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MOTIVATION

• Infrared limit of the SRG evolution


• Diagonal (on-shell) interaction in momentum space


• Application to few-body and many-body problems 


• Phase transition in the SRG flow



MOTIVATION (SRG)

• Pré-diagonalization


• Reduces off-shellness


• Improves convergence in many-body calculations 
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Renormalization Group Flow

S S0

resolution scale

maps the theory at given scale to same theory at different scale



Similarity Renormalization Group

Doesn’t remove degrees of freedom

But suppresses states with large energy difference (off-diagonal elements):

⌅�L|H|�H⇧ ⇤ �n ⇥ (EH � EL) ⇥ �0

Hn [�n] = T (n)
Sim. {H0 [�0]}

Unitary transformation: doesn't affect the spectrum T †T = 1

Similarity Transformation:

S. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993)

off-shellness



Similarity Renormalization Group
Wegner's formulation:

Flow equation:

Hs = U(s) H U†(s) = T + Vs

d

ds
Hs = [Hs, �s]

�s = [Hs, HD]

�s = [Hs, T ]

s =
1
�4

(0 � s � ⇥)

lim
s�s0

Hs = Hs0

Diagonal part of the running hamiltonian:

Free hamiltonian (kinetic energy):

Boundary condition:

F. Wegner, Annalen der Physik (Berlin) 3, 77 (1994)

Flow parameter:

similarity cutoff λ: dimension of momentum

Generators for the similarity transformation



�s = [Hs, T ] d

ds
Hs = [Hs, [Hs, T ]]

(two-nucleon system)

S.K. Bogner, R.J. Furnstahl, and R.J. Perry, Phys. Rev. C 75, 061001(R) (2007)

S.K. Bogner, R.J. Furnstahl, R.J. Perry, and A. Schwenk, Phys. Lett. B 649, 488 (2007)

S. Szpigel and R. J. Perry, in “Quantum Field Theory, A 20th Century Profile”, 

ed. A. N. Mitra, Hindustan Publishing, New Delhi (2000)

E.D. Jurgenson, P. Navratil, R.J. Furnstahl, Phys. Rev. Lett. 103 (2009) 082501

V       ——>    regular or regularised

d

ds
Vs(p, p�) = �(p2 � p�2) V (p, p�) +

2
�

�
dq q2 (p2 + p�2 � 2q2) Vs(p, q) Vs(q, p�)s

SRG - WILSON GENERATOR

s = 0

http://xxx.lanl.gov/find/nucl-th/1/au:+Jurgenson_E/0/1/0/all/0/1
http://xxx.lanl.gov/find/nucl-th/1/au:+Navratil_P/0/1/0/all/0/1
http://xxx.lanl.gov/find/nucl-th/1/au:+Furnstahl_R/0/1/0/all/0/1


SRG - WEGNER GENERATOR
(two-nucleon system)

⌘s = [ Hs , diag(Hs) ]

d

ds
Hs = [ Hs , [ HS , diag(Hs) ] ]

d

ds
Vs(p, p

0) =
2

⇡

Z 1

0
dq q2 (✏p + ✏p0 � 2✏q) Hs(p, q) Hs(q, p

0)

[diag(Hs)]|pi = ✏p|piT |pi = p2 |pi

λ

SRG

Wegner

� =
1
4
p
s



TOY MODEL - 1S0 & 3S1

in the SRG-cut-o↵ � for unbound operators defined on the
Hilbert space, and they have only been solved exactly for sim-
ple cases [18]. For most cases however, SRG equations must be
numerically posed on a finite N�dimensional momentum grid,
pn, and the di↵erential equations require a further grid in the
SRG-cut-o↵ �i which introduces two infrared resolution scales
�pn and ��i. In the BD-SRG equations ⇤ takes values on the
momentum grid pn. The interplay among these scales makes
the limit �  �p,⇤ numerically sti↵ and computationally ex-
pensive. We will show that this infrared behaviour is best re-
produced by directly using low energy scattering data in the
continuum and, most remarkably, that e↵ective interactions are
accurately determined this way in a wide cut-o↵ range.

