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PARTIAL WAVES - EXAMPLE

m For the moment let's focus on the 2N system.

m Let's try to calculate the 2N transition operator.
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“CLASSICAL” APPROACH

PARTIAL WAVES - SYMMETRIZATION
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PARTIAL WAVES - SYMMETRIZATION

m V is the 2N potential.
m Each B lives in a subspace with given orbital angular momentum /,
spin s and total angular momentum j and different momentum

magnitude states:

{(p'I(7's)" [ - | IpI(s)s)
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PARTIAL WAVES - SYMMETRIZATION

m V is the 2N potential.

m Each B lives in a subspace with given orbital angular momentum /,
spin s and total angular momentum j and different momentum
magnitude states:

{(p'I(7's)" [ - | IpI(s)s)

m Impose pairity, time reversal and rotational symmetry ...
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PARTIAL WAVES - SYMMETRIZATION
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PARTIAL WAVES - CALCULATION

m Perform PWD on each operator of, eg., LSE ¥ = V + V GoF.
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PARTIAL WAVES - CALCULATION

m Perform PWD on each operator of, eg., LSE ¥ = V + V GoF.

m Solve the resulting linear equations.
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PARTIAL WAVES - PROS AND CONS

-+
m Battle tested.
m Small numerical workload.

K. Topolnicki €FB% AARHUS August 12, 2016 11/ 34



PARTIAL WAVES - PROS AND CONS

-+
m Battle tested.
m Small numerical workload.

K. Topolnicki €FB% AARHUS August 12, 2016 11/ 34



PARTIAL WAVES - PROS AND CONS

m Battle tested.
m Small numerical workload.

m Implementation requires heavily oscilating functions.

m It is not always obvious how many partial waves need to be taken into
account.

m This is more complicated for three or more particles and different
coupling schemes.

m Convergence problems for higher energies.
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m Lets take the 2N transition operator.

m Assume we are working in momentum space with p’ = (p}, pj,, p)
being the final and p = (px, py, p) being the initial momentum of the
two nucleons.
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3D - SIZE OF THE PROBLEM

m We would like to calculate the full transition operator. This is
equivalent to calculating, for every p’ and every p, the matrix element

®tlp).
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3D - SIZE OF THE PROBLEM

m We would like to calculate the full transition operator. This is
equivalent to calculating, for every p’ and every p, the matrix element

([ E]p).
m This matrix element is an operator in spin space and has the form:
[P [E]p)] =
tll(p;apinpé’vapyvpz) t12(---) t13(---) t14(---)
t21(...) t22(...) t23(...) t24(...)
t31(...) t32(...) t33(...) t34(...)
t41(...) t42(...) t43(...) t44(...)
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3D - SIZE OF THE PROBLEM

m We would like to calculate the full transition operator. This is
equivalent to calculating, for every p’ and every p, the matrix element

([ E]p).
m This matrix element is an operator in spin space and has the form:
[P [E]p)] =
tll(p;apinpé’vapyvpz) tlZ(---) t13(---) t14(---)
t21(...) t22(...) t23(...) t24(...)
t31(...) t32(...) t33(. ) t34(...)
t41(...) t42(...) t43(. ) t44(...)
m It must satisfy the LSE equation ¥ = V + V Gt
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3D - SIZE OF THE PROBLEM

m We need to calculate 16 functions of 6 real parameters that satisfy
the LSE.
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3D - SYMMETRIZATION

m The general operator form of the two nucleon potential and transition
operator is well known [Phys. Rev. 96 1654 (1954)].
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m The general operator form of the two nucleon potential and transition
operator is well known [Phys. Rev. 96 1654 (1954)].

m The matrix element in momentum space can be written as a linear
combination of 6 scalar functions t; and spin operators [w;]:

(' | E]p)] = Z t(Ip'], [pl. &' - B) [Wi(p. p)] -

i=1
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m The matrix element in momentum space can be written as a linear
combination of 6 scalar functions t; and spin operators [w;]:

(' | E]p)] = Z t(Ip'], [pl. &' - B) [Wi(p. p)] -

i=1

m Instead of calculating 16 functions of 6 real variables we now only
need to calculate 6 functions of 3 variables.
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3D - SYMMETRIZATION

m The general operator form of the two nucleon potential and transition
operator is well known [Phys. Rev. 96 1654 (1954)].

m The matrix element in momentum space can be written as a linear
combination of 6 scalar functions t; and spin operators [w;]:

(' | E]p)] = Z t(Ip'], [pl. &' - B) [Wi(p. p)] -

i=1
m Instead of calculating 16 functions of 6 real variables we now only

need to calculate 6 functions of 3 variables.

m Couple orders of magnitude less numerical work!
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3D - PROS AND CONS

"+
m More precision at higher energies.
m Calculations can be easily modified to use different potentials.

m Operator fomrms (operators and states) significantly reduce numerical
workload.
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3D - PROS AND CONS

"+
m More precision at higher energies.
m Calculations can be easily modified to use different potentials.
m Operator fomrms (operators and states) significantly reduce numerical
workload.

m We are running out of operator forms!
m Can we construct new symmetric operator forms? Can this be
generalized to systems of three or more particles?
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INVARIANCE UNDER SPATIAL ROTATIONS

m If R is a spatial rotation, we require that operator X:

V.

