Three nucleon scattering in a "three dimensional" approach

Kacper Topolnicki Jacek Golak
Roman Skibiński
Henryk Witała

August 12, 2016

1 PWD VS 3D
■ "CLASSICAL" APPROACH

- 3D APPROACH

2 GENERAL OPERATOR FORM

- ROTATIONS
- OTHER SYMMETRIES

3 3N SCATTERING
 - CONVERGENCE

4 SUMMARY

PARTIAL WAVES - EXAMPLE

- For the moment let's focus on the 2 N system.

■ Let's try to calculate the 2 N transition operator.

PARTIAL WAVES - SYMMETRIZATION

PARTIAL WAVES - SYMMETRIZATION

- \check{V} is the 2 N potential.

■ Each \square lives in a subspace with given orbital angular momentum $/$, spin s and total angular momentum j and different momentum magnitude states:

$$
\langle | \mathbf{p}^{\prime}\left|\left(I^{\prime} s^{\prime}\right) j^{\prime}\right| \ldots| | \mathbf{p}|(I s) j\rangle
$$

- Impose pairity, time reversal and rotational symmetry

PARTIAL WAVES - SYMMETRIZATION

- \check{V} is the 2 N potential.

■ Each \quad lives in a subspace with given orbital angular momentum $/$, spin s and total angular momentum j and different momentum magnitude states:

$$
\langle | \mathbf{p}^{\prime}\left|\left(I^{\prime} s^{\prime}\right) j^{\prime}\right| \ldots| | \mathbf{p}|(I s) j\rangle
$$

■ Impose pairity, time reversal and rotational symmetry ...

PARTIAL WAVES - SYMMETRIZATION

PARTIAL WAVES - SYMMETRIZATION

[^0]
PARTIAL WAVES - SYMMETRIZATION

PARTIAL WAVES - SYMMETRIZATION

[^1]
PARTIAL WAVES - CALCULATION

- Perform PWD on each operator of, eg., LSE $\check{t}=\check{V}+\check{V} \check{G}_{0} \check{t}$. - Solve the resulting linear equations.

PARTIAL WAVES - CALCULATION

■ Perform PWD on each operator of, eg., LSE $\check{t}=\check{V}+\check{V} \check{G}_{0} \check{t}$.

- Solve the resulting linear equations.

PARTIAL WAVES - CALCULATION

- Perform PWD on each operator of, eg., LSE $\check{t}=\check{V}+\check{V} \check{G}_{0} \check{t}$.
- Solve the resulting linear equations.

PARTIAL WAVES - PROS AND CONS

- Battle tested.
- Small numerical workload

■ Implementation requires heavily oscilating functions.

- It is not always obvious how many partial waves need to be taken into account.
- This is more complicated for three or more particles and different coupling schemes.
- Convergence problems for higher energies.

PARTIAL WAVES - PROS AND CONS

■ +

- Battle tested.
- Small numerical workload
- Implementation requires heavily oscilating functions.
- It is not always obvious how many partial waves need to be taken into account.
- This is more complicated for three or more particles and different coupling schemes.
- Convergence problems for higher energies.

PARTIAL WAVES - PROS AND CONS

■ +

- Battle tested.
- Small numerical workload.
- Implementation requires heavily oscilating functions.
- It is not always obvious how many partial waves need to be taken into account.
- This is more complicated for three or more particles and different coupling schemes.
- Convergence problems for higher energies.

PARTIAL WAVES - PROS AND CONS

■ +

- Battle tested.
- Small numerical workload.
- Implementation requires heavily oscilating functions.
- It is not always obvious how many partial waves need to be taken into account.
- This is more complicated for three or more particles and different coupling schemes.
■ Convergence problems for higher energies.

PARTIAL WAVES - PROS AND CONS

■ +

- Battle tested.

■ Small numerical workload.

- Implementation requires heavily oscilating functions.
- It is not always obvious how many partial waves need to be taken into account.
- This is more complicated for three or more particles and different coupling schemes.
- Convergence problems for higher energies.

3D - EXAMPLE

- Lets take the 2N transition operator.
- Assume we are working in momentum space with $p^{\prime}=\left(p_{x}^{\prime}, p_{y}^{\prime}, p_{z}^{\prime}\right)$ being the final and $\mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right)$ being the initial momentum of the two nucleons.

3D - EXAMPLE

■ Lets take the 2 N transition operator.

- Assume we are working in momentum space with $\mathbf{p}^{\prime}=\left(p_{x}^{\prime}, p_{y}^{\prime}, p_{z}^{\prime}\right)$ being the final and $\mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right)$ being the initial momentum of the two nucleons.

3D - EXAMPLE

■ Lets take the 2 N transition operator.
■ Assume we are working in momentum space with $\mathbf{p}^{\prime}=\left(p_{x}^{\prime}, p_{y}^{\prime}, p_{z}^{\prime}\right)$ being the final and $\mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right)$ being the initial momentum of the two nucleons.

3D - EXAMPLE

■ Lets take the 2 N transition operator.
■ Assume we are working in momentum space with $\mathbf{p}^{\prime}=\left(p_{x}^{\prime}, p_{y}^{\prime}, p_{z}^{\prime}\right)$ being the final and $\mathbf{p}=\left(p_{x}, p_{y}, p_{z}\right)$ being the initial momentum of the two nucleons.

3D - SIZE OF THE PROBLEM

- We would like to calculate the full transition operator. This is equivalent to calculating, for every \mathbf{p}^{\prime} and every \mathbf{p}, the matrix element $\left\langle\mathbf{p}^{\prime}\right| \check{t}|\mathbf{p}\rangle$.
- This matrix element is an operator in spin space and has the form:

$$
\left[\left\langle p^{\prime}\right| \check{t}|p\rangle\right]=
$$

- It must satisfy the LSE equation $\check{t}=\check{V}+\check{V} \check{G}_{0} \check{t}$.

3D - SIZE OF THE PROBLEM

■ We would like to calculate the full transition operator. This is equivalent to calculating, for every \mathbf{p}^{\prime} and every \mathbf{p}, the matrix element $\left\langle\mathbf{p}^{\prime}\right| \check{t}|\mathbf{p}\rangle$.

- This matrix element is an operator in spin space and has the form:

- It must satisfy the LSE equation $\check{t}=\check{V}+\check{V} \check{G}_{0} \check{t}$.

3D - SIZE OF THE PROBLEM

■ We would like to calculate the full transition operator. This is equivalent to calculating, for every \mathbf{p}^{\prime} and every \mathbf{p}, the matrix element $\left\langle\mathbf{p}^{\prime}\right| \check{t}|\mathbf{p}\rangle$.

- This matrix element is an operator in spin space and has the form:

$$
\left[\left\langle\mathbf{p}^{\prime}\right| \check{t}|\mathbf{p}\rangle\right]=
$$

$$
\left[\begin{array}{cccc}
t_{11}\left(p_{x}^{\prime}, p_{y}^{\prime}, p_{z}^{\prime}, p_{x}, p_{y}, p_{z}\right) & t_{12}(\ldots) & t_{13}(\ldots) & t_{14}(\ldots) \\
t_{21}(\ldots) & t_{22}(\ldots) & t_{23}(\ldots) & t_{24}(\ldots) \\
t_{31}(\ldots) & t_{32}(\ldots) & t_{33}(\ldots) & t_{34}(\ldots) \\
t_{41}(\ldots) & t_{42}(\ldots) & t_{43}(\ldots) & t_{44}(\ldots)
\end{array}\right]
$$

- It must satisfy the LSE equation $\check{t}=\check{V}+\check{V} \check{G}_{0} \check{t}$.

