J. The eigenvectors are orthogonal and therefore PTP is a diagonal
matrix with positive elements. Multiplying (34) by PT and then by (PTP)−1

from the left gives

w = (PTP)−1PTe1

∫ b

a

ω(x)dx . (36)

From p0(x) = 1 it follows that PTe1 = {1, . . . , 1}T and therefore

wi =
1

(PTP)ii

∫ b

a

ω(x)dx . (37)

2A symmetric tridiagonal matrix can be diagonalized very effectively using the QR/RL
algorithm.
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Let the matrix V be the set of the normalized column eigenvectors of the matrix
J. The matrix V is then connected with the matrix P through the normalization
equation,

V =
√

(PTP)−1P . (38)

Therefore, again taking into account that p0(x) = 1, equation (37) can be
written as

wi = (V1i)
2

∫ b

a

ω(x)dx �. (39)

Example: Gauss-Legendre quadrature Gauss-Legendre quadrature deals
with the weight ω(x) = 1 on the interval [−1, 1]. The associated polynomials
are Legendre polynomials Pn(x), hence the name. Their reccurence relation is
usually given as

(2n− 1)xPn−1(x) = nPn(x) + (n− 1)Pn−2(x) . (40)

Rescaling the polynomials (preserving p0(x) = 1) as

√
2n+ 1Pn(x) = pn(x) (41)

reduces this reccurence relation to the symmetric form (29),

xpn−1(x) =
1

2

1√
1− (2n)−2

pn(x) +
1

2

1√
1− (2(n− 1))−2

pn−2(x) . (42)

Correspondingly, the coefficients in the matrix J are

αn = 0 , βn =
1

2

1√
1− (2n)−2

. (43)

The problem of finding the nodes and the weights of the N -point Gauss-
Legendre quadrature is thus reduced to the eigenvalue problem for the Jacobi
matrix with coefficients (43).

As an illustration of this algorithm Table (2) shows an Octave function which
calculates the nodes and the weights of the N -point Gauss-Legendre quadrature
and then integrates a given function.
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Table 2: An Octave function that calculates the nodes and weights of the N -
point Gauss-Legendre quadrature and then integrates a given function.

function Q = g au s s l e g en d r e ( f , a , b ,N)
beta = . 5 . / sqrt (1−(2∗(1:N−1)) .ˆ( −2)) ; % reccurence r e l a t i o n
J = diag (beta , 1 ) + diag (beta ,−1) ; % Jacobi matrix
[V,D] = eig ( J ) ; % d ia gona l i z a t i on o f J
x = diag (D) ; [ x , i ] = sort ( x ) ; % sor t ed nodes
w = V(1 , i ) . ˆ 2 ∗ 2 ; % weigh t s
Q = w∗ f ( ( a+b)/2+(b−a )/2∗x )∗ ( b−a ) / 2 ; % in t e g r a l
endfunction ;

1.4.2 Gauss-Kronrod quadratures

Generally, the error of a numerical integration is estimated by comparing the re-
sults from two rules of different orders. However, for ordinary Gauss quadratures
the nodes for two rules of different orders almost never coinside. This means
that one can not reuse the points of the lower order rule when calculating the
hihger order rule.

Gauss-Kronrod algorithm [?] remedies this inefficiency. The points inherited
from the lower order rule are reused in the higher order rule as predefined nodes
(with n weights as free parameters), and then m more optimal points are added
(m abscissas and m weights as free parameters). The order of the method is
n + 2m − 1. The lower order rule becomes embedded—that is, it uses a subset
of the nodes—into the higher order rule. On the next iteration the procedure is
repeated.

Patterson [?] has tabulated nodes and weigths for several sequences of em-
bedded Gauss-Kronrod rules.

1.5 Adaptive quadratures

Higher order quadratures suffer from round-off errors as the weights wi generally
have alternating signs. Again, using high order polynomials is dangerous as they
typically oscillate wildly and may lead to Runge’s phenomenon. Therefore, if
the error of the quadrature is yet too large for a quadrature with sufficiently
large n, the best strategy is to subdivide the interval in two and then use the
quadrature on the half-intervals. Indeed, if the error is of the order hk, the
subdivision would lead to reduced error, 2 (h/2)

k
< hk, if k > 1.

An adaptive quadrature is an algorithm where the integration interval is
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subdivided into adaptively refined subintervals until the given accuracy goal is
reached.

Adaptive algorithms are usually built on pairs of quadrature rules – a higher
order rule,

Q =
∑
i

wif(xi), (44)

where wi are the weights of the higher order rule and Q is the higher order
estimate of the integral, and a lower order rule,

q =
∑
i

vif(xi), (45)

where vi are the weights of the lower order rule and q is the the lower order
estimate of the integral. The difference between the higher order rule and the
lower order rule gives an estimate of the error,

δQ = |Q− q| . (46)

The integration result is accepted, if the error δQ is smaller than tolerance,

δQ < δ + ε|Q| , (47)

where δ is the absolute accuracy goal and ε is the relative accuracy goal of the
integration.

If the error estimate is larger than tolerance, the interval is subdivided into
two half-intervals and the procedure applies recursively to subintervals with the
same relative accuracy goal ε and rescaled absolute accuracy goal δ/

√
2.

The points xi are usually chosen such that the two quadratures use the same
points, and that the points can be reused in the subsequent recursive steps.
The reuse of the function evaluations made at the previous step of adaptive
integration is very important for the efficiency of the algorithm. The equally-
spaced abscissas naturally provide for such a reuse.

