Three nucleon scattering in a "three dimensional" approach

Kacper Topolnicki Jacek Golak Roman Skibiński Henryk Witała

August 12, 2016

PWD VS 3D

- "CLASSICAL" APPROACH
- 3D APPROACH

2 GENERAL OPERATOR FORM

- ROTATIONS
- OTHER SYMMETRIES

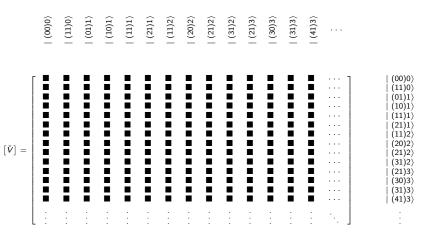
3N SCATTERING

CONVERGENCE

4 SUMMARY

PARTIAL WAVES - EXAMPLE

- For the moment let's focus on the 2N system.
- Let's try to calculate the 2N transition operator.



- \check{V} is the 2N potential.
- Each lives in a subspace with given orbital angular momentum *I*, spin *s* and total angular momentum *j* and different momentum magnitude states:

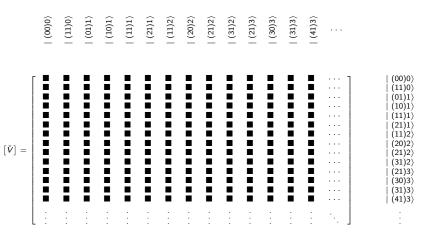
$$\langle |\mathbf{p}'|(l's')j'| \dots ||\mathbf{p}|(ls)j \rangle$$

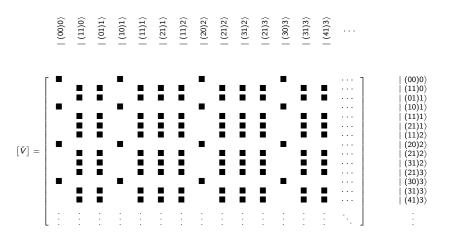
Impose pairity, time reversal and rotational symmetry ...

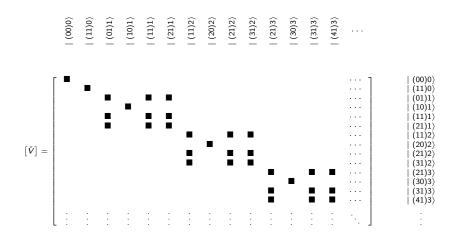
- \check{V} is the 2N potential.
- Each lives in a subspace with given orbital angular momentum *I*, spin *s* and total angular momentum *j* and different momentum magnitude states:

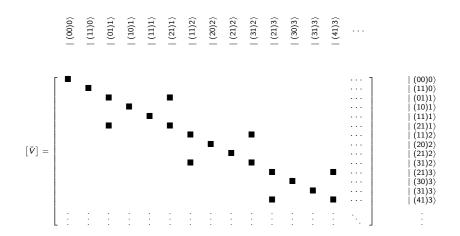
$$\langle |\mathbf{p}'|(l's')j'| \dots ||\mathbf{p}|(ls)j \rangle$$

Impose pairity, time reversal and rotational symmetry ...









PARTIAL WAVES - CALCULATION

Perform PWD on each operator of, eg., LSE t = V + V G₀t.
Solve the resulting linear equations.

PARTIAL WAVES - CALCULATION

Perform PWD on each operator of, eg., LSE $\check{t} = \check{V} + \check{V}\check{G}_0\check{t}$.

Solve the resulting linear equations.

PARTIAL WAVES - CALCULATION

Perform PWD on each operator of, eg., LSE t = V + V G₀t.
Solve the resulting linear equations.

Battle tested.

+

- Small numerical workload.
- Implementation requires heavily oscilating functions.
- It is not always obvious how many partial waves need to be taken into account.
- This is more complicated for three or more particles and different coupling schemes.
- Convergence problems for higher energies.

• +

- Battle tested.
- Small numerical workload.
- Implementation requires heavily oscilating functions.
- It is not always obvious how many partial waves need to be taken into account.
- This is more complicated for three or more particles and different coupling schemes.
- Convergence problems for higher energies.

Battle tested.

+

- Small numerical workload.
- Implementation requires heavily oscilating functions.
- It is not always obvious how many partial waves need to be taken into account.
- This is more complicated for three or more particles and different coupling schemes.
- Convergence problems for higher energies.

Battle tested.

+

- Small numerical workload.
- Implementation requires heavily oscilating functions.
- It is not always obvious how many partial waves need to be taken into account.
- This is more complicated for three or more particles and different coupling schemes.
- Convergence problems for higher energies.

- +

- Battle tested.
- Small numerical workload.
- Implementation requires heavily oscilating functions.
- It is not always obvious how many partial waves need to be taken into account.
- This is more complicated for three or more particles and different coupling schemes.
- Convergence problems for higher energies.

- Lets take the 2N transition operator.
- Assume we are working in momentum space with $\mathbf{p}' = (p'_x, p'_y, p'_z)$ being the final and $\mathbf{p} = (p_x, p_y, p_z)$ being the initial momentum of the two nucleons.

Lets take the 2N transition operator.

Assume we are working in momentum space with $\mathbf{p}' = (p'_x, p'_y, p'_z)$ being the final and $\mathbf{p} = (p_x, p_y, p_z)$ being the initial momentum of the two nucleons.

- Lets take the 2N transition operator.
- Assume we are working in momentum space with p' = (p'_x, p'_y, p'_z) being the final and p = (p_x, p_y, p_z) being the initial momentum of the two nucleons.

- Lets take the 2N transition operator.
- Assume we are working in momentum space with p' = (p'_x, p'_y, p'_z) being the final and p = (p_x, p_y, p_z) being the initial momentum of the two nucleons.

- We would like to calculate the full transition operator. This is equivalent to calculating, for every p' and every p, the matrix element ⟨p' | ž | p⟩.
- This matrix element is an operator in spin space and has the form:

$$\left[\left< \mathbf{p}' \mid \check{t} \mid \mathbf{p} \right>
ight] =$$

$$\begin{bmatrix} t_{11}(p'_{x}, p'_{y}, p'_{z}, p_{x}, p_{y}, p_{z}) & t_{12}(\dots) & t_{13}(\dots) & t_{14}(\dots) \\ t_{21}(\dots) & t_{22}(\dots) & t_{23}(\dots) & t_{24}(\dots) \\ t_{31}(\dots) & t_{32}(\dots) & t_{33}(\dots) & t_{34}(\dots) \\ t_{41}(\dots) & t_{42}(\dots) & t_{43}(\dots) & t_{44}(\dots) \end{bmatrix}$$

It must satisfy the LSE equation $\check{t} = \check{V} + \check{V}\check{G}_{0}\check{t}$.

