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Schwarzschild solution

Schwarzschild solution is the spherically symmetric static vacuum solution of the Einstein equation.
It describes the gravitational field outside a slowly rotating spherical body, like a star, a planet,
or a black hole. Karl Schwarzschild has found this solution in 1915 and published it in January
1916 shortly after the publication of Einstein’s general theory of relativity.

Schwarzschild metric

The Schwarzschild metric is written in Schwarzschild coordinates which are realised with a set of
nested spheres.

Schwarzschild metric is a static spherically symmetric solution of the vacuum Einstein equation

Rab = 0 . (1)

The spherically symmetric static metric can be generally assumed to have the following form,

ds2 = A(r)dt2 −B(r)dr2 − r2(dθ2 + sin2 θdφ2) , (2)

where A and B are some yet unknown functions of radius r.
Now we have to calculate the Ricci tensor for this metric and and put it into the vacuum

equation 1. That will give us the differential equations for A and B which we then solve and thus
obtain the metric.

Instead of duing this tedious work manually, one can use the following GNU Maxima script,

derivabbrev:true; /* a better notation for derivatives */

load(ctensor); /* load the package to deal with tensors */

ct_coords:[t,r,o,p]; /* our coordiantes: t r theta phi */

depends([A,B],[r]); /* A and B depend on r only */

lg:ident(4); /* set up a 4x4 identity matrix */

lg[1,1]: A; /* g_{tt} = A */

lg[2,2]:-B; /* g_{rr} = -B */

lg[3,3]:-r^2; /* g_{\theta\theta} */

lg[4,4]:-r^2*sin(o)^2; /* g_{\phi\phi} */

cmetric(); /* computes the prerequisites for further calculations */

christof(mcs); /* calculates Christoffel symbols, mcs[b,c,a]=\Gamma^a_{bc} */

ricci(true); /* calculates ric[a,b], the covariant symmetric Ricci tensor */

which calculates analytically the Christoffel symbols1 and the Ricci tensor2 for this metric. The
vacuum Einstein equation, Rab = 0, can then be integrated analytically3 which gives the famous
Schwarzschild metric,
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3 Making a linear combination BRtt + ARrr = 0 gives A′B + AB′ = 0 ⇒ AB = 1 ⇒ A′
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, where rg is an integration constant.
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The integration constant rg is determined from the Newtonian limit4, rg = 2GM/c2, where M
is the mass of the central body (rg = 2M in the units G = c = 1). It is called gravitational or
Schwarzschild radius. The gravitational radius for the Earth is about 9mm, for the Sun – about
3km.

Motion in the Schwarzschild metric

Massive bodies

Massive bodies move along geodesics, described by the geodesic equation

d
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buc . (4)

For a = t, θ, φ the corresponding equations in the Schwarzschild metric (3) are
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The r-equation can be conveniently obtained by dividing the Schwarzschild metric (3) by ds2,
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Considering equatorial motion, the first three equations can be integrated as

θ =
π

2
, r2

dφ

ds
= J ,
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where J and E are constants (related to momentum and energy). The fourth equation then
becomes
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−
J2

r4 r
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r2
, (10)

where r′ ≡ dr
dφ . Traditionally one makes a variable substitution r = 1/u,

(1− 2Mu) = E2 − J2u′2 − J2u2(1− 2Mu), (11)

and then differentiates the equation once. This gives

u′′ + u =
M

J2
+ 3Mu2 . (12)

In this form the last term is a relativistic correction to the otherwise non-relativistic equation.

Light rays

The rays of light travel along the null-geodesics where ds2 = 0. Consequently instead of ds one
needs to use some parameter dλ in the geodesic equations Dka

dλ = 0, where ka = dxa

dλ and also the
unity in the left-hand side of equation (8) has to be substituted with zero. This immediately leads
to the equation

u′′ + u = 3Mu2 , (13)

which describes the trajectory of a ray of light in the Schwarzschild metric.
In the absence of the central body, M = 0 the space becomes flat, and equation (13) turns into

equation for a straight line.

4 g00
r→∞−→ 1 + 2φ = 1− 2GM

c2r
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Exercises

1. Consider a non-relativistic (Newtonian) equatorial (θ = π/2) motion of a planet with mass
m around a star with mass M described by a Lagrangian

L =
1

2
m(ṙ2 + r2φ̇2) +

mM

r
,

where the dot denotes the temporal derivative, ṙ $ dr
dt .

Write down the Euler-Lagrange equations,

∂

∂t

∂L
∂q̇

=
∂L
∂q

,

for q = r and φ. Using the first integral r2φ̇ = J rewrite the r-equation as an equation for
the function u(φ), where u = 1/r, and compare with (12).

2. Show that in Newtonian mechanics an equatorial (θ = π/2) trajectory of a light ray is
described by the equation

u′′ + u = 0 ,

where u $ 1
r and u′ $ du

dφ .

3. From the expression for the Schwarzschild metric calculate the Christoffel symbols Γrφφ, Γφrφ.

4. Show that a light ray can travel around a massive star in a circular orbit much like a planet.
Calculate the radius (in Schwarzschild coordinates) of this orbit. Answer: r = 3

2 (2M).

5. Show, that in the Newtonian limit, g00 = 1 + 2φ/c2, the geodesic equation,

dua

ds
= −Γabcu

buc ,

is consistent with the Newton’s equation of motion,

~̈r = −~∇φ .

6. Show that for the equatorial orbit in the Schwarzschild metric the quantity uφ is conserved
(where uφ is the φ-component of the four-velocity ua $ dxa/ds).

7. Build a Maxima script that proves (analytically) that the Schwarzschild metric is indeed a
solution to the vacuum Einstein equation. Hint: factor(ric[1,1]);.
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