2. Bare and e↵ective interaction

We review briefly the renormalization problem for the two-
nucleon system from a Wilsonian point of view to introduce our
notation in a way that our results can be easily stated ( see e.g.
Ref. [19] for an alternative set up). To motivate the discussion
let us consider NN scattering, where one solves the Lippmann-
Schwinger (LS) equation for the bare potential V . Taking the
case of S-waves we have for the half-o↵-shell K�matrix,

K(p0, p) = V(p0, p) +
2
⇡
�
Z 1

0
dq

q2V(p0, q)
p2 � q2 K(q, p) (1)

where K(p0, p) is the reaction matrix which relation to the
phase-shifts is given by

tan �(p)
p

= �K(p, p) (2)

The e↵ective interation V⇤(p0, p) corresponds to a self-adjoint
operator, V⇤(p0, p) = V⇤(p, p0)⇤, acting in a reduced model
Hilbert space with p, p0  ⇤ and fulfills

K⇤(p0, p) = V⇤(p0, p) +
2
⇡
�
Z ⇤

0
dq

q2V⇤(p0, q)
p2 � q2 K⇤(q, p) . (3)

Using the similar definition of Eq. (2) we get

�⇤(p) = �(p)⇥(⇤ � p) . (4)

The idea is that by using this truncation one can work in a
smaller space, without explicit reference to high energy states.
This does not provide a unique definition of the e↵ective inter-
action, so an auxiliary condition must be specified. In the orig-
inal Vlowk approach [20] the half-o↵ shell T-matrix was fixed to
the bare one, a procedure which did not guarantee a self-adjoint
operator, and hence a subsequent hermitization procedure was
required. In the BD-SRG approach [17] the hermiticity is pre-
served along the SRG evolution.

The SRG method does not specify what the bare interaction
should be and is usually taken as a realistic potential which
fits NN data up to pion-production threshold, ⇤ . pm⇡MN ⇠
400MeV . This introduces a long high momentum tail due to
the short range repulsion which complicates the numerical con-
vergence when solving the SRG flow equations. For illustration
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Figure 1: 1S 0 and 3S 1 phase-shifts for the separable potential compared to
those determined by the grid method at the grid points for a numerical momen-
tum cut-o↵ Pmax = 5 and N = 50 gauss points.

purposes we take as the bare interaction the simple separable
potential for the NN S-waves

V↵(p, p0) = C↵g↵(p0)g↵(p) ↵ =1 S 0,
3 S 1 (5)

leading to the phase-shifts

p cot �↵(p) = � 1
V↵(p, p)

"
1 � 2
⇡
�
Z 1

0
dq

q2

p2 � q2 V↵(q, q)
#

= � 1
↵0
+

1
2

r0 p2 + v2 p4 + . . . (6)

where in the last line a low momentum E↵ective Range Ex-
pansion (ERE) has been carried out and the scattering length
↵0, the e↵ective range r0 and the v2 parameter have been intro-
duced. Parameters in Eq. (5) are adjusted to reproduce ↵0 and r0
which for a gaussian form factor g↵(p) = e�p2/L2 are listed in Ta-
ble 1. The resulting phase-shifts are presented in Fig. 1. While
they only resemble NN phase-shifts of the most recent Partial
Wave Analysis [21] at low momenta, these two channels illus-
trate Levinson’s theorem that �(0)� �(1) = n⇡ with n the num-
ber of bound states and n1S 0 = 0 and n3S 1 = 1. The pole of the
3S 1 scattering amplitude at p = i� = i0.2314 fm�1 gives a sat-
isfactory deuteron binding energy Ed = ��2/M = �2.22MeV.

Parameter ↵0 r0 C L
Units (fm) (fm) (fm) (fm�1)

1S 0 -23.74 2.77 -1.9158 0.6913
3S 1 5.42 1.75 -2.3006 0.4151

Table 1: Model parameters for the gaussian separable potential V↵(p0, p) =
C↵e�(p2+p02)/L2

↵ used in the calculations.

3. Explicit Renormalization: Block diagonal evolution

The SRG method developed by Glazek and Wilson [22, 23]
and independently by Wegner [24] (for a review see e.g. [25])
is based on a non-perturbative flow equation that governs the

2

V (p, p0) = C e�(p2+p02)/L2

Typical SRG calculation with Av18:

N = 200 , p
max

= 30 fm�1

p
max

= 2 fm�1

� ⇠ 1 fm�1 computational time: 100 - 1000 hours

Momentum grid:
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FIG. 4: Contour plots for the SRG evolution of the separable potential in the 1S0 channel using Wilson’s generator for a sharp
momentum cut-o↵ ⇤ = 2 fm�1 and N = 50 gauss points.

FIG. 5: Contour plots for the SRG evolution of the separable potential in the 1S0 channel using Wegner’s generator for a sharp
momentum cut-o↵ ⇤ = 2 fm�1 and N = 50 gauss points.

In the upper panels of Fig 10 we show the diagonal elements of the Toy potential in the 1S0 channel evolved with
both Wilson’s and Wegner’s generators up to � = 0.05 fm�1 for di↵erent grid sizes. The middle panel depicts the
diagonal elements of the 1S0 Toy potential in the limit � ! 0 obtained by computing the eigenpotential with the
eigenvalues sorted in ascending order. The bottom panels displays the ratio between the diagonal elements of the
potential in the infrared limit � ! 0 and the potential at � = 0.05 fm�1, V�=0/V�=0.05, showing that only very low
momentum part of the potential is a↵ected as the similarity cuto↵ approaches the infrared limit.

