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Prologue

General relativity is a classical relativistic theory of gravitation. It was introduced by Albert
Einstein in 1916. General relativity is the accepted description of gravitation in modern physics.

General relativity is a geometric theory: in general relativity the gravitational field—unlike the
electromagentic field—is not a material field but rather a curvature of space-time. Massive bodies
distort space-time in their vicinity which affects the motion of other bodies.

General relativity satisfies the correspondence principle!: in the absence of gravitational fields
general relativity reduces to special relativity; and in the limit of weak gravitational fields and
non-relativistic velocities general relativity reduces to Newtonian gravitation.

Although not the only relativistic theory of gravitation, general relativity is the simplest theory
consistent with experimental data.

General relativity has important astrophysical implications and is the basis of current cosmo-
logical models of the universe.

Unlike classical electrodynamics general relativity has not been quantized — a complete and
self-consistent theory of quantum gravity does not exist yet.

A brief reminder on Special Relativity

Special relativity is a theory of spatial and temporal measurements in inertial frames of reference;
and of relativistic kinematics. It was formulated by Albert Einstein in 1905. Special relativity is
the basis of relativistic mechanics. In the slow motion limit special relativity reduces to Galilean
relativity.

Special relativity is based on the following postulates?,

1. Existence of inertial frames of reference.

In the absence of gravitational forces there exist inertial frames of reference where the laws
of physics take their simplest form (no intertial forces). In particular, free bodies—that is,
bodies not affected by forces—move with constant velocities along straight lines. One can
conveniently introduce Cartesian coordinates® in an inertial frame.

Inertial frames move with constant velocities with respect to each other and measurements in

one inertial frame can be converted to measurements in another by a linear transformation.

2. Special principle of relativity: the laws of physics have the same form in all inertial
frames.

3. Homogeneity and isotropy of space.

4. Finite maximum speed of a physical object.

The maximum speed with which a physical object can travel relative to a physical observer
is finite (and relatively small, 299792458 m/s).

Equivalently, one can rather postulate—as Einstein originally did—the constancy of the
speed of light, as motivated by Maxwell’s theory of electromagnetism and the null result
of the Michelson—Morley experiment.

IThe correspondece principle suggests that a new theory should reproduce the results of older well-established
theories in those domains where the old theories are applicable.

2In physics, a postulate is a physical law of a more general nature which is typically deduced from a large number
of %ifferent experiments.

di? = dz? + dy? + d2?



notel [August 28, 2019]

Lorentz transformation

Lorentz transformation relates the measurements of spatial and temporal intervals in different
inertial frames. It is a linear transformation: it transforms a linear motion of a free body in one
inertial frame to an equally linear motion of the the same body in another frame.

Let us consider a linear transformation of coordinates between two inertial frames with parallel
Cartesian coordinates moving with relative velocity v along one of the axes*. The general form of
such transformation, consistent with isotropy of the space and the group postulates, has the form

(prove it) , 1 o t
(>:1_[ 1]() (1)

where (t,2') are the coordinates in the frame K’ which moves relative to the frame K with
coordinates (t, x) with velocity v along the z (and z’) axis. The y- and z-coordinates, perpendicular
to the velocity boost, transform identically and are therefore omitted for brevity.

The velocity ¢ is a universal constant, the fastest possible relative velocity of two inertial
frames. It equals the speed of light in vacuum and is experimentally measured to be finite.

Transformation (1) with finite ¢ is called the Lorentz transformation. Note that time and
space in Lorentz transformations do not transform separately but rather as components of one
inseparable four-component space-time point z% = (¢, z,y, 2).

In the limit ¢ — oo the Lorentz transformation turns into Galilean transformation,

t = t,
¥ = xz—ut. (2)

Here time is absolute and does not transform at all — the time-space coordinates then separate
into invariant time and the vector of three spatial coordinates.

Invariant spacetime interval and metric

A direct calculation shows that the infinitesimal spacetime interval,
ds* = Adt* — da? — dy* — dz* | (3)

is invariant under the Lorentz transformation (1). It thus defines a metric 5. A space with a
metric is called metric space.

The pseudo®-Euclidean metric (3) is called Minkowski metric and a space with such metric is
called Minkowski space.

The existence of a metric allows development of a geometry of space: measurements of dis-
tances, angles, and time intervals. However, geometry in Minkowski space is sometimes different
from the everyday Euclidean geometry. In particular, distances and time intervals—unlike the
spacetime interval—are relative: they might take different values in different frames.

In the limit v <« ¢ Minkowski space reduces to Fuclidean space, which is the non-relativistic
world of classical mechanics with Galilean transformation where dt is itself invariant and the
Minkowski metric reduces to the Euclidean metric,

di? = da® + dy? + d2* . (4)

4This transformation is often called Lorentz boost, or velocity boost, or simply boost.

5A metric is a function that defines a distance between two infinitesimally close points in a space. Metric can
be used to measure distances and angles which allows development a geometry of the space.