3D - SIZE OF THE PROBLEM

- We would like to calculate the full transition operator. This is equivalent to calculating, for every \mathbf{p}^{\prime} and every \mathbf{p}, the matrix element $\left\langle\mathbf{p}^{\prime}\right| \check{t}|\mathbf{p}\rangle$.
- This matrix element is an operator in spin space and has the form:

$$
\left[\left\langle\mathbf{p}^{\prime}\right| \check{t}|\mathbf{p}\rangle\right]=
$$

$$
\left[\begin{array}{cccc}
t_{11}\left(p_{x}^{\prime}, p_{y}^{\prime}, p_{z}^{\prime}, p_{x}, p_{y}, p_{z}\right) & t_{12}(\ldots) & t_{13}(\ldots) & t_{14}(\ldots) \\
t_{21}(\ldots) & t_{22}(\ldots) & t_{23}(\ldots) & t_{24}(\ldots) \\
t_{31}(\ldots) & t_{32}(\ldots) & t_{33}(\ldots) & t_{34}(\ldots) \\
t_{41}(\ldots) & t_{42}(\ldots) & t_{43}(\ldots) & t_{44}(\ldots)
\end{array}\right]
$$

- It must satisfy the LSE equation $\check{t}=\check{V}+\check{V} \check{G}_{0} \check{t}$.

3D - SIZE OF THE PROBLEM

- We need to calculate 16 functions of 6 real parameters that satisfy the LSE.
- We know that the solution has to satisfy appropriate symmetries.
- Can we use this to simplify the problem?

3D - SIZE OF THE PROBLEM

■ We need to calculate 16 functions of 6 real parameters that satisfy the LSE.

- We know that the solution has to satisfy appropriate symmetries.

■ Can we use this to simplify the problem?

3D - SIZE OF THE PROBLEM

■ We need to calculate 16 functions of 6 real parameters that satisfy the LSE.

- We know that the solution has to satisfy appropriate symmetries.
- Can we use this to simplify the problem?

3D - SIZE OF THE PROBLEM

■ We need to calculate 16 functions of 6 real parameters that satisfy the LSE.

- We know that the solution has to satisfy appropriate symmetries.

■ Can we use this to simplify the problem?

3D - SIZE OF THE PROBLEM

■ We need to calculate 16 functions of 6 real parameters that satisfy the LSE.

- We know that the solution has to satisfy appropriate symmetries.

■ Can we use this to simplify the problem?

3D - SYMMETRIZATION

- The general operator form of the two nucleon potential and transition operator is well known [Phys. Rev. 961654 (1954)].
- The matrix element in momentum space can be written as a linear combination of 6 scalar functions t_{i} and spin operators [w_{i}]:

- Instead of calculating 16 functions of 6 real variables we now only need to calculate 6 functions of 3 variables.
- Couple orders of magnitude less numerical work!

3D - SYMMETRIZATION

- The general operator form of the two nucleon potential and transition operator is well known [Phys. Rev. 961654 (1954)].
- The matrix element in momentum space can be written as a linear combination of 6 scalar functions t_{i} and spin operators [w_{i}]

- Instead of calculating 16 functions of 6 real variables we now only need to calculate 6 functions of 3 variables.
- Couple orders of magnitude less numerical work!

3D - SYMMETRIZATION

- The general operator form of the two nucleon potential and transition operator is well known [Phys. Rev. 961654 (1954)].
- The matrix element in momentum space can be written as a linear combination of 6 scalar functions t_{i} and spin operators [w_{i}]:

$$
\left[\left\langle\mathbf{p}^{\prime}\right| \check{t}|\mathbf{p}\rangle\right]=\sum_{i=1}^{6} t_{i}\left(\left|\mathbf{p}^{\prime}\right|,|\mathbf{p}|, \hat{\mathbf{p}}^{\prime} \cdot \hat{\mathbf{p}}\right)\left[\check{w}_{i}(\mathbf{p}, \mathbf{p})\right]
$$

- Instead of calculating 16 functions of 6 real variables we now only need to calculate 6 functions of 3 variables.
- Couple orders of magnitude less numerical work!

3D - SYMMETRIZATION

- The general operator form of the two nucleon potential and transition operator is well known [Phys. Rev. 961654 (1954)].
- The matrix element in momentum space can be written as a linear combination of 6 scalar functions t_{i} and spin operators [w_{i}]:

$$
\left[\left\langle\mathbf{p}^{\prime}\right| \check{t}|\mathbf{p}\rangle\right]=\sum_{i=1}^{6} t_{i}\left(\left|\mathbf{p}^{\prime}\right|,|\mathbf{p}|, \hat{\mathbf{p}}^{\prime} \cdot \hat{\mathbf{p}}\right)\left[\check{w}_{i}(\mathbf{p}, \mathbf{p})\right]
$$

■ Instead of calculating 16 functions of 6 real variables we now only need to calculate 6 functions of 3 variables.

3D - SYMMETRIZATION

- The general operator form of the two nucleon potential and transition operator is well known [Phys. Rev. 961654 (1954)].
- The matrix element in momentum space can be written as a linear combination of 6 scalar functions t_{i} and spin operators [w_{i}]:

$$
\left[\left\langle\mathbf{p}^{\prime}\right| \check{t}|\mathbf{p}\rangle\right]=\sum_{i=1}^{6} t_{i}\left(\left|\mathbf{p}^{\prime}\right|,|\mathbf{p}|, \hat{\mathbf{p}}^{\prime} \cdot \hat{\mathbf{p}}\right)\left[\check{w}_{i}(\mathbf{p}, \mathbf{p})\right]
$$

■ Instead of calculating 16 functions of 6 real variables we now only need to calculate 6 functions of 3 variables.
■ Couple orders of magnitude less numerical work!

3D - PROS AND CONS

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.
- Operator fomrms (operators and states) significantly reduce numerical workload.
- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

3D - PROS AND CONS

■ +

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.
- Operator fomrms (operators and states) significantly reduce numerical workload.
- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

3D - PROS AND CONS

■ +

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.
- Operator fomrms (operators and states) significantly reduce numerical workload.
- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

3D - PROS AND CONS

■ +

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.

■ Operator fomrms (operators and states) significantly reduce numerical workload.

- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

3D - PROS AND CONS

■ +

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.

■ Operator fomrms (operators and states) significantly reduce numerical workload.

- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

3D - PROS AND CONS

■ +

- More precision at higher energies.
- Calculations can be easily modified to use different potentials.
- Operator fomrms (operators and states) significantly reduce numerical workload.
- We are running out of operator forms!
- Can we construct new symmetric operator forms? Can this be generalized to systems of three or more particles?

INVARIANCE UNDER SPATIAL ROTATIONS

■ If \check{R} is a spatial rotation, we require that operator \check{X} :

$$
\ddot{R}-1 \ddot{X} \ddot{R}=\ddot{X}
$$

- Ideally we would like to fit the operator into an operator form:

Here x is a scalar function of momenta and O is an operator in spin space and . . . are momenta.

- How can a rotation invariant operator be constructed?

INVARIANCE UNDER SPATIAL ROTATIONS

■ If \check{R} is a spatial rotation, we require that operator \check{X} :

$$
\check{R}^{-1} \check{X} \check{R}=\check{X}
$$

- Ideally we would like to fit the operator into an operator form:

Here x is a scalar function of momenta and O is an operator in spin space and ... are momenta.

- How can a rotation invariant operator be constructed?

