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São José dos Campos, SP, Brasil

and
Instituto de Fı́sica Teórica (IFT), UNESP
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Faraday waves in BEC with engineering 3B interactions

In this work, we study a BEC with 2 and 3-body interactions
periodically varying in time. For the time-dependent 3-body
interaction, two models are assumed, with quadratic and quartic
dependence on the two-body atomic scattering length as.

It is shown that parametric instabilities in a Bose-Einstein condensate
leads to the generation of Faraday waves (FW), with wavelengths
depending on the background scattering length, as well as on the
frequency and amplitude of the modulations of as. This opens a new
possibility to tune the period of Faraday patterns by varying not only
the frequency of modulations and background scattering length, but
also through the amplitude of the modulations.

The latter effect can be used to estimate the parameters of
three-body interactions from the FW experimental results. Theoretical
predictions are confirmed by numerical simulations of the
corresponding extended Gross-Pitaevskii equation.
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Formalism
Let us consider a 1D BEC with atoms of mass m, with two- and
three-body interactions varying in time, which are given by the
functions Γ(t) and G(t). By also considering a possible
time-independent external interaction Vext , with the wave-function
ψ ≡ ψ(x , t) normalized to the number of atoms N, we have

i~
∂ψ

∂t
= − ~2

2m
∂2ψ

∂x2 + Vext (x)ψ − Γ(t)|ψ|2ψ −G(t)|ψ|4ψ,

where Γ(t) is related linearly with the two-body s−wave atomic
scattering length as(t), which can be varied in time by considering
Feshbach resonance techniques. The possible ways that the
three-body strength G(t) can be varied in time will depend on specific
atomic characteristics, which are also related to the kind of two-body
interaction, as well as induced by some external interactions acting
on the condensate.
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In dimensionless quantities, with u ≡ u(x , t) =
√

l⊥ψ and
Vext = ~ω⊥Vext , we have

i
∂u
∂t

+
∂2u
∂x2 − Vext (x)u + γ(t)|u|2u + g(t)|u|4u = 0,

where the dimensionless time-dependent two- and three-body
parameters are, respectively, given by

γ(t) ≡
√

2m
~2

Γ(t)√
~ω⊥

and g(t) ≡ 2m
~2 G(t).

By considering no external potential ( Vext = 0) the natural scale is
the s−wave two-body scattering length as at t = 0, which will define
ω⊥ and the corresponding length l⊥ = 2as.
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Three-body interaction proportional to [as(t)]2 (quadratic case)

This case can occur in a model for a BEC with 1D non-polynomial GP
equation, confined in a cigar type trap. By a series expansion for
small as|ψ|2, an effective quintic term can be derived
(G(t) ≡ 2~ω⊥a2

s(t)). [See Salasnich et al., PRA 65, 043614 (2002) or
Khaykovich and Malomed, PRA 74, 02360 (2006)].
A quadratic dependence of G(t) on as(t) can also occur for
Γ ≡ Γ(x , t) ≈ cos(ωt) cos(kx), corresponding to a time dependent
short-scale nonlinear optical lattice. In this case, averaged over short
scale modulations in space, the dynamics is described by a GP
equation with effective time dependent three body interactions
Abdullaev et al, PL A 367, 149 (2007). Another model with quadratic
dependence on as was also suggested in Mahmud et al PRA 90
041602(R) (2014), considering effective 3-body interactions for atoms
loaded in a deep optical lattice.
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Three-body interaction proportional to [as(t)]4 (quartic case).

By varying as(t) through Feshbach resonances techniques, as the
absolute value of this two-body observable becomes very large, one
approaches the unitary limit (|as| → ∞) where many three-body
bound-states and resonances can be found. This behaviour will
induce changes in the corresponding quintic parameter of the GP
equation, such that we can have G(t) ∼ a4

s(t) [See, for instance,
Bulgac, PRL 89 050402 (2002).]
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Modulational instability

For analyzing modulational instability (MI) of the nonlinear solution,
we introduce

u0 ≡ u(0, t) = Aeiθ(t), where θ(t) = A2
∫ t

0

[
γ(t ′) + A2g(t ′)

]
dt ′.

and look for a solution of the form

u(x , t) = [A + δu(x , t)]eiθ(t), with δu � A.