6 Buclidean metric in an n-dimensional space has the form

ds? = da? + -+ da?,

while pseudo-FEuclidean metric has one or more negative signs,

d52=d$%+“'+d$i—d96£+1—“'—d962

n-
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Relativistic momentum and energy of a massive body

The postulate that free bodies move along straight lines can be conveniently formulated through
the variational (also called least action or stationary action) principle’. Indeed a straght line
between two points is the curve with extremal measure. The measure p of a curve in a metric

space is given by the integral
p= [ ds (5)

taken along the curve. The free bodies thus move along curves with extremal measure or, equiva-
lently, along curves with vanishing variation of the measure,

6/ds:0. (6)

The postulate about the motion of free bodies can then be reformulated as a least action
principle with the action
S=a / ds (7)

where the constant « can be deduced from the correspondence principle: in the non-relativistic
limit the action of a free body has to take the classical form, namely the temporal integral over
the kinetic energy of the body,
vLe va
S — /dtT + Const , (8)

where m is the mass of the body.
Calculating the non-relativistic limit of (

_a/cdt\/l——Q s dt(l—é%) : (9)

and comparing with (8) gives o = —me,

72
S:fmc/ds:fmCZ/dtwlf%. (10)
c

The Lagrangian® £ of a free body is thus given as

02
L=— -5 (11)
From the Lagrangian one can obtain in the usual way the momentum p|
o mu
p —_— 12
P=%~ = (12)
c2
and the energy &,
oL mc?
==V L= —F=x, 13
02

of the body.

7 Action is a (real scalar) function of the trajectory of a physical system. The trajectory actually taken by a
physical system gives the minimum value of the system’s action.
8If the action of a system can be written as a temporal integral,

S:/Ldt,

the object L is called the Lagrangian of the system.
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Exercises

1. Argue that coordinate transformations between inertial frames (the Lorentz transformations)

(a) are linear;

(b) form a group®.
2. Derive the Lorentz transformation

(a) from isotropy of space, group postulates, and finite maximum velocity;
(b) from isotropy of space and invariance of the speed of light;

(c) any other way.

3. Show that the action of a body in the form

S:/E@mﬁ (14)

leads—through the variational principle that demands dS = 0 on the actual trajectory of
the body—to the following equation of motion,

0oL oL

%95~ o7 (15)

called the Euler-Lagrange equation.

4. Counsider a non-relativistic body with mass m moving in a potential V(r). Show that the

Lagrangian
2

L= V()

leads to the normal Newton’s equations of motions.

5. Argue that in special relativity a body with action S = —mec [ ds moves along a straight
line.

6. Momentum p’ is the quantity which conserves (along the trajectory of the body) if the
Lagrangian does not depend explicitly on 7 (through the Noether’s Theorem). Argue, that

oL

P= 5 (16)

7. Energy & is the quantity which conserves (along the trajectory of the body) if the Lagrangian
does not depend explicitly on time (through the Noether’s Theorem).

In this case the variation of the Lagrangian under the infinitesimal transformation t — ¢t 4 dt
is given as
oL ., oL
or 0V
9Tn mathematics, a group is a set of elements, G = {a,b,c,...}, together with an operation, *, that combines
any two of its elements to form a third element also in the set while satisfying four conditions called the group
axioms, namely closure,

Va,be G:axbe G,
assoctativity,

(axb)xc=ax(b*c),
identity

dleG:Va:axl=a,

and invertibility
Vo €eGIateG:axa l=1.
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Show that on the trajectory this can be written as the energy conservation law,

5E=0, (18)
with the energy
oL
=—v—-L. 1
& 577 L (19)

8. Consider the motion of a particle with charge e and mass m in a constant uniform electric
field E which is, say, in the direction of the x-axis.

(a) Suppose that at ¢ = 0 the particle was at rest, ¥ = 0, with the coordinate ¥ = 0. Find
x(t).

(b) Suppose that at t = 0 the particle had ¥ = 0 and v, = 0, but v, # 0. Find z(t), y(¢)
and z(y).

(c) Consider the limits eEt < mc and eEt > me.
Hint: the equation of motion of a charged particle in an electro-magnetic field E, H is
dpp I S
—=e|lE+-xH), 20
dt ( c ) (20)
where the (relativistic) momentum p and the velocity ¥ are related as

mu

P= Ao

9. Show that in Minkowski space the finite interval, As? = c2At? — Az? — Ay? — Az?, is also
invariant.

(21)

10. Use the Lorentz transformation to derive i) the time dilation, and ii) the length contraction
formulae. Do this by identifying the pairs of events where the time or space separations are
to be compared and then apply the Lorentz transformation.

11. A particle that follows the line x = ¢t in a given frame K moves with the speed of light
along the z-axis.

(a) Based upon that fact, what do you anticipate for the equation of that line in a frame
K’ that moves along the z-axis relative the K-frame?

(b) Verify your prediction using the Lorentz transformation.

12. A traveller starts from Earth and moves along a line with constant acceleration g for 25
traveller’s years then with constant deceleration g again for 25 traveller’s years. How far
from Earth will they reach? What was their maximum speed in the Earth’s frame (assumed
inertial)? The traveller then flies back to Earth in the same manner. How many years will
have passed on Earth since his departure when he comes back to Earth?