INVARIANCE UNDER SPATIAL ROTATIONS

■ If \check{R} is a spatial rotation, we require that operator \check{X} :

$$
\check{R}^{-1} \check{X} \check{R}=\check{X}
$$

- Ideally we would like to fit the operator into an operator form:

$$
\langle\ldots| \check{X}|\ldots\rangle=\sum x_{i}\left[\check{O}_{i}\right] .
$$

Here x is a scalar function of momenta and O is an operator in spin space and ... are momenta.

- How can a rotation invariant operator be constructed?

INVARIANCE UNDER SPATIAL ROTATIONS

■ If \check{R} is a spatial rotation, we require that operator \check{X} :

$$
\check{R}^{-1} \check{X} \check{R}=\check{X}
$$

- Ideally we would like to fit the operator into an operator form:

$$
\langle\ldots| \check{X}|\ldots\rangle=\sum x_{i}\left[\check{O}_{i}\right] .
$$

Here x is a scalar function of momenta and O is an operator in spin space and ... are momenta.

- How can a rotation invariant operator be constructed?

INVARIANCE UNDER SPATIAL ROTATIONS

- Let's generalize a little bit and incorporate the dependance on the total momentum K.
- Boulding blocks (actually any number of momenta and spin vectors can be used):

$$
\mathbb{T}=\left\{\check{\mathbf{p}}^{\prime}, \check{\mathbf{p}}, \check{\mathbf{K}}, \check{\boldsymbol{\sigma}}(1), \check{\boldsymbol{\sigma}}(2)\right\} .
$$

- In principle we have to consider all scalar combinations of the elements from \mathbb{T}. For example if $\mathbf{v}_{i} \in \mathbb{T}$ we could use:

$$
\left(\check{\mathbf{v}}_{1} \times\left(\check{\mathbf{v}}_{2} \times \check{\mathbf{v}}_{3}\right)\right) \cdot\left(\check{\mathbf{v}}_{4} \times\left(\check{\mathbf{v}}_{5} \times\left(\check{\mathbf{v}}_{6} \times \check{\mathbf{v}}_{7}\right)\right)\right)
$$

or

$$
\left(\check{\mathbf{v}}_{1} \times \check{\mathbf{v}}_{2}\right) \cdot\left(\check{\mathbf{v}}_{3} \times\left(\check{\mathbf{v}}_{4} \times\left(\check{\mathbf{v}}_{5} \times \check{\mathbf{v}}_{6}\right)\right)\right) .
$$

INVARIANCE UNDER SPATIAL ROTATIONS

■ Let's generalize a little bit and incorporate the dependance on the total momentum K.

- Boulding blocks (actually any number of momenta and spin vectors can be used):

$$
\mathbb{T}=\left\{\check{\mathbf{p}}^{\prime}, \check{\mathbf{p}}, \check{\mathbf{k}}, \check{\boldsymbol{\sigma}}(1), \check{\sigma}(2)\right\} .
$$

- In principle we have to consider all scalar combinations of the elements from \mathbb{T}. For example if $\mathbf{v}_{i} \in \mathbb{T}$ we could use:

$$
\left(\check{\mathbf{v}}_{1} \times\left(\check{\mathbf{v}}_{2} \times \check{\mathbf{v}}_{3}\right)\right) \cdot\left(\check{\mathbf{v}}_{4} \times\left(\check{\mathbf{v}}_{5} \times\left(\check{\mathbf{v}}_{6} \times \check{\mathbf{v}}_{7}\right)\right)\right)
$$

or

$$
\left(\check{\mathbf{v}}_{1} \times \check{\mathbf{v}}_{2}\right) \cdot\left(\check{\mathbf{v}}_{3} \times\left(\check{\mathbf{v}}_{4} \times\left(\check{\mathbf{v}}_{5} \times \check{\mathbf{v}}_{6}\right)\right)\right)
$$

INVARIANCE UNDER SPATIAL ROTATIONS

■ Let's generalize a little bit and incorporate the dependance on the total momentum K.

- Boulding blocks (actually any number of momenta and spin vectors can be used):

$$
\mathbb{T}=\left\{\check{\mathbf{p}}^{\prime}, \check{\mathbf{p}}, \check{\mathbf{k}}, \check{\boldsymbol{\sigma}}(1), \check{\boldsymbol{\sigma}}(2)\right\} .
$$

- In principle we have to consider all scalar combinations of the elements from \mathbb{T}. For example if $\mathbf{v}_{i} \in \mathbb{T}$ we could use:

INVARIANCE UNDER SPATIAL ROTATIONS

- Let's generalize a little bit and incorporate the dependance on the total momentum K.
■ Boulding blocks (actually any number of momenta and spin vectors can be used):

$$
\mathbb{T}=\left\{\check{\mathbf{p}}^{\prime}, \check{\mathbf{p}}, \check{\mathbf{K}}, \check{\boldsymbol{\sigma}}(1), \check{\boldsymbol{\sigma}}(2)\right\} .
$$

- In principle we have to consider all scalar combinations of the elements from \mathbb{T}. For example if $\mathbf{v}_{i} \in \mathbb{T}$ we could use:

$$
\left(\check{\mathbf{v}}_{1} \times\left(\check{\mathbf{v}}_{2} \times \check{\mathbf{v}}_{3}\right)\right) \cdot\left(\check{\mathbf{v}}_{4} \times\left(\check{\mathbf{v}}_{5} \times\left(\check{\mathbf{v}}_{6} \times \check{\mathbf{v}}_{7}\right)\right)\right)
$$

or

$$
\left(\check{\mathbf{v}}_{1} \times \check{\mathbf{v}}_{2}\right) \cdot\left(\check{\mathbf{v}}_{3} \times\left(\check{\mathbf{v}}_{4} \times\left(\check{\mathbf{v}}_{5} \times \check{\mathbf{v}}_{6}\right)\right)\right) .
$$

INVARIANCE UNDER SPATIAL ROTATIONS

- Simple vector identities lead to:

$$
\begin{aligned}
&\left(\stackrel{v}{v}_{1} \times\left(\check{v}_{2} \times \check{v}_{3}\right)\right) \cdot\left(\check{v}_{4} \times\left(\check{v}_{5} \times\left(\check{v}_{6} \times \check{v}_{7}\right)\right)\right) \\
&=\left(\check{v}_{1} \cdot \check{v}_{3}\right)\left(\check{v}_{2} \cdot \check{v}_{5}\right)\left(\check{v}_{4} \times \check{v}_{6} \cdot \check{v}_{7}\right) \\
&-\left(\check{v}_{1} \cdot \check{v}_{2}\right)\left(\check{v}_{3} \cdot \check{v}_{5}\right)\left(\check{v}_{4} \times \check{v}_{6} \cdot \check{v}_{7}\right) \\
&+\left(\check{v}_{1} \cdot \check{v}_{2}\right)\left(\check{v}_{4} \cdot \check{v}_{5}\right)\left(\check{v}_{3} \times \check{v}_{6} \cdot \check{v}_{7}\right) \\
&-\left(\check{v}_{1} \cdot \check{v}_{3}\right)\left(\check{v}_{4} \cdot \check{v}_{5}\right)\left(\check{v}_{2} \times \check{v}_{6} \cdot \check{v}_{7}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\left(\check{\mathbf{v}}_{1} \times \check{\mathbf{v}}_{2}\right) \cdot\left(\check{\mathbf{v}}_{3} \times\left(\check{\mathbf{v}}_{4} \times\left(\check{\mathbf{v}}_{5} \times \check{\mathbf{v}}_{6}\right)\right)\right) \\
=\left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{6}\right)\left(\check{\mathbf{v}}_{2} \cdot \check{\mathbf{v}}_{3}\right)\left(\check{\mathbf{v}}_{4} \cdot \check{\mathbf{v}}_{5}\right) \\
-\left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{3}\right)\left(\check{\mathbf{v}}_{2} \cdot \check{\mathbf{v}}_{6}\right)\left(\check{\mathbf{v}}_{4} \cdot \check{\mathbf{v}}_{5}\right) \\
-\left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{5}\right)\left(\check{\mathbf{v}}_{2} \cdot \check{\mathbf{v}}_{3}\right)\left(\check{\mathbf{v}}_{4} \cdot \check{\mathbf{v}}_{6}\right) \\
+\left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{3}\right)\left(\check{\mathbf{v}}_{2} \cdot \check{\mathbf{v}}_{5}\right)\left(\check{\mathbf{v}}_{4} \cdot \check{\mathbf{v}}_{6}\right) .
\end{array}
$$