- We would like to calculate the full transition operator. This is equivalent to calculating, for every p' and every p, the matrix element ⟨p' | ž | p⟩.
- This matrix element is an operator in spin space and has the form:

 $\left[\langle \mathbf{p}' \mid \check{t} \mid \mathbf{p}
angle
ight] =$

$$\begin{bmatrix} t_{11}(p'_{x}, p'_{y}, p'_{z}, p_{x}, p_{y}, p_{z}) & t_{12}(\dots) & t_{13}(\dots) & t_{14}(\dots) \\ t_{21}(\dots) & t_{22}(\dots) & t_{23}(\dots) & t_{24}(\dots) \\ t_{31}(\dots) & t_{32}(\dots) & t_{33}(\dots) & t_{34}(\dots) \\ t_{41}(\dots) & t_{42}(\dots) & t_{43}(\dots) & t_{44}(\dots) \end{bmatrix}$$

It must satisfy the LSE equation $\check{t} = \check{V} + \check{V}\check{G}_{0}\check{t}$.

- We would like to calculate the full transition operator. This is equivalent to calculating, for every p' and every p, the matrix element ⟨p' | ž | p⟩.
- This matrix element is an operator in spin space and has the form:

$$\left[\langle \mathbf{p}' \mid \check{t} \mid \mathbf{p}
angle
ight] =$$

$$\begin{bmatrix} t_{11}(p'_{x}, p'_{y}, p'_{z}, p_{x}, p_{y}, p_{z}) & t_{12}(\dots) & t_{13}(\dots) & t_{14}(\dots) \\ t_{21}(\dots) & t_{22}(\dots) & t_{23}(\dots) & t_{24}(\dots) \\ t_{31}(\dots) & t_{32}(\dots) & t_{33}(\dots) & t_{34}(\dots) \\ t_{41}(\dots) & t_{42}(\dots) & t_{43}(\dots) & t_{44}(\dots) \end{bmatrix}$$

It must satisfy the LSE equation $\check{t} = \check{V} + \check{V}\check{G}_0\check{t}$.

- We would like to calculate the full transition operator. This is equivalent to calculating, for every p' and every p, the matrix element ⟨p' | ž | p⟩.
- This matrix element is an operator in spin space and has the form:

$$\left[\langle \mathbf{p}' \mid \check{t} \mid \mathbf{p}
angle
ight] =$$

$$\begin{bmatrix} t_{11}(p'_x, p'_y, p'_z, p_x, p_y, p_z) & t_{12}(\dots) & t_{13}(\dots) & t_{14}(\dots) \\ t_{21}(\dots) & t_{22}(\dots) & t_{23}(\dots) & t_{24}(\dots) \\ t_{31}(\dots) & t_{32}(\dots) & t_{33}(\dots) & t_{34}(\dots) \\ t_{41}(\dots) & t_{42}(\dots) & t_{43}(\dots) & t_{44}(\dots) \end{bmatrix}$$

It must satisfy the LSE equation $\check{t} = \check{V} + \check{V}\check{G}_{0}\check{t}$.

- We need to calculate 16 functions of 6 real parameters that satisfy the LSE.
- We know that the solution has to satisfy appropriate symmetries.
- Can we use this to simplify the problem?

We need to calculate 16 functions of 6 real parameters that satisfy the LSE.

• We know that the solution has to satisfy appropriate symmetries.

Can we use this to simplify the problem?

- We need to calculate 16 functions of 6 real parameters that satisfy the LSE.
- We know that the solution has to satisfy appropriate symmetries.
- Can we use this to simplify the problem?

- We need to calculate 16 functions of 6 real parameters that satisfy the LSE.
- We know that the solution has to satisfy appropriate symmetries.
- Can we use this to simplify the problem?

- We need to calculate 16 functions of 6 real parameters that satisfy the LSE.
- We know that the solution has to satisfy appropriate symmetries.
- Can we use this to simplify the problem?

- The general operator form of the two nucleon potential and transition operator is well known [Phys. Rev. 96 1654 (1954)].
- The matrix element in momentum space can be written as a linear combination of 6 scalar functions t_i and spin operators [w_i]:

$$\left[\langle \mathbf{p}' \mid \check{t} \mid \mathbf{p} \rangle\right] = \sum_{i=1}^{6} t_i(|\mathbf{p}'|, |\mathbf{p}|, \hat{\mathbf{p}}' \cdot \hat{\mathbf{p}}) \left[\check{w}_i(\mathbf{p}, \mathbf{p})\right].$$

- Instead of calculating 16 functions of 6 real variables we now only need to calculate 6 functions of 3 variables.
- Couple orders of magnitude less numerical work!

- The general operator form of the two nucleon potential and transition operator is well known [Phys. Rev. 96 1654 (1954)].
- The matrix element in momentum space can be written as a linear combination of 6 scalar functions t_i and spin operators [w_i]:

$$\left[\langle \mathbf{p}' \mid \check{t} \mid \mathbf{p} \rangle\right] = \sum_{i=1}^{6} t_i(|\mathbf{p}'|, |\mathbf{p}|, \hat{\mathbf{p}}' \cdot \hat{\mathbf{p}}) \left[\check{w}_i(\mathbf{p}, \mathbf{p})\right].$$

- Instead of calculating 16 functions of 6 real variables we now only need to calculate 6 functions of 3 variables.
- Couple orders of magnitude less numerical work!

- The general operator form of the two nucleon potential and transition operator is well known [Phys. Rev. 96 1654 (1954)].
- The matrix element in momentum space can be written as a linear combination of 6 scalar functions t_i and spin operators [w_i]:

$$\left[\langle \mathbf{p}' \mid \check{t} \mid \mathbf{p} \rangle\right] = \sum_{i=1}^{6} t_i(|\mathbf{p}'|, |\mathbf{p}|, \hat{\mathbf{p}}' \cdot \hat{\mathbf{p}}) \left[\check{w}_i(\mathbf{p}, \mathbf{p})\right].$$

- Instead of calculating 16 functions of 6 real variables we now only need to calculate 6 functions of 3 variables.
- Couple orders of magnitude less numerical work!

- The general operator form of the two nucleon potential and transition operator is well known [Phys. Rev. 96 1654 (1954)].
- The matrix element in momentum space can be written as a linear combination of 6 scalar functions t_i and spin operators [w_i]:

$$\left[\langle \mathbf{p}' \mid \check{t} \mid \mathbf{p} \rangle\right] = \sum_{i=1}^{6} t_i(|\mathbf{p}'|, |\mathbf{p}|, \hat{\mathbf{p}}' \cdot \hat{\mathbf{p}}) \left[\check{w}_i(\mathbf{p}, \mathbf{p})\right].$$

- Instead of calculating 16 functions of 6 real variables we now only need to calculate 6 functions of 3 variables.
- Couple orders of magnitude less numerical work!

- The general operator form of the two nucleon potential and transition operator is well known [Phys. Rev. 96 1654 (1954)].
- The matrix element in momentum space can be written as a linear combination of 6 scalar functions t_i and spin operators [w_i]:

$$\left[\langle \mathbf{p}' \mid \check{t} \mid \mathbf{p}
angle
ight] = \sum_{i=1}^{6} t_i(|\mathbf{p}'|, |\mathbf{p}|, \hat{\mathbf{p}}' \cdot \hat{\mathbf{p}}) \left[\check{w}_i(\mathbf{p}, \mathbf{p})\right].$$

- Instead of calculating 16 functions of 6 real variables we now only need to calculate 6 functions of 3 variables.
- Couple orders of magnitude less numerical work!