RIXR = X.
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m ldeally we would like to fit the operator into an operator form:

Here x is a scalar function of momenta and O is an operator in spin
space and ... are momenta.
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INVARIANCE UNDER SPATIAL ROTATIONS

m If R is a spatial rotation, we require that operator X:

V.

RIXR = X.

m ldeally we would like to fit the operator into an operator form:

Here x is a scalar function of momenta and O is an operator in spin
space and ... are momenta.

m How can a rotation invariant operator be constructed?
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INVARIANCE UNDER SPATIAL ROTATIONS

m Let’s generalize a little bit and incorporate the dependance on the
total momentum K.
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INVARIANCE UNDER SPATIAL ROTATIONS

m Let’s generalize a little bit and incorporate the dependance on the
total momentum K.

m Boulding blocks (actually any number of momenta and spin vectors
can be used):

v

T = {5, b, K, 5(1), 5(2)}.

m In principle we have to consider all scalar combinations of the
elements from T. For example if v; € T we could use:

v

(\71 X (\72 X \73)) . (V4 X (\\75 X (‘76 X V7)))

or
(V1 X V) - (V3 X (Vg X (V5 X Vg))).
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INVARIANCE UNDER SPATIAL ROTATIONS

m Simple vector identities lead to:

(V1 x (V2 x ¥3)) - (Vg X (V5 X (Ve X V7)))
— Wy - V3) (Vo - Vis)(Va X Vg - V1)
(¥ - 2 (Vs - Vi) (Vg X Vi - Vr)
+(V1 - V2) (Vs - V5)(V3 X Vg - V7)
—(V1 - V3) (Vg - V5) (V2 X Vg - V7)
and
(V1 X W) - (V3 x (Vg X (V5 X Vg)))
= (V1 - V6 )(V2 - V3)(Vy4 - Vs)
— (V1 - V3) (V2 - V) (V4 - Vs)
— (V1 - V) (V2 - ¥3)(V4 - Vo)
+(V1 - V3)(V2 - Vi5) (V4 - V)
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INVARIANCE UNDER SPATIAL ROTATIONS

m A general observation can be made: Any scalar expression
constructed from operators in T' can be constructed from a
combination of operators in the set V:

V = {1,\7; . ‘7j N (\7; X \7]) . \7/(}.
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INVARIANCE UNDER SPATIAL ROTATIONS

m A general observation can be made: Any scalar expression
constructed from operators in T' can be constructed from a
combination of operators in the set V:

V = {i,\‘?,‘ . \71' N (\7; X \7j) . \7/(}.

m For example, from the previous slide, we have the following CHAINS
of operators of length 3:
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m How get from this to the operator form?
m In principle we have to include CHAINS of operators constructed from
V with any number of links?

8

P'K|X|pK)y=...+> x[CG]+...
i=1
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INVARIANCE UNDER SPATIAL ROTATIONS

m How get from this to the operator form?

m In principle we have to include CHAINS of operators constructed from
V with any number of links?

8
P'K|X|pK)y=...+> x[CG]+...
i=1

m Infinitely many terms?
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m Not all chains are unique. [ not unique if [G;] =, ¢ [G].
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INVARIANCE UNDER SPATIAL ROTATIONS

m Not all chains are unique. [ not unique if [G;] =, ¢ [G].
m The algorithm in [eu. prys s A52188 2016)] can be summarized:
m Start with all chains of length 1.
m Eliminate from this set those chains that are expressable by others via a
linear combination with scalar functions of momenta (eliminate [C;] if
[Ci} = Zj;éicj [CJ])
m Consider all chains of length 2 (for example by multiplying the reduced
set from the previous iteration by all operators from V).
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m Not all chains are unique. [ not unique if [G;] =, ¢ [G].
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m Start with all chains of length 1.
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linear combination with scalar functions of momenta (eliminate [C;] if
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INVARIANCE UNDER SPATIAL ROTATIONS

m Not all chains are unique. [ not unique if [G;] =, ¢ [G].
m The algorithm in [eu. prys s A52188 2016)] can be summarized:

m Start with all chains of length 1.

m Eliminate from this set those chains that are expressable by others via a
linear combination with scalar functions of momenta (eliminate [C;] if
[G] = 22 G [G])-

m Consider all chains of length 2 (for example by multiplying the reduced
set from the previous iteration by all operators from V).

m Eliminate from this set those chains that are expressable by others via a
linear combination with scalar functions of momenta.

m At some point adding further links to the chains does not add any new
unique operators.