INVARIANCE UNDER SPATIAL ROTATIONS

- Simple vector identities lead to:

$$
\begin{aligned}
\left(\check{\mathbf{v}}_{1} \times\left(\check{\mathbf{v}}_{2}\right.\right. & \left.\left.\times \check{\mathbf{v}}_{3}\right)\right) \cdot\left(\check{\mathbf{v}}_{4} \times\left(\check{\mathbf{v}}_{5} \times\left(\check{\mathbf{v}}_{6} \times \check{\mathbf{v}}_{7}\right)\right)\right) \\
= & \left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{3}\right)\left(\check{\mathbf{v}}_{2} \cdot \check{\mathbf{v}}_{5}\right)\left(\check{\mathbf{v}}_{4} \times \check{\mathbf{v}}_{6} \cdot \check{\mathbf{v}}_{7}\right) \\
& -\left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{2}\right)\left(\check{\mathbf{v}}_{3} \cdot \check{\mathbf{v}}_{5}\right)\left(\check{\mathbf{v}}_{4} \times \check{\mathbf{v}}_{6} \cdot \check{\mathbf{v}}_{7}\right) \\
& +\left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{2}\right)\left(\check{\mathbf{v}}_{4} \cdot \check{\mathbf{v}}_{5}\right)\left(\check{\mathbf{v}}_{3} \times \check{\mathbf{v}}_{6} \cdot \check{\mathbf{v}}_{7}\right) \\
& -\left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{3}\right)\left(\check{\mathbf{v}}_{4} \cdot \check{\mathbf{v}}_{5}\right)\left(\check{\mathbf{v}}_{2} \times \check{\mathbf{v}}_{6} \cdot \check{\mathbf{v}}_{7}\right)
\end{aligned}
$$

and

$$
\begin{array}{r}
\left(\check{\mathbf{v}}_{1} \times \check{\mathbf{v}}_{2}\right) \cdot\left(\check{\mathbf{v}}_{3} \times\left(\check{\mathbf{v}}_{4} \times\left(\check{\mathbf{v}}_{5} \times \check{\mathbf{v}}_{6}\right)\right)\right) \\
=\left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{6}\right)\left(\check{\mathbf{v}}_{2} \cdot \check{\mathbf{v}}_{3}\right)\left(\check{\mathbf{v}}_{4} \cdot \check{\mathbf{v}}_{5}\right) \\
-\left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{3}\right)\left(\check{\mathbf{v}}_{2} \cdot \check{\mathbf{v}}_{6}\right)\left(\check{\mathbf{v}}_{4} \cdot \check{\mathbf{v}}_{5}\right) \\
-\left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{5}\right)\left(\check{\mathbf{v}}_{2} \cdot \check{\mathbf{v}}_{3}\right)\left(\check{\mathbf{v}}_{4} \cdot \check{\mathbf{v}}_{6}\right) \\
+\left(\check{\mathbf{v}}_{1} \cdot \check{\mathbf{v}}_{3}\right)\left(\check{\mathbf{v}}_{2} \cdot \check{\mathbf{v}}_{5}\right)\left(\check{\mathbf{v}}_{4} \cdot \check{\mathbf{v}}_{6}\right) .
\end{array}
$$

INVARIANCE UNDER SPATIAL ROTATIONS

- A general observation can be made: Any scalar expression constructed from operators in \mathbb{T} can be constructed from a combination of operators in the set \mathbb{V} :

$$
\mathbb{V}=\left\{\check{1}, \check{\mathbf{v}}_{i} \cdot \check{\mathbf{v}}_{j},\left(\check{\mathbf{v}}_{i} \times \check{\mathbf{v}}_{j}\right) \cdot \check{\mathbf{v}}_{k}\right\} .
$$

- For example, from the previous slide, we have the following CHAINS of operators of length 3 :

$\left[\check{c}_{1}\right]$	$=\left(\check{v}_{1} \cdot \check{v}_{3}\right)\left(\check{v}_{2} \cdot \check{v}_{5}\right)\left(\check{v}_{4} \times \check{v}_{6} \cdot \check{v}_{7}\right)$,
$\left[\check{c}_{2}\right]$	$=\left(\check{v}_{1} \cdot \check{v}_{2}\right)\left(\check{v}_{3} \cdot \check{v}_{5}\right)\left(\check{v}_{4} \times \check{v}_{6} \cdot \check{v}_{7}\right)$,
$\left[\check{c}_{3}\right]$	$=\left(\check{v}_{1} \cdot \check{v}_{2}\right)\left(\check{v}_{4} \cdot \check{v}_{5}\right)\left(\check{v}_{3} \times \check{v}_{6} \cdot \check{v}_{7}\right)$,
$\left[\check{c}_{4}\right]$	$=\left(\check{v}_{1} \cdot \check{v}_{3}\right)\left(\check{v}_{4} \cdot \check{v}_{5}\right)\left(\check{v}_{2} \times \check{v}_{6} \cdot \check{v}_{7}\right)$,
$\left[\check{c}_{5}\right]=\left(\check{v}_{1} \cdot \check{v}_{6}\right)\left(\check{v}_{2} \cdot \check{v}_{3}\right)\left(\check{v}_{4} \cdot \check{v}_{5}\right)$,	
$\left[\check{c}_{6}\right]$	$=\left(\check{v}_{1} \cdot \check{v}_{3}\right)\left(\check{v}_{2} \cdot \check{v}_{6}\right)\left(\check{v}_{4} \cdot \check{v}_{5}\right)$,
$\left[\check{c}_{7}\right]$	$=\left(\check{v}_{1} \cdot \check{v}_{5}\right)\left(\check{v}_{2} \cdot \check{v}_{3}\right)\left(\check{v}_{4} \cdot \check{v}_{6}\right)$,
$\left[\check{c}_{8}\right]$	$=\left(\check{v}_{1} \cdot \check{v}_{3}\right)\left(\check{v}_{2} \cdot \check{v}_{5}\right)\left(\check{v}_{4} \cdot \check{v}_{6}\right)$,

INVARIANCE UNDER SPATIAL ROTATIONS

■ A general observation can be made: Any scalar expression constructed from operators in \mathbb{T} can be constructed from a combination of operators in the set \mathbb{V} :

$$
\mathbb{V}=\left\{\check{1}_{1} \check{\mathbf{v}}_{i} \cdot \check{\mathbf{v}}_{j},\left(\check{\mathbf{v}}_{i} \times \check{\mathbf{v}}_{j}\right) \cdot \check{\mathbf{v}}_{k}\right\}
$$

- For example, from the previous slide, we have the following CHAINS of operators of length 3 :