-+

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.
- Operator fomrms (operators and states) significantly reduce numerical workload.
- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

- +

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.
- Operator fomrms (operators and states) significantly reduce numerical workload.
- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.
- Operator fomrms (operators and states) significantly reduce numerical workload.
- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.
- Operator fomrms (operators and states) significantly reduce numerical workload.
- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.
- Operator fomrms (operators and states) significantly reduce numerical workload.
- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.
- Operator fomrms (operators and states) significantly reduce numerical workload.
- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

If \check{R} is a spatial rotation, we require that operator \check{X} :

$$\check{R}^{-1}\check{X}\check{R}=\check{X}.$$

Ideally we would like to fit the operator into an operator form:

$$\langle \ldots \mid \check{X} \mid \ldots \rangle = \sum x_i \left[\check{O}_i\right].$$

Here x is a scalar function of momenta and O is an operator in spin space and ... are momenta.

If \check{R} is a spatial rotation, we require that operator \check{X} :

$$\check{R}^{-1}\check{X}\check{R}=\check{X}.$$

Ideally we would like to fit the operator into an operator form:

$$\langle \ldots \mid \check{X} \mid \ldots \rangle = \sum x_i \left[\check{O}_i\right].$$

Here x is a scalar function of momenta and O is an operator in spin space and ... are momenta.

If \check{R} is a spatial rotation, we require that operator \check{X} :

$$\check{R}^{-1}\check{X}\check{R}=\check{X}.$$

Ideally we would like to fit the operator into an operator form:

$$\langle \ldots \mid \check{X} \mid \ldots \rangle = \sum x_i \left[\check{O}_i\right].$$

Here x is a scalar function of momenta and O is an operator in spin space and ... are momenta.

If \check{R} is a spatial rotation, we require that operator \check{X} :

$$\check{R}^{-1}\check{X}\check{R}=\check{X}.$$

Ideally we would like to fit the operator into an operator form:

$$\langle \ldots \mid \check{X} \mid \ldots \rangle = \sum x_i \left[\check{O}_i\right].$$

Here x is a scalar function of momenta and O is an operator in spin space and ... are momenta.

- Let's generalize a little bit and incorporate the dependance on the total momentum K.
- Boulding blocks (actually any number of momenta and spin vectors can be used):

 $\mathbb{T} = \{\check{\mathbf{p}}', \check{\mathbf{p}}, \check{\mathbf{K}}, \check{\boldsymbol{\sigma}}(1), \check{\boldsymbol{\sigma}}(2)\}.$

In principle we have to consider all scalar combinations of the elements from T. For example if v_i ∈ T we could use:

$$(\check{\boldsymbol{v}}_1\times(\check{\boldsymbol{v}}_2\times\check{\boldsymbol{v}}_3))\cdot(\check{\boldsymbol{v}}_4\times(\check{\boldsymbol{v}}_5\times(\check{\boldsymbol{v}}_6\times\check{\boldsymbol{v}}_7)))$$

$$(\check{\mathbf{v}}_1 \times \check{\mathbf{v}}_2) \cdot (\check{\mathbf{v}}_3 \times (\check{\mathbf{v}}_4 \times (\check{\mathbf{v}}_5 \times \check{\mathbf{v}}_6))).$$

- Let's generalize a little bit and incorporate the dependance on the total momentum K.
- Boulding blocks (actually any number of momenta and spin vectors can be used):

$$\mathbb{T} = \{\check{\mathbf{p}}', \check{\mathbf{p}}, \check{\mathbf{K}}, \check{\boldsymbol{\sigma}}(1), \check{\boldsymbol{\sigma}}(2)\}.$$

In principle we have to consider all scalar combinations of the elements from T. For example if v_i ∈ T we could use:

$$(\check{\boldsymbol{v}}_1\times(\check{\boldsymbol{v}}_2\times\check{\boldsymbol{v}}_3))\cdot(\check{\boldsymbol{v}}_4\times(\check{\boldsymbol{v}}_5\times(\check{\boldsymbol{v}}_6\times\check{\boldsymbol{v}}_7)))$$

$$(\check{\mathbf{v}}_1 \times \check{\mathbf{v}}_2) \cdot (\check{\mathbf{v}}_3 \times (\check{\mathbf{v}}_4 \times (\check{\mathbf{v}}_5 \times \check{\mathbf{v}}_6))).$$

- Let's generalize a little bit and incorporate the dependance on the total momentum K.
- Boulding blocks (actually any number of momenta and spin vectors can be used):

$$\mathbb{T} = \{\check{\mathbf{p}}',\check{\mathbf{p}},\check{\mathbf{K}},\check{\sigma}(1),\check{\sigma}(2)\}.$$

In principle we have to consider all scalar combinations of the elements from T. For example if v_i ∈ T we could use:

$$(\check{\boldsymbol{v}}_1\times(\check{\boldsymbol{v}}_2\times\check{\boldsymbol{v}}_3))\cdot(\check{\boldsymbol{v}}_4\times(\check{\boldsymbol{v}}_5\times(\check{\boldsymbol{v}}_6\times\check{\boldsymbol{v}}_7)))$$

$$(\check{\mathbf{v}}_1 \times \check{\mathbf{v}}_2) \cdot (\check{\mathbf{v}}_3 \times (\check{\mathbf{v}}_4 \times (\check{\mathbf{v}}_5 \times \check{\mathbf{v}}_6))).$$

- Let's generalize a little bit and incorporate the dependance on the total momentum K.
- Boulding blocks (actually any number of momenta and spin vectors can be used):

$$\mathbb{T} = \{\check{\mathbf{p}}',\check{\mathbf{p}},\check{\mathbf{K}},\check{\sigma}(1),\check{\sigma}(2)\}.$$

In principle we have to consider all scalar combinations of the elements from \mathbb{T} . For example if $\mathbf{v}_i \in \mathbb{T}$ we could use:

$$(\check{\boldsymbol{v}}_1\times(\check{\boldsymbol{v}}_2\times\check{\boldsymbol{v}}_3))\cdot(\check{\boldsymbol{v}}_4\times(\check{\boldsymbol{v}}_5\times(\check{\boldsymbol{v}}_6\times\check{\boldsymbol{v}}_7)))$$

$$\left(\check{\boldsymbol{v}}_1\times\check{\boldsymbol{v}}_2\right)\cdot\left(\check{\boldsymbol{v}}_3\times\left(\check{\boldsymbol{v}}_4\times\left(\check{\boldsymbol{v}}_5\times\check{\boldsymbol{v}}_6\right)\right)\right).$$