m We end up with a finite number of operators and a a general rotation
invariant form.
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INVARIANCE UNDER SPATIAL ROTATIONS

m After the first iteration 11 unique chains of length 1:

(B x &) 5(2
(K x &(1)) - &(2).
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INVARIANCE UNDER SPATIAL ROTATIONS

m After the second iteration 16 independent chains of length < 2. Since
this is the last iteration, they have special names.
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(O] = (" - &) - 5(2)
[013] = (- 5(1))(B- 5(2)
[Ou] = - &Q)(K - &(2)

[O15] = (B~ ¢1)(B - &(2)
[O16] = (B~ &(L))(K - &(2))-
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m The third iteration does not introduce any new unique operators!
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INVARIANCE UNDER SPATIAL ROTATIONS

m The third iteration does not introduce any new unique operators!

m We just created the operator form for X:

(P'K | X |pK) = Zx, i(p,p',K)] .

m X could be the potential, transition operator with relativistic
corrections . ..

m The set T can be extended ...
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ADDING ADDITIONAL SYMMETRIES

m We can use a simple symmetrization procedure.
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ADDING ADDITIONAL SYMMETRIES

m We can use a simple symmetrization procedure.

m Let D be a grup of transformations constructed from parity, time
reversal, Hermitian conjugate and two particle exchange.

m A symmetric operator is obtained using:

X = Z TX.
TeD

m Applying any T € D to Y Fep T X returns the same operator.
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ADDING ADDITIONAL SYMMETRIES

m If this is done carefully [eu. phys. s A 52188 2016)], @ new general form for
operators that have rotation invariance and are symmetric with
respect to D can be constructed.
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ADDING ADDITIONAL SYMMETRIES

m If this is done carefully [eu. phys. s A 52188 2016)], @ new general form for
operators that have rotation invariance and are symmetric with
respect to D can be constructed.

m Additionall symmetry conditions on the scalar functions appear.

m The problem becomes more complicated if there are three particles

involved [phys. Rev. c87,054007 (2013)] . . .
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NUCLEON DEUTERON SCATTERING

m N-d elastic scattering and breakup description via the 3N Faddeev
equation

<
[
™« | |

P+ “0/5
12Pa3 + Pi3

v —
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NUCLEON DEUTERON SCATTERING

m N-d elastic scattering and breakup description via the 3N Faddeev
equation

T=tP+1GPT.
P — PrabPos + PrsPas.
m Use only first order terms:
T =tP + {GoPiP + tGoPtGoPTP + .. F
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NUCLEON DEUTERON SCATTERING

m N-d elastic scattering and breakup description via the 3N Faddeev
equation

T=tP4+1iGPT.
P = P12Pys + P13Pos.
m Use only first order terms:
T =1P +1GyPIP + tGyPtGy PP + .. F

tP.

m Calculate observables in the breakup channel ({(¢, | - three free
nucleons, | ¢) - deuteron and free nucleon):

(o | Uo | @) = (o | (1 + P)EP | ¢).

m Calculate observables in the elastic channel
(@' 1] )= (¢ | PGy + PEP| o).
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m Compare 3D approach and “battle tested” PWD approach.
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NUCLEON DEUTERON SCATTERING

m Compare 3D approach and “battle tested” PWD approach.

ELASTIC SCATTERING: BREAKUP:

m Initially the neutron: q;. In the final state, the neutron: ® In the final state the Jacobi momenta: p’ and q'.
qr- m  Scattering parametrized by the kinematic curve
m Scattering parametrized by O .. parameter S: pf(S), qf(S).
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m Results for breakup [Eur. Phys. J. A 51:132 (2015)].
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NUCLEON DEUTERON SCATTERING

m Results for breakup [Eur. Phys. J. A 51:132 (2015)].

m Deuteron and nucleon vector analyzing powers (A}",’, AQ’) and the
deuteron tensor analyzing powers (A, Ay, A;;) LAB energy 190
MeV.

m Solid line - 3D results.

m The dashed-dotted, dotted and dashed lines - PWD results with max.
total anguler momentum 21/2,23/2,25/2 and max. 2 — 3 angular
momentum 8.
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FULL 3D CALCULATION

m We can construct the operator form of T but this form contains too
many parameters.
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m We can construct the operator form of T but this form contains too
many parameters.

m Construct the operator form of T | ¢) under using similar methods -
this is under construction.

K. Topolnicki €FB? AARHUS August 12, 2016 32 /34



FULL 3D CALCULATION

m We can construct the operator form of T but this form contains too
many parameters.

m Construct the operator form of T | ¢) under using similar methods -
this is under construction.

m Calculate the solution using similar methods as with the two nucleon
transition operator.
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SUMMARY

m First order results for neutron deuteron scattering suggest that the 3D
approach can be used to achieve convergence at higher energies.

There is a necessity to construct new general operator forms.

Constructing T | ¢) can lead to efficient calculations.

Possibility to add relativistic corrections to the calculations.
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