INVARIANCE UNDER SPATIAL ROTATIONS

■ A general observation can be made: Any scalar expression constructed from operators in \mathbb{T} can be constructed from a combination of operators in the set \mathbb{V} :

$$
\mathbb{V}=\left\{\check{1}_{1} \check{\mathbf{v}}_{i} \cdot \check{\mathbf{v}}_{j},\left(\check{\mathbf{v}}_{i} \times \check{\mathbf{v}}_{j}\right) \cdot \check{\mathbf{v}}_{k}\right\} .
$$

■ For example, from the previous slide, we have the following CHAINS of operators of length 3:

$$
\begin{aligned}
& {\left[\check{c}_{1}\right]=}\left(\check{v}_{1} \cdot \check{v}_{3}\right)\left(\check{v}_{2} \cdot \check{v}_{5}\right)\left(\check{v}_{4} \times \check{v}_{6} \cdot \check{v}_{7}\right), \\
& {\left[\check{c}_{2}\right]=}\left(\check{v}_{1} \cdot \check{v}_{2}\right)\left(\check{v}_{3} \cdot \check{v}_{5}\right)\left(\check{v}_{4} \times \check{v}_{6} \cdot \check{v}_{7}\right), \\
& {\left[\check{c}_{3}\right]=}\left(\check{v}_{1} \cdot \check{v}_{2}\right)\left(\check{v}_{4} \cdot \check{v}_{5}\right)\left(\check{v}_{3} \times \check{v}_{6} \cdot \check{v}_{7}\right), \\
& {\left[\check{c}_{4}\right]=\left(\check{v}_{1} \cdot \check{v}_{3}\right)\left(\check{v}_{4} \cdot \check{v}_{5}\right)\left(\check{v}_{2} \times \check{v}_{6} \cdot \check{v}_{7}\right), } \\
& {\left[\check{c}_{5}\right]=\left(\check{v}_{1} \cdot \check{v}_{6}\right)\left(\check{v}_{2} \cdot \check{v}_{3}\right)\left(\check{v}_{4} \cdot \check{v}_{5}\right), } \\
& {\left[\check{c}_{6}\right]=\left(\check{v}_{1} \cdot \check{v}_{3}\right)\left(\check{v}_{2} \cdot \check{v}_{6}\right)\left(\check{v}_{4} \cdot \check{v}_{5}\right), } \\
& {\left[\check{c}_{7}\right]=\left(\check{v}_{1} \cdot \check{v}_{5}\right)\left(\check{v}_{2} \cdot \check{v}_{3}\right)\left(\check{v}_{4} \cdot \check{v}_{6}\right), } \\
& {\left[\check{c}_{8}\right]=\left(\check{v}_{1} \cdot \check{v}_{3}\right)\left(\check{v}_{2} \cdot \check{v}_{5}\right)\left(\check{v}_{4} \cdot \check{v}_{6}\right) . }
\end{aligned}
$$

INVARIANCE UNDER SPATIAL ROTATIONS

- How get from this to the operator form?
- In principle we have to include CHAINS of operators constructed from with any number of links?

■ Infinitely many terms?

INVARIANCE UNDER SPATIAL ROTATIONS

■ How get from this to the operator form?

- In principle we have to include CHAINS of operators constructed from with any number of links?
- Infinitely many terms?

INVARIANCE UNDER SPATIAL ROTATIONS

■ How get from this to the operator form?

- In principle we have to include CHAINS of operators constructed from \mathbb{V} with any number of links?

$$
\left\langle\mathbf{p}^{\prime} \mathbf{K}\right| \check{X}|\mathbf{p K}\rangle=\ldots+\sum_{i=1}^{8} x_{i}\left[\check{C}_{i}\right]+\ldots
$$

- Infinitely many terms?

INVARIANCE UNDER SPATIAL ROTATIONS

■ How get from this to the operator form?

- In principle we have to include CHAINS of operators constructed from \mathbb{V} with any number of links?

$$
\left\langle\mathbf{p}^{\prime} \mathbf{K}\right| \check{X}|\mathbf{p K}\rangle=\ldots+\sum_{i=1}^{8} x_{i}\left[\check{C}_{i}\right]+\ldots
$$

■ Infinitely many terms?

INVARIANCE UNDER SPATIAL ROTATIONS

- Not all chains are unique. $\left[\check{C}_{i}\right]$ not unique if $\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]$
- The algorithm in [Eur. Phys. J. A 52:188 (2016)] can be summarized:
- Start with all chains of length 1.
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $\left[\check{C}_{i}\right]$ if $\left.\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]\right)$
- Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from \mathbb{V}).
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
- At some point adding further links to the chains does not add any new unique operators.
- We end up with a finite number of operators and a a general rotation invariant form.

INVARIANCE UNDER SPATIAL ROTATIONS

■ Not all chains are unique. $\left[\check{C}_{i}\right]$ not unique if $\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]$.

- The algorithm in [Eur. Phys. J. A 52:188 (2016)] can be summarized
- Start with all chains of length 1
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $\left[\check{C}_{i}\right]$ if $\left.\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]\right)$
- Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from \mathbb{V}).
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
- At some point adding further links to the chains does not add any new unique operators.
- We end up with a finite number of operators and a a general rotation invariant form

INVARIANCE UNDER SPATIAL ROTATIONS

■ Not all chains are unique. $\left[\check{C}_{i}\right]$ not unique if $\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]$.
■ The algorithm in [Eur. Phys. J.A $52: 188$ (2016)] can be summarized:

- Start with all chains of length 1
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $\left|C_{i}\right|$ if

■ Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from \mathbb{V})

- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
- At some point adding further links to the chains does not add any new unique operators
- We end up with a finite number of operators and a a general rotation invariant form

INVARIANCE UNDER SPATIAL ROTATIONS

- Not all chains are unique. $\left[\check{C}_{i}\right]$ not unique if $\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]$.
- The algorithm in [Eur. Phys . . A $52: 188$ (2016]] can be summarized:
- Start with all chains of length 1.
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $\left[C_{i}\right]$ if
- Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from \mathbb{V})
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
- At some point adding further links to the chains does not add any new unique operators.
- We end up with a finite number of operators and a a general rotation invariant form

INVARIANCE UNDER SPATIAL ROTATIONS

- Not all chains are unique. $\left[\check{C}_{i}\right]$ not unique if $\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]$.
- The algorithm in [Eur. Phys, J. A 52 :188 (2016]] can be summarized:
- Start with all chains of length 1.
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $\left[\check{C}_{i}\right]$ if $\left.\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]\right)$.
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta
- At some point adding further links to the chains does not add any new unialie onerators
- We end up with a finite number of operators and a a general rotation invariant form

INVARIANCE UNDER SPATIAL ROTATIONS

■ Not all chains are unique. $\left[\check{C}_{i}\right]$ not unique if $\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]$.
■ The algorithm in [Eur. Phys. J. A $52: 188$ (2016)] can be summarized:

- Start with all chains of length 1.
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $\left[\check{C}_{i}\right]$ if $\left.\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]\right)$.
- Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from \mathbb{V}).
linear combination with scalar functions of momenta.
- At some point adding further links to the chains does not add any new unique operators.
- We end un with a finite number of operators and a a general rotation invariant form

INVARIANCE UNDER SPATIAL ROTATIONS

■ Not all chains are unique. $\left[\check{C}_{i}\right]$ not unique if $\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]$.
■ The algorithm in [Eur. Phys. J. A $52: 188$ (2016)] can be summarized:

- Start with all chains of length 1.
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $\left[\check{C}_{i}\right]$ if $\left.\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]\right)$.
- Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from \mathbb{V}).
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
- At some point adding further links to the chains does not add any new unique onerators
- We end up with a finite number of operators and a a general rotation invariant form