Simple vector identities lead to:

$$\begin{split} (\check{\mathbf{v}}_1 \times (\check{\mathbf{v}}_2 \times \check{\mathbf{v}}_3)) \cdot (\check{\mathbf{v}}_4 \times (\check{\mathbf{v}}_5 \times (\check{\mathbf{v}}_6 \times \check{\mathbf{v}}_7))) \\ &= (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_3) (\check{\mathbf{v}}_2 \cdot \check{\mathbf{v}}_5) (\check{\mathbf{v}}_4 \times \check{\mathbf{v}}_6 \cdot \check{\mathbf{v}}_7) \\ &- (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_2) (\check{\mathbf{v}}_3 \cdot \check{\mathbf{v}}_5) (\check{\mathbf{v}}_4 \times \check{\mathbf{v}}_6 \cdot \check{\mathbf{v}}_7) \\ &+ (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_2) (\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_5) (\check{\mathbf{v}}_3 \times \check{\mathbf{v}}_6 \cdot \check{\mathbf{v}}_7) \\ &- (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_3) (\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_5) (\check{\mathbf{v}}_2 \times \check{\mathbf{v}}_6 \cdot \check{\mathbf{v}}_7) \end{split}$$

and

$$\begin{aligned} (\check{\mathbf{v}}_1 \times \check{\mathbf{v}}_2) \cdot (\check{\mathbf{v}}_3 \times (\check{\mathbf{v}}_4 \times (\check{\mathbf{v}}_5 \times \check{\mathbf{v}}_6))) \\ &= (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_6)(\check{\mathbf{v}}_2 \cdot \check{\mathbf{v}}_3)(\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_5) \\ &- (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_3)(\check{\mathbf{v}}_2 \cdot \check{\mathbf{v}}_6)(\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_5) \\ &- (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_5)(\check{\mathbf{v}}_2 \cdot \check{\mathbf{v}}_3)(\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_6) \\ &+ (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_3)(\check{\mathbf{v}}_2 \cdot \check{\mathbf{v}}_5)(\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_6). \end{aligned}$$

Simple vector identities lead to:

$$\begin{aligned} (\check{\mathbf{v}}_1 \times (\check{\mathbf{v}}_2 \times \check{\mathbf{v}}_3)) \cdot (\check{\mathbf{v}}_4 \times (\check{\mathbf{v}}_5 \times (\check{\mathbf{v}}_6 \times \check{\mathbf{v}}_7))) \\ &= (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_3)(\check{\mathbf{v}}_2 \cdot \check{\mathbf{v}}_5)(\check{\mathbf{v}}_4 \times \check{\mathbf{v}}_6 \cdot \check{\mathbf{v}}_7) \\ &- (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_2)(\check{\mathbf{v}}_3 \cdot \check{\mathbf{v}}_5)(\check{\mathbf{v}}_4 \times \check{\mathbf{v}}_6 \cdot \check{\mathbf{v}}_7) \\ &+ (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_2)(\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_5)(\check{\mathbf{v}}_3 \times \check{\mathbf{v}}_6 \cdot \check{\mathbf{v}}_7) \\ &- (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_3)(\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_5)(\check{\mathbf{v}}_2 \times \check{\mathbf{v}}_6 \cdot \check{\mathbf{v}}_7) \end{aligned}$$

and

$$\begin{aligned} (\check{\mathbf{v}}_1 \times \check{\mathbf{v}}_2) \cdot (\check{\mathbf{v}}_3 \times (\check{\mathbf{v}}_4 \times (\check{\mathbf{v}}_5 \times \check{\mathbf{v}}_6))) \\ &= (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_6)(\check{\mathbf{v}}_2 \cdot \check{\mathbf{v}}_3)(\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_5) \\ &- (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_3)(\check{\mathbf{v}}_2 \cdot \check{\mathbf{v}}_6)(\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_5) \\ &- (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_5)(\check{\mathbf{v}}_2 \cdot \check{\mathbf{v}}_3)(\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_6) \\ &+ (\check{\mathbf{v}}_1 \cdot \check{\mathbf{v}}_3)(\check{\mathbf{v}}_2 \cdot \check{\mathbf{v}}_5)(\check{\mathbf{v}}_4 \cdot \check{\mathbf{v}}_6). \end{aligned}$$

■ A general observation can be made: Any scalar expression constructed from operators in T can be constructed from a combination of operators in the set V:

$$\mathbb{V} = \{\check{1}, \check{\mathbf{v}}_i \cdot \check{\mathbf{v}}_j , (\check{\mathbf{v}}_i \times \check{\mathbf{v}}_j) \cdot \check{\mathbf{v}}_k \}.$$

For example, from the previous slide, we have the following CHAINS of operators of length 3:

$$\begin{split} \begin{bmatrix} \tilde{\zeta}_1 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_3) (\tilde{v}_2 \cdot \tilde{v}_5) (\tilde{v}_4 \times \tilde{v}_6 \cdot \tilde{v}_7), \\ \begin{bmatrix} \tilde{\zeta}_2 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_2) (\tilde{v}_3 \cdot \tilde{v}_5) (\tilde{v}_4 \times \tilde{v}_6 \cdot \tilde{v}_7), \\ \begin{bmatrix} \tilde{\zeta}_3 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_2) (\tilde{v}_4 \cdot \tilde{v}_5) (\tilde{v}_3 \times \tilde{v}_6 \cdot \tilde{v}_7), \\ \begin{bmatrix} \tilde{\zeta}_4 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_3) (\tilde{v}_4 \cdot \tilde{v}_5) (\tilde{v}_2 \times \tilde{v}_6 \cdot \tilde{v}_7), \\ \begin{bmatrix} \tilde{\zeta}_5 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_6) (\tilde{v}_2 \cdot \tilde{v}_3) (\tilde{v}_4 \cdot \tilde{v}_5), \\ \begin{bmatrix} \tilde{\zeta}_6 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_3) (\tilde{v}_2 \cdot \tilde{v}_6) (\tilde{v}_4 \cdot \tilde{v}_5), \\ \begin{bmatrix} \tilde{\zeta}_7 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_3) (\tilde{v}_2 \cdot \tilde{v}_5) (\tilde{v}_4 \cdot \tilde{v}_6), \\ \begin{bmatrix} \tilde{\zeta}_8 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_3) (\tilde{v}_2 \cdot \tilde{v}_5) (\tilde{v}_4 \cdot \tilde{v}_6). \end{split}$$

■ A general observation can be made: Any scalar expression constructed from operators in T can be constructed from a combination of operators in the set V:

$$\mathbb{V} = \{\check{1}, \check{\mathbf{v}}_i \cdot \check{\mathbf{v}}_j , (\check{\mathbf{v}}_i \times \check{\mathbf{v}}_j) \cdot \check{\mathbf{v}}_k \}.$$

For example, from the previous slide, we have the following CHAINS of operators of length 3:

$$\begin{split} \begin{bmatrix} \tilde{\zeta}_1 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_3) (\tilde{v}_2 \cdot \tilde{v}_5) (\tilde{v}_4 \times \tilde{v}_6 \cdot \tilde{v}_7), \\ \begin{bmatrix} \tilde{\zeta}_2 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_2) (\tilde{v}_3 \cdot \tilde{v}_5) (\tilde{v}_4 \times \tilde{v}_6 \cdot \tilde{v}_7), \\ \begin{bmatrix} \tilde{\zeta}_3 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_2) (\tilde{v}_4 \cdot \tilde{v}_5) (\tilde{v}_3 \times \tilde{v}_6 \cdot \tilde{v}_7), \\ \begin{bmatrix} \tilde{\zeta}_4 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_3) (\tilde{v}_4 \cdot \tilde{v}_5) (\tilde{v}_2 \times \tilde{v}_6 \cdot \tilde{v}_7), \\ \begin{bmatrix} \tilde{\zeta}_5 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_6) (\tilde{v}_2 \cdot \tilde{v}_3) (\tilde{v}_4 \cdot \tilde{v}_5), \\ \begin{bmatrix} \tilde{\zeta}_6 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_3) (\tilde{v}_2 \cdot \tilde{v}_6) (\tilde{v}_4 \cdot \tilde{v}_5), \\ \begin{bmatrix} \tilde{\zeta}_7 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_3) (\tilde{v}_2 \cdot \tilde{v}_5) (\tilde{v}_4 \cdot \tilde{v}_6), \\ \begin{bmatrix} \tilde{\zeta}_8 \end{bmatrix} &= (\tilde{v}_1 \cdot \tilde{v}_3) (\tilde{v}_2 \cdot \tilde{v}_5) (\tilde{v}_4 \cdot \tilde{v}_6). \end{split}$$

