Exercise Hydrogen

1 Gradient of Rosenbrock function

1. Find the extremum of the Rosenbrock function

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2,$$
 (1)

by finding the root of it's gradient (that is, the point where the gradient is zero). You have to calculate the gradient analytically.

- 2. Print out the number of iterations it took the algorithm to converge.
- 3. Print out the points where the algorithm calculated the values of the gradient.
- 4. (Optional) Make a contour plot of the Rosenbrock function (1) together with the path the alogorithm used to converge to the extremum.

2 Bound states of hydrogen atom with shooting method for boundary value problems

2.1 Introduction

The s-wave radial Schrdinger equation for the Hydrogen atom reads (in units "Bohr radius" and "Hartree"),

$$-\frac{1}{2}f'' - \frac{1}{r}f = \epsilon f , \qquad (2)$$

where f(r) is the radial wave-function, ϵ is the energy, and primes denote the derivative over r.

The bound *s*-state wave-function satisfies this equation and the two boundary conditions,

$$f(r \to 0) = r - r^2 , (\text{provethis})$$
(3)

$$f(r \to \infty) = 0. \tag{4}$$

These two boundary conditions can only be satisfied for certain discrete (negative) values of the energy.

Since one cannot integrate numerically to ∞ one substitutes ∞ with a reasonably large number, r_{max} , such that it is much larger than the typical size of the hydrogen atom but still managable for the numerical inregrator (say, $r_{\text{max}} = 10$ Bohr radii),

$$f(r_{\max}) = 0. \tag{5}$$

Let $F_{\epsilon}(r)$ be the solution (to be found numericall via gsl_odeiv to our differential equation with energy ϵ and initial condition $F_{\epsilon}(r \to 0) = r - r^2$.

Generally, for a random negative ϵ , this solution will not satisfy the boundary condition at r_{max} . It will only be satisfied when ϵ is equal one of the bound state energies of the system.

Now define an auxiliary function

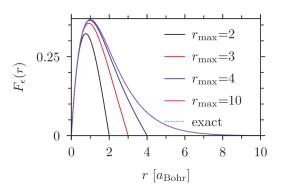
$$M(\epsilon) \equiv F_{\epsilon}(r_{\max}) . \tag{6}$$

The shooting method is then equivalent to finding the (negative) root of the equation

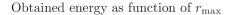
$$M(\epsilon) = 0. \tag{7}$$

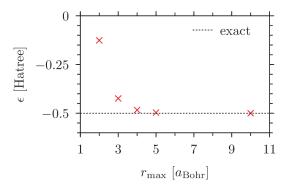
2.2 Exercises

1. Find the lowest root, ϵ_0 , of the equation $M(\epsilon) = 0$ for, say, $r_{max} = 8$. Plot the resulting function and compare with the exact result (which is $\epsilon_0 = -\frac{1}{2}$, $f_0(r) = re^{-r}$ - check this by inserting ϵ_0 and $f_0(r)$ into the Schredinger equation above).



Hydrogen s-wave shooting to $F_{\epsilon}(r_{\max}) = 0$





- 2. (Optional) Investigate the convergence of the solution towards the exact result as function of r_{max} .
- 3. (Optional) Try also to use a more precise boundary condition for bound states (which have $\epsilon < 0$),

$$f(r \to \infty) = r e^{-kr} , \qquad (8)$$

where $k = \sqrt{-2\epsilon}$. This should allow you to use a smaller r_{max} .