INVARIANCE UNDER SPATIAL ROTATIONS

■ Not all chains are unique. $\left[\check{C}_{i}\right]$ not unique if $\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]$.
■ The algorithm in [Eur. Phys. J. A $52: 188$ (2016)] can be summarized:

- Start with all chains of length 1.
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $\left[\check{C}_{i}\right]$ if $\left.\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]\right)$.
- Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from \mathbb{V}).
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
- At some point adding further links to the chains does not add any new unique operators.
- Me end un with a finite number of operators and a a general rotation invariant form

INVARIANCE UNDER SPATIAL ROTATIONS

■ Not all chains are unique. $\left[\check{C}_{i}\right]$ not unique if $\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]$.
■ The algorithm in [Eur. Phys. J. A $52: 188$ (2016)] can be summarized:

- Start with all chains of length 1.
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $\left[\check{C}_{i}\right]$ if $\left.\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]\right)$.
- Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from \mathbb{V}).
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
- At some point adding further links to the chains does not add any new unique operators.
- We end up with a finite number of operators and a a general rotation invariant form

INVARIANCE UNDER SPATIAL ROTATIONS

- Not all chains are unique. $\left[\check{C}_{i}\right]$ not unique if $\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]$.
- The algorithm in [Eur. Phys. J. A 52 2:188 (2016)] can be summarized:
- Start with all chains of length 1.
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta (eliminate $\left[\check{C}_{i}\right]$ if $\left.\left[\check{C}_{i}\right]=\sum_{j \neq i} c_{j}\left[\check{C}_{j}\right]\right)$.
- Consider all chains of length 2 (for example by multiplying the reduced set from the previous iteration by all operators from \mathbb{V}).
- Eliminate from this set those chains that are expressable by others via a linear combination with scalar functions of momenta.
- At some point adding further links to the chains does not add any new unique operators.
- We end up with a finite number of operators and a a general rotation invariant form.

INVARIANCE UNDER SPATIAL ROTATIONS

- After the first iteration 11 unique chains of length 1 :

INVARIANCE UNDER SPATIAL ROTATIONS

■ After the first iteration 11 unique chains of length 1 :

$$
\begin{array}{r}
\check{1} \\
\check{\mathbf{p}}^{\prime} \cdot \check{\boldsymbol{\sigma}}(1) \\
\check{\mathbf{p}}^{\prime} \cdot \check{\boldsymbol{\sigma}}(2) \\
\check{\mathbf{p}} \cdot \check{\boldsymbol{\sigma}}(1) \\
\check{\mathbf{p}} \cdot \check{\boldsymbol{\sigma}}(2) \\
\check{\mathbf{K}} \cdot \check{\boldsymbol{\sigma}}(1) \\
\check{\mathbf{K}} \cdot \check{\boldsymbol{\sigma}}(2) \\
\check{\boldsymbol{\sigma}}(1) \cdot \check{\boldsymbol{\sigma}}(2) \\
\left(\check{\mathbf{p}}^{\prime} \times \check{\boldsymbol{\sigma}}(1)\right) \cdot \check{\boldsymbol{\sigma}}(2) \\
\left.(\check{\mathbf{p}} \times \check{\boldsymbol{\sigma}}(1)) \cdot \begin{array}{c}
\boldsymbol{\sigma}
\end{array}\right) \\
(\check{\mathbf{K}} \times \check{\boldsymbol{\sigma}}(1)) \cdot \check{\boldsymbol{\sigma}}(2) .
\end{array}
$$

INVARIANCE UNDER SPATIAL ROTATIONS

- After the second iteration 16 independent chains of length <2. Since this is the last iteration, they have special names.

INVARIANCE UNDER SPATIAL ROTATIONS

- After the second iteration 16 independent chains of length <2. Since this is the last iteration, they have special names.

$$
\begin{aligned}
& {\left[\check{L}_{1}\right]=1} \\
& {\left[\check{O}_{2}\right]=\check{\mathbf{p}}^{\prime} \cdot \check{\boldsymbol{\sigma}}(1)} \\
& {\left[\check{O}_{3}\right]=\check{\mathfrak{p}}^{\prime} \cdot \check{\boldsymbol{\sigma}}(2)} \\
& {\left[\check{C}_{4}\right]=\check{p} \cdot \check{\boldsymbol{\sigma}}(1)} \\
& {\left[\check{\check{O}}_{5}\right]=\check{\mathrm{p}} \cdot \check{\boldsymbol{\sigma}}(2)} \\
& {\left[\check{O}_{6}\right]=\check{\mathbf{k}} \cdot \check{\boldsymbol{\sigma}}(1)} \\
& {\left[\check{O}_{7}\right]=\check{\mathbf{K}} \cdot \check{\boldsymbol{\sigma}}(2)} \\
& {\left[\check{O}_{8}\right]=\check{\sigma}(1) \cdot \check{\sigma}(2)} \\
& {\left[\check{O}_{9}\right]=\left(\check{\mathbf{p}}^{\prime} \times \check{\boldsymbol{\sigma}}(1)\right) \cdot \check{\boldsymbol{\sigma}}(2)} \\
& {\left[\check{O}_{10}\right]=(\check{\mathrm{p}} \times \check{\boldsymbol{\sigma}}(1)) \cdot \check{\boldsymbol{\sigma}}(2)} \\
& {\left[\check{O}_{11}\right]=(\check{\mathbf{K}} \times \check{\boldsymbol{\sigma}}(1)) \cdot \check{\boldsymbol{\sigma}}(2)} \\
& {\left[\check{o}_{12}\right]=\left(\check{\mathbf{p}}^{\prime} \cdot \check{\boldsymbol{\sigma}}(1)\right)\left(\check{\mathbf{p}}^{\prime} \cdot \check{\boldsymbol{\sigma}}(2)\right)} \\
& {\left[\check{\mathrm{O}}_{13}\right]=\left(\check{\mathbf{p}}^{\prime} \cdot \check{\boldsymbol{\sigma}}(1)\right)(\check{\mathbf{p}} \cdot \check{\sigma}(2))} \\
& {\left[\check{O}_{14}\right]=\left(\check{\mathbf{p}}^{\prime} \cdot \check{\boldsymbol{\sigma}}(1)\right)(\check{\mathbf{K}} \cdot \check{\boldsymbol{\sigma}}(2))} \\
& {\left[\check{O}_{15}\right]=(\check{\mathfrak{p}} \cdot \check{\boldsymbol{\sigma}}(1))(\check{\boldsymbol{p}} \cdot \check{\boldsymbol{\sigma}}(2))} \\
& {\left[\check{O}_{16}\right]=(\check{\mathbf{p}} \cdot \check{\boldsymbol{\sigma}}(1))(\check{\mathbf{K}} \cdot \check{\boldsymbol{\sigma}}(2)) .}
\end{aligned}
$$

INVARIANCE UNDER SPATIAL ROTATIONS

■ The third iteration does not introduce any new unique operators!

- We just created the operator form for \check{X} :

- \check{X} could be the potential, transition operator with relativistic corrections
- The set IT can be extended

INVARIANCE UNDER SPATIAL ROTATIONS

■ The third iteration does not introduce any new unique operators!

- We just created the operator form for X

- \check{X} could be the potential, transition operator with relativistic corrections
- The set \mathbb{T} can be extended

INVARIANCE UNDER SPATIAL ROTATIONS

■ The third iteration does not introduce any new unique operators!
■ We just created the operator form for \check{X} :

$$
\left\langle\mathbf{p}^{\prime} \mathbf{K}\right| \check{X}|\mathbf{p K}\rangle=\sum_{i=1}^{16} x_{i}\left[\check{O}_{i}\left(\mathbf{p}, \mathbf{p}^{\prime}, \mathbf{K}\right)\right] .
$$

- \check{X} could be the potential, transition operator with relativistic corrections
- The set \mathbb{T} can be extended

INVARIANCE UNDER SPATIAL ROTATIONS

- The third iteration does not introduce any new unique operators!