By keeping only linear terms δu ≡ δu(x , t), we obtain

i
∂δu
∂t

+
∂2δu
∂x2 + A2 [γ(t) + 2A2g(t)

]
(δu + δu∗) = 0.
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Next, with δu = v + iw , and going to the Fourier components,
(v ,w) =

∫
eikx (V ,W ) dk , we have the set of coupled equations:

dV
dt

= k2W ,
dW
dt

= −k2V + 2A2 [γ(t) + 2A2g(t)
]

V ,

leading to

d2V
dt2 + k2 [k2 − 2A2 (γ(t) + 2A2g(t)

)]
V = 0.
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Influence of the inelastic three-body collisions

Considering inelastic three-body collisions with κ3, one should add
iκ3|u|4u and replacing g(t) by gc(t) = g(t) + iκ3. In this case,

u(x , t) = [A(t) + δu(x , t)] eiθ(t), A(t) = A0(1 + 4κ3A4
0t)−1/4,

θ(t) =

∫ t

0
ds
[
γ(s)A2(s) + g(s)A4(s)

]
.

In the above expression for θ(t), we neglect δu(x , t) with the
assumption that A(t)� δu(x , t). Following the same procedure as
before, with δu = v + iw , for the Fourier component V we obtain

d2V
dt2 + k2 [k2 − 2A(t)2(γ(t) + 2A(t)2g(t))

]
V =

−6κ3A(t)4 dV
dt

+ 15
[
κ3A(t)4]2 V ,

where appears a dissipative term ∼ κ3, together with a term ∼ κ2
3.
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MI for periodic variations of the scattering length
The periodic modulations of the scattering length in time is given by
γ(t) ≡ γ0 + γ1 cos(ωt), with the three-body interaction term given by
g(t) = c [γ0 + γ1 cos(ωt)]2n (n = 1 for quadratic, and n = 2 for quartic).

γ0 refers to the natural two-body scattering length, which can be attractive (γ0 > 0) or
repulsive (γ0 < 0); and γ1 is the amplitude of the periodic modulation.

We should note that some other works are mainly concerned with 3B repulsion as a
way to stabilise the condensate with attractive two-body interaction.

However, in the present case, as we are interested in verify the emergence of FW
patterns, we consider the interesting conditions where the time-dependent parameter
g(t) is positive (c > 0), implying in attractive three-body interaction.
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Without dissipation (κ3 = 0), we obtain

d2V
dt2

+ Ω2 [1− f1 cos(ωt)− f2 cos(2ωt)] V = 0,

where

Ω2 ≡ k2∆ ≡ k2
{

k2 − 2A2
[
γ0 + A2c(2γ2

0 + γ2
1 )
]}
,

f1 ≡
2γ1A2(1 + 4cA2γ0)

∆
, f2 ≡

2cγ2
1A4

∆
.

Parametric resonances occur for two cases: ω = 2Ω (η ≡ 1) and ω = Ω (η ≡ 2), with
the corresponding wavenumbers

k (η)
F = ±

√
M±

2
+

1
2

√
M2

± + (ηω)2 ≡ Lη , with

M± ≡ 2A2
[
±|γ0|+ A2c

(
2γ2

0 + γ2
1

)]
.