■ A general observation can be made: Any scalar expression constructed from operators in T can be constructed from a combination of operators in the set V:

$$\mathbb{V} = \{\check{1}, \check{\mathbf{v}}_i \cdot \check{\mathbf{v}}_j , (\check{\mathbf{v}}_i \times \check{\mathbf{v}}_j) \cdot \check{\mathbf{v}}_k \}.$$

• For example, from the previous slide, we have the following CHAINS of operators of length 3:

$$\begin{split} & \begin{bmatrix} \tilde{\zeta}_1 \end{bmatrix} = (\check{v}_1 \cdot \check{v}_3)(\check{v}_2 \cdot \check{v}_5)(\check{v}_4 \times \check{v}_6 \cdot \check{v}_7), \\ & \begin{bmatrix} \tilde{\zeta}_2 \end{bmatrix} = (\check{v}_1 \cdot \check{v}_2)(\check{v}_3 \cdot \check{v}_5)(\check{v}_4 \times \check{v}_6 \cdot \check{v}_7), \\ & \begin{bmatrix} \tilde{\zeta}_3 \end{bmatrix} = (\check{v}_1 \cdot \check{v}_3)(\check{v}_4 \cdot \check{v}_5)(\check{v}_2 \times \check{v}_6 \cdot \check{v}_7), \\ & \begin{bmatrix} \tilde{\zeta}_5 \end{bmatrix} = (\check{v}_1 \cdot \check{v}_6)(\check{v}_2 \cdot \check{v}_3)(\check{v}_4 \cdot \check{v}_5), \\ & \begin{bmatrix} \tilde{\zeta}_6 \end{bmatrix} = (\check{v}_1 \cdot \check{v}_6)(\check{v}_2 \cdot \check{v}_3)(\check{v}_4 \cdot \check{v}_5), \\ & \begin{bmatrix} \tilde{\zeta}_6 \end{bmatrix} = (\check{v}_1 \cdot \check{v}_3)(\check{v}_2 \cdot \check{v}_6)(\check{v}_4 \cdot \check{v}_5), \\ & \begin{bmatrix} \tilde{\zeta}_7 \end{bmatrix} = (\check{v}_1 \cdot \check{v}_3)(\check{v}_2 \cdot \check{v}_5)(\check{v}_4 \cdot \check{v}_6). \\ & \begin{bmatrix} \tilde{\zeta}_8 \end{bmatrix} = (\check{v}_1 \cdot \check{v}_3)(\check{v}_2 \cdot \check{v}_5)(\check{v}_4 \cdot \check{v}_6). \end{split}$$

- How get from this to the operator form?

$$\langle \mathbf{p}'\mathbf{K} \mid \check{X} \mid \mathbf{p}\mathbf{K} \rangle = \ldots + \sum_{i=1}^{8} x_i \left[\check{C}_i\right] + \ldots$$

How get from this to the operator form?

$$\langle \mathbf{p}'\mathbf{K} \mid \check{X} \mid \mathbf{p}\mathbf{K} \rangle = \ldots + \sum_{i=1}^{8} x_i \left[\check{C}_i\right] + \ldots$$

- How get from this to the operator form?

$$\langle \mathbf{p}'\mathbf{K} \mid \check{X} \mid \mathbf{p}\mathbf{K} \rangle = \ldots + \sum_{i=1}^{8} x_i \left[\check{C}_i\right] + \ldots$$

- How get from this to the operator form?

$$\langle \mathbf{p}'\mathbf{K} \mid \check{X} \mid \mathbf{p}\mathbf{K} \rangle = \ldots + \sum_{i=1}^{8} x_i \left[\check{C}_i\right] + \ldots$$

Not all chains are unique. $[\check{C}_i]$ not unique if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$.

■ The algorithm in [*Eur. Phys. J.* A 52:188 (2016)] can be summarized:

- Start with all chains of length 1.
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $[\check{C}_i]$ if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$).
- Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from 𝔍).
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
-
- At some point adding further links to the chains does not add any new unique operators.
- We end up with a finite number of operators and a general rotation invariant form.

• Not all chains are unique. $[\check{C}_i]$ not unique if $[\check{C}_i] = \sum_{i \neq i} c_j [\check{C}_j]$.

■ The algorithm in [*Eur. Phys. J.* A 52:188 (2016)] can be summarized:

Start with all chains of length 1.

- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $[\check{C}_i]$ if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$).
- Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from 𝔍).
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
-
- At some point adding further links to the chains does not add any new unique operators.
- We end up with a finite number of operators and a general rotation invariant form.

- Not all chains are unique. $[\check{C}_i]$ not unique if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$.
- The algorithm in [*Eur. Phys. J.* A 52:188 (2016)] can be summarized:
 - Start with all chains of length 1.
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $[\check{C}_i]$ if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$).
 - Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from 𝔍).
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
 -
 - At some point adding further links to the chains does not add any new unique operators.
 - We end up with a finite number of operators and a a general rotation invariant form.

- Not all chains are unique. $[\check{C}_i]$ not unique if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$.
- The algorithm in [*Eur. Phys. J.* A 52:188 (2016)] can be summarized:
 - Start with all chains of length 1.
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $[\check{C}_i]$ if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$).
 - Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from 𝔍).
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
 -
 - At some point adding further links to the chains does not add any new unique operators.
 - We end up with a finite number of operators and a general rotation invariant form.

- Not all chains are unique. $[\check{C}_i]$ not unique if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$.
- The algorithm in [*Eur. Phys. J.* A 52:188 (2016)] can be summarized:
 - Start with all chains of length 1.
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate [Č_i] if [Č_i] = ∑_{j≠i} c_j [Č_j]).
 - Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from 𝒱).
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
 -
 - At some point adding further links to the chains does not add any new unique operators.
 - We end up with a finite number of operators and a a general rotation invariant form.

- Not all chains are unique. $[\check{C}_i]$ not unique if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$.
- The algorithm in [*Eur. Phys. J.* A 52:188 (2016)] can be summarized:
 - Start with all chains of length 1.
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate [Č_i] if [Č_i] = ∑_{j≠i} c_j [Č_j]).
 - Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from V).
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
 -
 - At some point adding further links to the chains does not add any new unique operators.
 - We end up with a finite number of operators and a a general rotation invariant form.

- Not all chains are unique. $[\check{C}_i]$ not unique if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$.
- The algorithm in [*Eur. Phys. J.* A 52:188 (2016)] can be summarized:
 - Start with all chains of length 1.
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate [Č_i] if [Č_i] = ∑_{j≠i} c_j [Č_j]).
 - Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from V).
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
 -
 - At some point adding further links to the chains does not add any new unique operators.
 - We end up with a finite number of operators and a general rotation invariant form.