■ We just created the operator form for \check{X} :

$$
\left\langle\mathbf{p}^{\prime} \mathbf{K}\right| \check{X}|\mathbf{p K}\rangle=\sum_{i=1}^{16} x_{i}\left[\check{O}_{i}\left(\mathbf{p}, \mathbf{p}^{\prime}, \mathbf{K}\right)\right] .
$$

- \check{X} could be the potential, transition operator with relativistic corrections...
- The set \mathbb{T} can be extended

INVARIANCE UNDER SPATIAL ROTATIONS

- The third iteration does not introduce any new unique operators!

■ We just created the operator form for \check{X} :

$$
\left\langle\mathbf{p}^{\prime} \mathbf{K}\right| \check{X}|\mathbf{p K}\rangle=\sum_{i=1}^{16} x_{i}\left[\check{O}_{i}\left(\mathbf{p}, \mathbf{p}^{\prime}, \mathbf{K}\right)\right] .
$$

- \check{X} could be the potential, transition operator with relativistic corrections...

■ The set \mathbb{T} can be extended...

ADDING ADDITIONAL SYMMETRIES

- We can use a simple symmetrization procedure.
- Let \mathbb{I} be a grup of transformations constructed from parity, time reversal, Hermitian conjugate and two particle exchange.
- A symmetric operator is obtained using:

- Applying any $\check{T} \in \mathbb{D}$ to $\sum_{\check{T} \in \mathbb{D}} \check{T} \check{X}$ returns the same operator.

ADDING ADDITIONAL SYMMETRIES

■ We can use a simple symmetrization procedure.

- Let \mathbb{D} be a grup of transformations constructed from parity, time reversal, Hermitian conjugate and two particle exchange.
- A symmetric onerator is obtained using:

- Applying any $\check{T} \in \mathbb{D}$ to $\sum_{\check{T} \in \mathbb{D}} \check{T} \check{X}$ returns the same operator.

ADDING ADDITIONAL SYMMETRIES

■ We can use a simple symmetrization procedure.
■ Let \mathbb{D} be a grup of transformations constructed from parity, time reversal, Hermitian conjugate and two particle exchange.

- A symmetric operator is obtained using:

- Applying any $\check{T} \in \mathbb{D}$ to $\sum_{\check{T} \in \mathbb{D}} \check{T} \check{X}$ returns the same operator

ADDING ADDITIONAL SYMMETRIES

■ We can use a simple symmetrization procedure.
■ Let \mathbb{D} be a grup of transformations constructed from parity, time reversal, Hermitian conjugate and two particle exchange.

- A symmetric operator is obtained using:

$$
\check{X} \rightarrow \sum_{\check{T} \in \mathbb{D}} \check{T} \check{X} .
$$

- Applying any $\check{T} \in \mathbb{D}$ to $\sum_{\check{T} \in \mathbb{D}} \check{T} \check{X}$ returns the same operator

ADDING ADDITIONAL SYMMETRIES

■ We can use a simple symmetrization procedure.
■ Let \mathbb{D} be a grup of transformations constructed from parity, time reversal, Hermitian conjugate and two particle exchange.

- A symmetric operator is obtained using:

$$
\check{X} \rightarrow \sum_{\check{T} \in \mathbb{D}} \check{T} \check{X} .
$$

- Applying any $\check{T} \in \mathbb{D}$ to $\sum_{\check{T} \in \mathbb{D}} \check{T} \check{X}$ returns the same operator.

ADDING ADDITIONAL SYMMETRIES

- If this is done carefully [Eur. Phys. J. A 52:188 (2016)], a new general form for operators that have rotation invariance and are symmetric with respect to \mathbb{D} can be constructed.
- Additionall symmetry conditions on the scalar functions appear.
- The problem becomes more complicated if there are three particles involved [Phys. Rev. C 87,054007 (2013)]

ADDING ADDITIONAL SYMMETRIES

■ If this is done carefully [Eur. Phys. J. A $52: 188$ (2016)], a new general form for operators that have rotation invariance and are symmetric with respect to \mathbb{D} can be constructed.

- Additionall symmetry conditions on the scalar functions appear.
- The problem becomes more complicated if there are three particles involved [Phys. Rev. C 87,054007 (2013)]

ADDING ADDITIONAL SYMMETRIES

■ If this is done carefully [Eur. Phys. J. A $52: 188$ (2016)], a new general form for operators that have rotation invariance and are symmetric with respect to \mathbb{D} can be constructed.
■ Additionall symmetry conditions on the scalar functions appear.

- The problem becomes more complicated if there are three particles involved [Phys. Rev. C 87,054007 (2013)]

ADDING ADDITIONAL SYMMETRIES

■ If this is done carefully [Eur. Phys. J. A $52: 188$ (2016)], a new general form for operators that have rotation invariance and are symmetric with respect to \mathbb{D} can be constructed.

- Additionall symmetry conditions on the scalar functions appear.
- The problem becomes more complicated if there are three particles involved [Phys. Rev. c 87,054007 (2013)] . . .

NUCLEON DEUTERON SCATTERING

■ N-d elastic scattering and breakup description via the 3N Faddeev equation

$$
\begin{gathered}
\check{T}=\check{t} \check{P}+\check{t} \check{G}_{0} \check{P} \check{T} . \\
\check{P}=\check{P}_{12} \check{P}_{23}+\check{P}_{13} \check{P}_{23} .
\end{gathered}
$$

- Use only first order terms:

$$
\check{T}=\check{t} \check{P}+\check{t} \check{G}_{0} \check{P} \check{t} \check{P}+\check{t} \check{G}_{0} \check{P} \check{t} \breve{G}_{0} \check{P} \check{t} \check{P}+\ldots \approx \check{t} \check{P} .
$$

■ Calculate observables in the breakup channel ($\left\langle\phi_{0}\right|$ - three free nucleons, $|\phi\rangle$-deuteron and free nucleon):
$\left\langle\phi_{0}\right| \check{u ̌}_{0}$
$\phi\rangle=\left\langle\phi_{0}\right.$
$(1+\check{P}) \check{t} \check{P}$
$\phi\rangle$.

- Calculate observables in the elastic channel:

NUCLEON DEUTERON SCATTERING

■ N-d elastic scattering and breakup description via the 3N Faddeev equation

$$
\begin{gathered}
\check{T}=\check{t} \check{P}+\check{t} \check{G}_{0} \check{P} \check{T} . \\
\check{P}=\check{P}_{12} \check{P}_{23}+\check{P}_{13} \check{P}_{23} .
\end{gathered}
$$

- Use only first order terms:

■ Calculate observables in the breakup channel ($\left\langle\phi_{0}\right|$ - three free nucleons, $|\phi\rangle$ - deuteron and free nucleon):

- Calculate observables in the elastic channel:

NUCLEON DEUTERON SCATTERING

■ N-d elastic scattering and breakup description via the 3N Faddeev equation

$$
\begin{gathered}
\check{T}=\check{t} \check{P}+\check{t} \check{G}_{0} \check{P} \check{T} . \\
\check{P}=\check{P}_{12} \check{P}_{23}+\check{P}_{13} \check{P}_{23} .
\end{gathered}
$$