As an example, Table 3 shows an implementation of the described algorithm
using

xi =

{
1

6
,

2

6
,

4

6
,

5

6

}
(easily reusable points) , (48)

wi =

{
2

6
,

1

6
,

1

6
,

2

6

}
(trapezium rule) , (49)

vi =

{
1

4
,

1

4
,

1

4
,

1

4

}
(rectangle rule) . (50)
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During recursion the function values at the points #2 and #3 are inherited from
the previous step and need not be recalculated.

The points and weights are cited for the rescaled integration interval [0, 1].
The transformation of the points and weights to the original interval [a, b] is
given as

xi → a+ (b− a)xi ,

wi → (b− a)wi . (51)

This implementation calculates directly the Riemann sums and can therefore
deal with integrable singularities, although rather inefficiently.

More efficient adaptive routines keep track of the subdivisions of the interval
and the local errors [?]. This allows detection of singularities and switching in
their vicinity to specifically tuned quadratures. It also allows better estimates
of local and global errors.

Table 3: Recursive adaptive integrator in C

#include<math . h>
#include<a s s e r t . h>
#include<s t d i o . h>
double adapt24 (double f (double ) ,double a , double b ,
double acc , double eps , double f2 , double f3 , int nrec ){

a s s e r t ( nrec <1000000);
double f 1=f ( a+(b−a )/6 ) , f 4=f ( a+5∗(b−a ) / 6 ) ;
double Q=(2∗ f 1+f2+f3+2∗ f 4 )/6∗ (b−a ) , q=( f1+f4+f2+f3 )/4∗ (b−a ) ;
double t o l e r a n c e=acc+eps ∗ f abs (Q) , e r r o r=fabs (Q−q ) ;
i f ( e r r o r < t o l e r a n c e ) return Q;
else {
double Q1=adapt24 ( f , a , ( a+b )/2 , acc / s q r t ( 2 . ) , eps , f1 , f2 , nrec +1);
double Q2=adapt24 ( f , ( a+b )/2 ,b , acc / s q r t ( 2 . ) , eps , f3 , f4 , nrec +1);
return Q1+Q2 ; }

}
double adapt (
double f (double ) ,double a , double b , double acc , double eps ){
double f 2=f ( a+2∗(b−a )/6 ) , f 3=f ( a+4∗(b−a ) / 6 ) ; int nrec =0;
return adapt24 ( f , a , b , acc , eps , f2 , f3 , nrec ) ;
}
int main ( ){ // uses gcc nes ted func t i ons
int c a l l s =0; double a=0,b=1, acc =0.001 , eps =0.001;
double f (double x ){ c a l l s ++; return 1/ s q r t ( x ) ; } ; // nes ted func t i on
double Q=adapt ( f , a , b , acc , eps ) ; p r i n t f ( ”Q=%g c a l l s=%d\n” ,Q, c a l l s ) ;
return 0 ; }
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1.6 Variable transformation quadratures

The idea behind variable transformation quadratures is to apply the given quad-
rature—either with optimimized or regularly spaced nodes—not to the original
integral, but to a variable transformed integral [?],∫ b

a

f(x)dx =

∫ tb

ta

f
(
g(t)

)
g′(t)dt ≈

N∑
i=1

wif
(
g(ti)

)
g′(ti) , (52)

where the transformation x = g(t) is chosen such that the transformed integral
better suits the given quadrature. Here g′ denotes the derivative and [ta, tb] is
the corresponding interval in the new variable.

For example, the Gauss-Legendre quadrature assumes the integrand can
be well represented with polynomials and performs poorly on integrals with
integrable singularities like

I =

∫ 1

0

1

2
√
x
dx . (53)

However, a simple varibale transformation x = t2 removes the singularity,

I =

∫ 1

0

dt , (54)

and the Gauss-Legendre quadrature for the transformed integral gives exact
result. The price is that the transformed quadrature performs less effectively
on smooth functions.

Some of the popular variable transformation quadratures are Clenshaw-
Curtis [?], based on the transformation∫ 1

−1
f(x)dx =

∫ π

0

f(cos θ) sin θdθ , (55)

and “tanh-sinh” quadrature [?], based on the transformation∫ 1

−1
f(x)dx =

∫ ∞
−∞

f
(

tanh
(π

2
sinh(t)

)) π
2

cosh(t)

cosh2
(
π
2 sinh(t)

)dt . (56)

Generally, the equally spaced trapezium rule is used after the transformation.

13



1.7 Infinite intervals

One way to calculate an integral over infinite interval is to transform it by a
variable sustitution into an integral over a finite interval. The latter can then
be evaluated by ordinary integration methods. Table 4 lists several of such
transformation.

Table 4: Variable transformations reducing infinite interval integrals into inte-
grals over finite intervals.

∫ +∞

−∞
f(x)dx =

∫ +1

−1
f

(
t

1− t2

)
1 + t2

(1− t2)2
dt , (57)∫ +∞

−∞
f(x)dx =

∫ 1

0

(
f

(
1− t
t

)
+ f

(
−1− t

t

))
dt

t2
, (58)∫ +∞

a

f(x)dx =

∫ 1

0

f

(
a+

t

1− t

)
1

(1− t)2
dt , (59)∫ +∞

a

f(x)dx =

∫ 1

0

f

(
a+

1− t
t

)
dt

t2
, (60)∫ a

−∞
f(x)dx =

∫ 0

−1
f

(
a+

t

1 + t

)
1

(1 + t)2
dt , (61)∫ a

−∞
f(x)dx =

∫ 1

0

f

(
a− 1− t

t

)
dt

t2
. (62)
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