M+ is for attractive or zero two-body interactions, γ0 ≥ 0, and M− for the repulsive
case, γ0 < 0. In the present case, as we are analysing the case with c > 0, M− can be
set to zero or negative only for repulsive interactions. In the following, we consider only
the relevant positive sign for the resonance wavenumber kF .
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FW patterns - Period of oscillations LF = 2π
kF
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Behaviour of the period of FW oscillations, LF (= L1 in case 2Ω = ω, and = L2, when
Ω = ω), given as functions of γ1, for a few set of frequencies ω and for two cases of
repulsive two-body interactions, when the three-body interaction is proportional to
[as(t)]2. All quantities are dimensionless with parameters such that A = c = 1.
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Sample FW pattern result - no dissipation
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Behavior of the central density |u(0, t)|2, as function of time, showing the emergence of
the first parametric resonance (for ω = 20), from full-numerical calculations. In full
agreement with analytical predictions for the values of k , it is obtained the resonance
for k = kF = 3.2. The other parameters, in this case, are such that γ0 = 0, γ1 = 0.5,
ε0 = 0.001, A = 1, and c = 1. In the right frame, we show a smaller time interval
(t < 4) for a clear identification of the plots for the given values of k .
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Behavior of central density is displayed as a function of time, showing the emergence
of the second parametric resonance (ω = 40), from full-numerical calculations. In this
case, again in agreement with analytical prediction, the resonance occurs at k = 4.5.
In the right frame, for t < 4, we also show the plots for the given k , in order to
appreciate how the resonance starts to appear. The other parameters are the same as
in the previous figure.
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Effect of dissipation
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The effect of dissipation in the system we can exemplify by considering k = 3.17 at the
resonant position. For that, in our full numerical calculation, we add in the quintic
parameter g a dissipative imaginary term κ3, varying it from zero (non-dissipative case
shown by the upper results) to κ3 = 1 (lower curve), as indicated inside the frame. As
expected, the amplitude of the resonance decreases gradually as we increase the
dissipation.
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Effect of dissipation - varying the amplitude of modulation γ1
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The effect of dissipation can be compensated by varying γ1. By selecting the case
κ3 = 0.025 in the previous figure, γ1 was varied from 0.5 till 1. We noticed that the
maximum occurs near γ1 = 0.8. The panel in the right, for a small time interval, is for
an easy identification of the different curves.
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Results for repulsive 2B interactions γ0 < 0 and attractive 3B
quartic case (g(t) > 0)
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For the repulsive case, with γ0 = −0.2 and γ1 = 0.2, from full numerical results, we
present a case when the three-body interaction g(t) is for the quartic case. The first
resonance, for ω = 20, ε0 = 0.001, A = 1, and cE = +1 (g(t) > 0), is found at
k = 3.139. In the right panel, for a small interval of time, we show how the amplitude is
changing for a small variation of the parameter k .
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Second parametric resonance (ω = 40) for the repulsive two-body interaction
(γ0 = −0.2), with positive three-body parameter (cE = +1) in the quartic case. The
resonance appears at k = 4.45. This is shown by comparing with results obtained for
k smaller and larger than this value, when the oscillation patterns remain almost
constant (see right panel). In this case, as compared with the first resonance, the peak
of the resonant value is manifested for larger values of t .
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1st resonance, for repulsive 3B quartic case (g(t) < 0)
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First parametric resonance, with ω = 20, for the quartic case, with repulsive two-body
interaction (γ0 = −0.2), and also negative three-body g(t) < 0 (cE = −1). The
resonance, as predicted, appears at k = 3.129, with the right panel showing that
density oscillation remains almost constant for smaller and larger values of k . By
comparing with the case g(t) > 0, the resonance occurs at smaller values of t .
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Concluding remarks

We have studied the generation of Faraday pattern in a BEC system,
by engineering the time dependent three-body interactions. Two
models were analysed, according to the mechanism of modulation
and behaviour of the three-body interaction with respect to the atomic
scattering length as (quadratic and quartic power).

Our analysis and numerical simulations show that the
time-dependent three-body interaction excites Faraday patterns with
the wavenumbers defined not only by as and modulation frequency,
but also by the amplitude of such oscillation.

In our analysis we have considered both cases of repulsive and
attractive two-body interactions. We also present simulations for
repulsive three-body interactions in the quartic case, when it is
proportional to the fourth power of as, considering the case of
repulsive two-body interaction, where the behaviour of the
resonances can be well identified in agreement with predictions.
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For more details, see
Abdullaev, Gammal, Tomio, J. of Phys. B 49, 25302 (2016).

THANK YOU!
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