- Not all chains are unique. $[\check{C}_i]$ not unique if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$.
- The algorithm in [*Eur. Phys. J.* A 52:188 (2016)] can be summarized:
 - Start with all chains of length 1.
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate [Č_i] if [Č_i] = ∑_{j≠i} c_j [Č_j]).
 - Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from 𝒱).
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
 - ...
 - At some point adding further links to the chains does not add any new unique operators.
 - We end up with a finite number of operators and a general rotation invariant form.

- Not all chains are unique. $[\check{C}_i]$ not unique if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$.
- The algorithm in [*Eur. Phys. J.* A 52:188 (2016)] can be summarized:
 - Start with all chains of length 1.
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate [Č_i] if [Č_i] = ∑_{j≠i} c_j [Č_j]).
 - Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from 𝒱).
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
 - • •
 - At some point adding further links to the chains does not add any new unique operators.
 - We end up with a finite number of operators and a general rotation invariant form.

- Not all chains are unique. $[\check{C}_i]$ not unique if $[\check{C}_i] = \sum_{j \neq i} c_j [\check{C}_j]$.
- The algorithm in [*Eur. Phys. J.* A 52:188 (2016)] can be summarized:
 - Start with all chains of length 1.
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate [Č_i] if [Č_i] = ∑_{j≠i} c_j [Č_j]).
 - Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from 𝒱).
 - Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
 - • •
 - At some point adding further links to the chains does not add any new unique operators.
 - We end up with a finite number of operators and a general rotation invariant form.

After the first iteration 11 unique chains of length 1:

$$\begin{split} \tilde{I} \\ \tilde{p}' \cdot \tilde{\sigma}(1) \\ \tilde{p}' \cdot \tilde{\sigma}(2) \\ \tilde{p} \cdot \tilde{\sigma}(1) \\ \tilde{p} \cdot \tilde{\sigma}(2) \\ \tilde{K} \cdot \tilde{\sigma}(1) \\ \tilde{K} \cdot \tilde{\sigma}(2) \\ \tilde{\sigma}(1) \cdot \tilde{\sigma}(2) \\ \tilde{\sigma}'(1) \cdot \tilde{\sigma}(2) \\ \tilde{p} \times \tilde{\sigma}(1)) \cdot \tilde{\sigma}(2) \\ \tilde{\kappa} \times \tilde{\sigma}(1)) \cdot \tilde{\sigma}(2). \end{split}$$

After the first iteration 11 unique chains of length 1:

$$\begin{split} \breve{1} \\ \breve{p}' \cdot \breve{\sigma}(1) \\ \breve{p}' \cdot \breve{\sigma}(2) \\ \breve{p} \cdot \breve{\sigma}(1) \\ \breve{p} \cdot \breve{\sigma}(2) \\ \breve{K} \cdot \breve{\sigma}(1) \\ \breve{K} \cdot \breve{\sigma}(2) \\ \breve{K} \cdot \breve{\sigma}(1) \\ \breve{K} \cdot \breve{\sigma}(2) \\ \breve{\sigma}(1) \cdot \breve{\sigma}(2) \\ (\breve{p}' \times \breve{\sigma}(1)) \cdot \breve{\sigma}(2) \\ (\breve{K} \times \breve{\sigma}(1)) \cdot \breve{\sigma}(2). \end{split}$$

After the second iteration 16 independent chains of length < 2. Since this is the last iteration, they have special names.

 $\left[\check{O}_{6}\right] = \check{\mathsf{K}} \cdot \check{\sigma}(1)$ $[\check{O}_7] = \check{K} \cdot \check{\sigma}(2)$

■ After the second iteration 16 independent chains of length < 2. Since this is the last iteration, they have special names.

$$\begin{split} \begin{bmatrix} \check{O}_1 \end{bmatrix} = \check{I} \\ \begin{bmatrix} \check{O}_2 \end{bmatrix} = \check{p}' \cdot \check{\sigma}(1) \\ \begin{bmatrix} \check{O}_3 \end{bmatrix} = \check{p}' \cdot \check{\sigma}(2) \\ \begin{bmatrix} \check{O}_4 \end{bmatrix} = \check{p} \cdot \check{\sigma}(2) \\ \begin{bmatrix} \check{O}_5 \end{bmatrix} = \check{p} \cdot \check{\sigma}(2) \\ \begin{bmatrix} \check{O}_6 \end{bmatrix} = \check{K} \cdot \check{\sigma}(1) \\ \begin{bmatrix} \check{O}_7 \end{bmatrix} = \check{K} \cdot \check{\sigma}(2) \\ \begin{bmatrix} \check{O}_8 \end{bmatrix} = \check{\sigma}(1) \cdot \check{\sigma}(2) \\ \begin{bmatrix} \check{O}_9 \end{bmatrix} = (\check{p}' \times \check{\sigma}(1)) \cdot \check{\sigma}(2) \\ \begin{bmatrix} \check{O}_{10} \end{bmatrix} = (\check{p} \times \check{\sigma}(1)) \cdot \check{\sigma}(2) \\ \begin{bmatrix} \check{O}_{11} \end{bmatrix} = (\check{K} \times \check{\sigma}(1)) \cdot \check{\sigma}(2) \\ \begin{bmatrix} \check{O}_{12} \end{bmatrix} = (\check{p}' \cdot \check{\sigma}(1)) (\check{p}' \cdot \check{\sigma}(2)) \\ \begin{bmatrix} \check{O}_{13} \end{bmatrix} = (\check{p}' \cdot \check{\sigma}(1)) (\check{p}' \cdot \check{\sigma}(2)) \\ \begin{bmatrix} \check{O}_{14} \end{bmatrix} = (\check{p}' \cdot \check{\sigma}(1)) (\check{K} \cdot \check{\sigma}(2)) \\ \begin{bmatrix} \check{O}_{15} \end{bmatrix} = (\check{p} \cdot \check{\sigma}(1)) (\check{K} \cdot \check{\sigma}(2)). \end{split} \end{split}$$

The third iteration does not introduce any new unique operators!
We just created the operator form for X:

$$\langle \mathbf{p}'\mathbf{K} \mid \check{X} \mid \mathbf{p}\mathbf{K}
angle = \sum_{i=1}^{16} x_i \left[\check{O}_i(\mathbf{p}, \mathbf{p}', \mathbf{K})\right].$$

X could be the potential, transition operator with relativistic corrections ...

The set \mathbb{T} can be extended ...

The third iteration does not introduce any new unique operators!
We just created the operator form for X:

$$\langle \mathbf{p}'\mathbf{K} \mid \check{X} \mid \mathbf{p}\mathbf{K} \rangle = \sum_{i=1}^{16} x_i \left[\check{O}_i(\mathbf{p}, \mathbf{p}', \mathbf{K})\right].$$

 X could be the potential, transition operator with relativistic corrections . . .

 \blacksquare The set $\mathbb T$ can be extended \ldots

The third iteration does not introduce any new unique operators!
We just created the operator form for X:

$$\langle \mathbf{p}'\mathbf{K} \mid \check{X} \mid \mathbf{p}\mathbf{K}
angle = \sum_{i=1}^{16} x_i \left[\check{O}_i(\mathbf{p}, \mathbf{p}', \mathbf{K})\right].$$

 X could be the potential, transition operator with relativistic corrections . . .