- Use only first order terms:

$$
\check{T}=\check{t} \check{P}+\check{t} \check{G} \breve{G}_{0} \check{P} \check{t} \check{P}+\check{t} \check{G} \check{G}_{0} \check{P} \check{t} \check{G}_{0} \check{P} \check{t} \check{P}+\ldots \approx \check{t} \check{P} .
$$

■ Calculate observables in the breakup channel ($\left\langle\phi_{0}\right|$ - three free nucleons, $|\phi\rangle$ - deuteron and free nucleon):

- Calculate observables in the elastic channel:

NUCLEON DEUTERON SCATTERING

■ N-d elastic scattering and breakup description via the 3N Faddeev equation

$$
\begin{gathered}
\check{T}=\check{t} \check{P}+\check{t} \check{G}_{0} \check{P} \check{T} . \\
\check{P}=\check{P}_{12} \check{P}_{23}+\check{P}_{13} \check{P}_{23} .
\end{gathered}
$$

■ Use only first order terms:

$$
\check{T}=\check{t} \check{P}+\check{t} \check{G} \breve{G}_{0} \check{P} \check{t} \check{P}+\check{t} \check{G} \check{G}_{0} \check{P} \check{t} \check{G} \breve{G}_{0} \check{P} \check{t} \check{P}+\ldots \approx \check{t} \check{P} .
$$

■ Calculate observables in the breakup channel ($\left\langle\phi_{o}\right|$ - three free nucleons, $|\phi\rangle$ - deuteron and free nucleon):

$$
\left\langle\phi_{0}\right| \check{u}_{0}|\phi\rangle=\left\langle\phi_{0}\right|(1+\check{P}) \check{t} \check{P}|\phi\rangle .
$$

- Calculate observables in the elastic channel:

$$
\left\langle\phi^{\prime}\right| \check{u}|\phi\rangle=\left\langle\phi^{\prime}\right| \check{P} \check{G}_{0}^{-1}+\check{P} \check{t} \check{P}|\phi\rangle .
$$

NUCLEON DEUTERON SCATTERING

ELASTIC SCATTERING:

III Initially the neutron: \mathbf{q}_{i}. In the final state, the neutron: \mathbf{q}_{f}

- Scattering parametrized by $\theta_{\text {c.m. }}$.
i. In the final state the Jacobi momenta: \mathbf{p}^{f} and \mathbf{q}^{f}
wiv Scattering narametrized by the kinematic curve parameter $S: p^{f}(S), q^{f}(S)$.

NUCLEON DEUTERON SCATTERING

■ Compare 3D approach and "battle tested" PWD approach.

III Initially the neutron: \mathbf{q}_{i}. In the final state, the neutron: - In the final state the Jacobi momenta: \mathbf{p}^{f} and \mathbf{q}^{f} \mathbf{q}_{f}

- Scattering parametrized by $\theta_{\text {c.m. }}$. parameter $S: p^{f}(S), q^{f}(S)$.

NUCLEON DEUTERON SCATTERING

■ Compare 3D approach and "battle tested" PWD approach.

ELASTIC SCATTERING:

- Initially the neutron: \mathbf{q}_{i}. In the final state, the neutron: \mathbf{q}_{f}.
- Scattering parametrized by $\theta_{c . m}$.

BREAKUP:

- In the final state the Jacobi momenta: \mathbf{p}^{f} and \mathbf{q}^{f}.
- Scattering parametrized by the kinematic curve parameter $S: \mathbf{p}^{f}(S), \mathbf{q}^{f}(S)$.

NUCLEON DEUTERON SCATTERING

- Results for breakup [Eur. Phys. J. A 51:132 (2015)].
- Deuteron and nucleon vector analyzing nowers (A_{y}^{d}, A_{y}^{N}) and the deuteron tensor analyzing powers $\left(A_{x x}, A_{y y}, A_{z z}\right)$ LAB energy 190 MeV .
- Solid line - 3D results.
- The dashed-dotted, dotted and dashed lines - PWD results with max. total anguler momentum 21/2,23/2,25/2 and max. $2-3$ angular momentum 8.

NUCLEON DEUTERON SCATTERING

■ Results for breakup [Eur. Phys. J. A 51:132 (2015)].

- Deuteron and nucleon vector analyzing powers $\left(A_{y}^{d}, A_{y}^{N}\right)$ and the deuteron tensor analyzing powers $\left(A_{x x}, A_{y y}, A_{z z}\right)$ LAB energy 190 MeV .
- Solid line - 3D results.
- The dashed-dotted, dotted and dashed lines - PWD results with max. total anguler momentum 21/2,23/2,25/2 and max. 2 - 3 angular momentum 8 .

NUCLEON DEUTERON SCATTERING

■ Results for breakup [Eur. Phys. J. A 51:132 (2015)].

- Deuteron and nucleon vector analyzing powers $\left(A_{y}^{d}, A_{y}^{N}\right)$ and the deuteron tensor analyzing powers $\left(A_{x x}, A_{y y}, A_{z z}\right)$ LAB energy 190 MeV .
- Solid line - 3D results.

■ The dashed-dotted, dotted and dashed lines - PWD results with max. total anguler momentum 21/2, 23/2, 25/2 and max. $2-3$ angular momentum 8.

NUCLEON DEUTERON SCATTERING

FULL 3D CALCULATION

- We can construct the operator form of \check{T} but this form contains too many parameters.
- Construct the operator form of $\bar{T}|\phi\rangle$ under using similar methods this is under construction.
- Calculate the solution using similar methods as with the two nucleon transition operator.

FULL 3D CALCULATION

- We can construct the operator form of \check{T} but this form contains too many parameters.
- Construct the operator form of $\bar{T}|\phi\rangle$ under using similar methods this is under construction.
- Calculate the solution using similar methods as with the two nucleon transition operator.

FULL 3D CALCULATION

- We can construct the operator form of \check{T} but this form contains too many parameters.
■ Construct the operator form of $\check{T}|\phi\rangle$ under using similar methods this is under construction.
- Calculate the solution using similar methods as with the two nucleon transition operator.

FULL 3D CALCULATION

■ We can construct the operator form of \check{T} but this form contains too many parameters.
■ Construct the operator form of $\check{T}|\phi\rangle$ under using similar methods this is under construction.
■ Calculate the solution using similar methods as with the two nucleon transition operator.

■ First order results for neutron deuteron scattering suggest that the 3D approach can be used to achieve convergence at higher energies.
■ There is a necessity to construct new general operator forms.
■ Constructing $\check{T}|\phi\rangle$ can lead to efficient calculations.
■ Possibility to add relativistic corrections to the calculations.

THANK YOU

The project was financed from the resources of the National Science Center
(Poland) under grants No. DEC-2013/11/N/ST2/03733 and DEC-2013/10/
M/ST2/00420. Some of the numerical work was performed at JSC Jülich.

[^0]: | (00)0
 | (11)0 \rangle
 | (01) 1\rangle
 | (10) 1\rangle
 | (11) 1\rangle
 | (21) 1\rangle
 | (11)2 \rangle
 | (20)2 \rangle
 | (21)2 \rangle
 | (31)2 \rangle
 | (21)3 \rangle
 (30)3〉
 $\left\lvert\, \begin{aligned} & (31) 3\rangle \\ & (41) 3\rangle\end{aligned}\right.$

[^1]: | (00)0 0
 | (11)0 \rangle
 | (01)1 \rangle
 | (10) 1\rangle
 | (11) 1\rangle
 | (21) 1\rangle
 | (11) 2\rangle
 | (20)2 \rangle
 | (21) 2\rangle
 | (31)2 \rangle
 | (21)3>
 | (30)3 \rangle
 | (31) 3\rangle
 | (41) 3\rangle