The set \mathbb{T} can be extended ...

The third iteration does not introduce any new unique operators!
We just created the operator form for X:

$$\langle \mathbf{p}'\mathbf{K} \mid \check{X} \mid \mathbf{p}\mathbf{K} \rangle = \sum_{i=1}^{16} x_i \left[\check{O}_i(\mathbf{p}, \mathbf{p}', \mathbf{K})\right].$$

 X could be the potential, transition operator with relativistic corrections . . .

The set \mathbb{T} can be extended ...

The third iteration does not introduce any new unique operators!
We just created the operator form for X:

$$\langle \mathbf{p}'\mathbf{K} \mid \check{X} \mid \mathbf{p}\mathbf{K} \rangle = \sum_{i=1}^{16} x_i \left[\check{O}_i(\mathbf{p}, \mathbf{p}', \mathbf{K})\right].$$

- X could be the potential, transition operator with relativistic corrections . . .
- \blacksquare The set $\mathbb T$ can be extended \ldots

- We can use a simple symmetrization procedure.
- Let D be a grup of transformations constructed from **parity**, **time reversal**, **Hermitian conjugate and two particle exchange**.
- A symmetric operator is obtained using:

$$\check{X} \to \sum_{\check{T} \in \mathbb{D}} \check{T}\check{X}.$$

• Applying any $\check{\mathcal{T}} \in \mathbb{D}$ to $\sum_{\check{\mathcal{T}} \in \mathbb{D}} \check{\mathcal{T}} \check{X}$ returns the same operator.

We can use a simple symmetrization procedure.

- Let D be a grup of transformations constructed from **parity**, **time reversal**, **Hermitian conjugate and two particle exchange**.
- A symmetric operator is obtained using:

$$\check{X} \to \sum_{\check{T} \in \mathbb{D}} \check{T}\check{X}.$$

• Applying any $\check{T} \in \mathbb{D}$ to $\sum_{\check{T} \in \mathbb{D}} \check{T}\check{X}$ returns the same operator.

- We can use a simple symmetrization procedure.
- Let D be a grup of transformations constructed from parity, time reversal, Hermitian conjugate and two particle exchange.
- A symmetric operator is obtained using:

$$\check{X} \to \sum_{\check{T} \in \mathbb{D}} \check{T}\check{X}.$$

• Applying any $\check{T} \in \mathbb{D}$ to $\sum_{\check{T} \in \mathbb{D}} \check{T}\check{X}$ returns the same operator.

- We can use a simple symmetrization procedure.
- Let D be a grup of transformations constructed from **parity**, **time reversal**, **Hermitian conjugate and two particle exchange**.
- A symmetric operator is obtained using:

$$\check{X} \to \sum_{\check{T} \in \mathbb{D}} \check{T}\check{X}.$$

• Applying any $\check{T} \in \mathbb{D}$ to $\sum_{\check{T} \in \mathbb{D}} \check{T}\check{X}$ returns the same operator.

- We can use a simple symmetrization procedure.
- Let D be a grup of transformations constructed from **parity**, **time reversal**, **Hermitian conjugate and two particle exchange**.
- A symmetric operator is obtained using:

$$\check{X} \to \sum_{\check{T} \in \mathbb{D}} \check{T}\check{X}.$$

• Applying any $\check{\mathcal{T}} \in \mathbb{D}$ to $\sum_{\check{\mathcal{T}} \in \mathbb{D}} \check{\mathcal{T}} \check{X}$ returns the same operator.

- If this is done carefully [Eur. Phys. J. A 52:188 (2016)], a new general form for operators that have rotation invariance and are symmetric with respect to D can be constructed.
- Additionall symmetry conditions on the scalar functions appear.
- The problem becomes more complicated if there are three particles involved [*Phys. Rev. C* 87,054007 (2013)] ...

- If this is done carefully [*Eur. Phys. J.* A 52:188 (2016)], a new general form for operators that have rotation invariance and are symmetric with respect to D can be constructed.
- Additionall symmetry conditions on the scalar functions appear.
- The problem becomes more complicated if there are three particles involved [*Phys. Rev. C* 87,054007 (2013)] ...

- If this is done carefully [*Eur. Phys. J.* A 52:188 (2016)], a new general form for operators that have rotation invariance and are symmetric with respect to D can be constructed.
- Additionall symmetry conditions on the scalar functions appear.
- The problem becomes more complicated if there are three particles involved [*Phys. Rev. C* 87,054007 (2013)] ...

- If this is done carefully [*Eur. Phys. J.* A 52:188 (2016)], a new general form for operators that have rotation invariance and are symmetric with respect to D can be constructed.
- Additionall symmetry conditions on the scalar functions appear.
- The problem becomes more complicated if there are three particles involved [*Phys. Rev. C* 87,054007 (2013)] ...

N-d elastic scattering and breakup description via the 3N Faddeev equation

$$\begin{split} \check{T} &= \check{t}\check{P} + \check{t}\check{G}_0\check{P}\check{T}.\\ \check{P} &= \check{P}_{12}\check{P}_{23} + \check{P}_{13}\check{P}_{23}. \end{split}$$

Use only first order terms:

$$\check{T} = \check{t}\check{P} + \check{t}\check{G}_0\check{P}\check{t}\check{P} + \check{t}\check{G}_0\check{P}\check{t}\check{G}_0\check{P}\check{t}\check{P} + \ldots \approx \check{t}\check{P}.$$

Calculate observables in the breakup channel ($\langle \phi_o |$ - three free nucleons, $| \phi \rangle$ - deuteron and free nucleon):

$$\langle \phi_0 \mid \check{u}_0 \mid \phi \rangle = \langle \phi_0 \mid (1 + \check{P})\check{t}\check{P} \mid \phi \rangle.$$

$$\langle \phi' \mid \check{u} \mid \phi \rangle = \langle \phi' \mid \check{P}\check{G}_0^{-1} + \check{P}\check{t}\check{P} \mid \phi \rangle.$$

 N-d elastic scattering and breakup description via the 3N Faddeev equation

$$\begin{split} \check{T} &= \check{t}\check{P} + \check{t}\check{G}_{0}\check{P}\check{T}.\\ \check{P} &= \check{P}_{12}\check{P}_{23} + \check{P}_{13}\check{P}_{23}. \end{split}$$

Use only first order terms:

$$\check{T} = \check{t}\check{P} + \check{t}\check{G}_0\check{P}\check{t}\check{P} + \check{t}\check{G}_0\check{P}\check{t}\check{G}_0\check{P}\check{t}\check{P} + \ldots \approx \check{t}\check{P}.$$

Calculate observables in the breakup channel ($\langle \phi_o |$ - three free nucleons, $| \phi \rangle$ - deuteron and free nucleon):

$$\langle \phi_0 \mid \check{u}_0 \mid \phi \rangle = \langle \phi_0 \mid (1 + \check{P})\check{t}\check{P} \mid \phi \rangle.$$

$$\langle \phi' \mid \check{u} \mid \phi \rangle = \langle \phi' \mid \check{P}\check{G}_0^{-1} + \check{P}\check{t}\check{P} \mid \phi \rangle.$$

 N-d elastic scattering and breakup description via the 3N Faddeev equation

$$\begin{split} \check{T} &= \check{t}\check{P} + \check{t}\check{G}_{0}\check{P}\check{T}.\\ \check{P} &= \check{P}_{12}\check{P}_{23} + \check{P}_{13}\check{P}_{23}. \end{split}$$

Use only first order terms:

$$\check{T}=\check{t}\check{P}+\check{t}\check{G}_{0}\check{P}\check{t}\check{P}+\check{t}\check{G}_{0}\check{P}\check{t}\check{G}_{0}\check{P}\check{t}\check{P}+\ldots\approx\check{t}\check{P}.$$

Calculate observables in the breakup channel ($\langle \phi_o |$ - three free nucleons, $| \phi \rangle$ - deuteron and free nucleon):

$$\langle \phi_0 \mid \check{u}_0 \mid \phi \rangle = \langle \phi_0 \mid (1 + \check{P})\check{t}\check{P} \mid \phi \rangle.$$

$$\langle \phi' \mid \check{u} \mid \phi \rangle = \langle \phi' \mid \check{P}\check{G}_0^{-1} + \check{P}\check{t}\check{P} \mid \phi \rangle.$$

 N-d elastic scattering and breakup description via the 3N Faddeev equation

$$\check{T} = \check{t}\check{P} + \check{t}\check{G}_0\check{P}\check{T}.$$

 $\check{P} = \check{P}_{12}\check{P}_{23} + \check{P}_{13}\check{P}_{23}.$

Use only first order terms:

$$\check{T} = \check{t}\check{P} + \check{t}\check{G}_0\check{P}\check{t}\check{P} + \check{t}\check{G}_0\check{P}\check{t}\check{G}_0\check{P}\check{t}\check{P} + \ldots \approx \check{t}\check{P}.$$

Calculate observables in the breakup channel ($\langle \phi_o |$ - three free nucleons, $| \phi \rangle$ - deuteron and free nucleon):

$$\langle \phi_0 \mid \check{u}_0 \mid \phi \rangle = \langle \phi_0 \mid (1 + \check{P})\check{t}\check{P} \mid \phi \rangle.$$

$$\langle \phi' \mid \check{u} \mid \phi \rangle = \langle \phi' \mid \check{P}\check{G}_0^{-1} + \check{P}\check{t}\check{P} \mid \phi \rangle.$$

Compare 3D approach and "battle tested" PWD approach.

ELASTIC SCATTERING:

BREAKUP:

- Initially the neutron: q_i . In the final state, the neutron: $q_{f^{(i)}}$
- Scattering parametrized by θ_{c.m.}.

- In the final state the Jacobi momenta: p^t and q^t.
- Scattering parametrized by the kinematic curve parameter *S*: **p**^{*f*}(*S*), **q**^{*f*}(*S*).

Compare 3D approach and "battle tested" PWD approach.

ELASTIC SCATTERING:

- **I** Initially the neutron: \mathbf{q}_i . In the final state, the neutron: \mathbf{q}_f .
- Scattering parametrized by θ_{c.m.}.

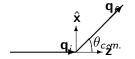
- In the final state the Jacobi momenta: p^t and q^t.
- Scattering parametrized by the kinematic curve parameter *S*: **p**^{*f*}(*S*), **q**^{*f*}(*S*).

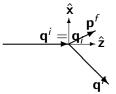
^eFB²³ AARHUS

Compare 3D approach and "battle tested" PWD approach.

ELASTIC SCATTERING:

BREAKUP:





- Initially the neutron: q_i. In the final state, the neutron: q_f.
- Scattering parametrized by θ_{c.m.}.

- In the final state the Jacobi momenta: p^f and q^f .
- Scattering parametrized by the kinematic curve parameter *S*: **p**^{*f*}(*S*), **q**^{*f*}(*S*).

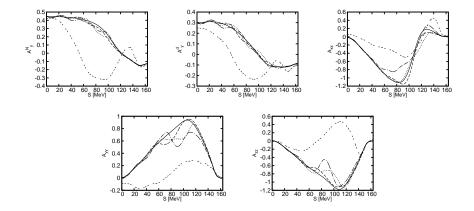
^eFB²³ AARHUS

- Results for breakup [Eur. Phys. J. A 51:132 (2015)].
- Deuteron and nucleon vector analyzing powers (A^d_y, A^N_y) and the deuteron tensor analyzing powers (A_{xx}, A_{yy}, A_{zz}) LAB energy 190 MeV.
- Solid line 3D results.
- The dashed-dotted, dotted and dashed lines PWD results with max. total anguler momentum 21/2, 23/2, 25/2 and max. 2 – 3 angular momentum 8.

Results for breakup [Eur. Phys. J. A 51:132 (2015)].

- Deuteron and nucleon vector analyzing powers (A^d_y, A^N_y) and the deuteron tensor analyzing powers (A_{xx}, A_{yy}, A_{zz}) LAB energy 190 MeV.
- Solid line 3D results.
- The dashed-dotted, dotted and dashed lines PWD results with max. total anguler momentum 21/2, 23/2, 25/2 and max. 2 – 3 angular momentum 8.

- Results for breakup [Eur. Phys. J. A 51:132 (2015)].
- Deuteron and nucleon vector analyzing powers (A^d_y, A^N_y) and the deuteron tensor analyzing powers (A_{xx}, A_{yy}, A_{zz}) LAB energy 190 MeV.
- Solid line 3D results.
- The dashed-dotted, dotted and dashed lines PWD results with max. total anguler momentum 21/2, 23/2, 25/2 and max. 2 – 3 angular momentum 8.



- We can construct the operator form of *T* but this form contains too many parameters.
- Construct the operator form of $\check{T} \mid \phi \rangle$ under using similar methods this is under construction.
- Calculate the solution using similar methods as with the two nucleon transition operator.

- We can construct the operator form of $\check{\mathcal{T}}$ but this form contains too many parameters.
- Construct the operator form of $\check{T} \mid \phi \rangle$ under using similar methods this is under construction.
- Calculate the solution using similar methods as with the two nucleon transition operator.

- We can construct the operator form of *T* but this form contains too many parameters.
- Construct the operator form of $\check{T} \mid \phi \rangle$ under using similar methods this is under construction.
- Calculate the solution using similar methods as with the two nucleon transition operator.

- We can construct the operator form of $\check{\mathcal{T}}$ but this form contains too many parameters.
- Construct the operator form of $\check{T} \mid \phi \rangle$ under using similar methods this is under construction.
- Calculate the solution using similar methods as with the two nucleon transition operator.

- First order results for neutron deuteron scattering suggest that the 3D approach can be used to achieve convergence at higher energies.
- There is a necessity to construct new general operator forms.
- Constructing $\check{T} \mid \phi \rangle$ can lead to efficient calculations.
- Possibility to add relativistic corrections to the calculations.

THANK YOU

The project was financed from the resources of the National Science Center

(Poland) under grants No. DEC-2013/11/N/ST2/03733 and DEC-2013/10/

M/ST2/00420. Some of the numerical work was performed at JSC Jülich.