In Fig. 11 we compare the evolution of the diagonal (left panels) and o↵-diagonal (right panels) matrix elements
of the Toy potential in the 1S0 channel up to a similarity cuto↵ � = 0.05 fm�1 with the Wilson’s and Wegner’s
generators. In the left panels we also show the diagonal interaction V�=0 obtained by using the eigenvalues sorted in
ascending order.
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FIG. 5: Contour plots for the SRG evolution of the separable potential in the 1S0 channel using Wegner’s generator for a sharp
momentum cut-o↵ ⇤ = 2 fm�1 and N = 50 gauss points.

In the upper panels of Fig 10 we show the diagonal elements of the Toy potential in the 1S0 channel evolved with
both Wilson’s and Wegner’s generators up to � = 0.05 fm�1 for di↵erent grid sizes. The middle panel depicts the
diagonal elements of the 1S0 Toy potential in the limit � ! 0 obtained by computing the eigenpotential with the
eigenvalues sorted in ascending order. The bottom panels displays the ratio between the diagonal elements of the
potential in the infrared limit � ! 0 and the potential at � = 0.05 fm�1, V�=0/V�=0.05, showing that only very low
momentum part of the potential is a↵ected as the similarity cuto↵ approaches the infrared limit.

In Fig. 11 we compare the evolution of the diagonal (left panels) and o↵-diagonal (right panels) matrix elements
of the Toy potential in the 1S0 channel up to a similarity cuto↵ � = 0.05 fm�1 with the Wilson’s and Wegner’s
generators. In the left panels we also show the diagonal interaction V�=0 obtained by using the eigenvalues sorted in
ascending order.
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SRG evolution - Toy - 3S1 17

FIG. 8: Contour plots for the SRG evolution of the separable potential in the 3S1 channel using Wilson’s generator for a sharp
momentum cut-o↵ ⇤ = 2 fm�1 and N = 50 gauss points.

FIG. 9: Contour plots for the SRG evolution of the separable potential in the 3S1 channel using Wegner’s generator for a sharp
momentum cut-o↵ ⇤ = 2 fm�1 and N = 50 gauss points.

In the upper panels of Fig 12 we show the diagonal elements of the Toy potential in the 3S1 channel evolved with
both Wilson’s and Wegner’s generators up to � = 0.05 fm�1 for di↵erent grid sizes. The middle panels depict the
diagonal elements of the 3S1 Toy potential in the limit � ! 0 obtained by computing the eigenpotential with the
eigenvalues sorted in ascending order (left) and with the eigenvalues sorted in the order imposed by the evolution
with the Wegner’s generator. The bottom panels displays the ratio between the diagonal elements of the potential in
the infrared limit � ! 0 and the potential at � = 0.05 fm�1, V�=0/V�=0.05, showing that only very low momentum
part of the potential is a↵ected as the similarity cuto↵ approaches the infrared limit.

In Fig. 13 we compare the evolution of the diagonal (left panels) and o↵-diagonal (right panels) matrix elements
of the Toy potential in the 3S1 channel up to a similarity cuto↵ � = 0.05 fm�1 with the Wilson’s and Wegner’s
generators. In the left panels we also show the diagonal interaction V�=0 obtained by using the eigenvalues sorted in
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H MATRIX ELEMENTS IN THE LIMIT � ! 0
152 E.R. Arriola et al. / Physics Letters B 735 (2014) 149–156

Fig. 2. SRG evolution of the diagonal matrix-elements of the Hamiltonian for the toy model potential in the 1 S0 (upper panels) and 3 S1 (lower panels) channels using the 
Wilson (left) and the Wegner (right) generators. We have considered a high-momentum UV cutoff Λ = 2 fm−1 and N = 20 grid points. The SRG cutoff λ was varied in a 
range from 0.05 to 2.0 fm−1.

3. Phase-inequivalence of the reaction matrix on a momentum 
grid

As mentioned above the original motivation for the SRG method 
was to soften the interaction while keeping the phase-shifts invari-
ant. As we will show below the verification of phase-equivalence 
along the SRG trajectory requires a proper definition of the phase-
shift in a momentum grid. This is a subtle point, particularly when 
the interaction is attractive enough to generate bound states.

The standard procedure so far within the SRG approach has 
been to solve the Lippmann–Schwinger (LS) equation for the 
T -matrix. In operator form the LS equation reads

T = V + V
(

p2 − H0 − iϵ
)−1

T . (13)

Taking matrix elements on the momentum grid we get

Tnm(p) = Vnm + 2
π

N∑

k=1

wk
p2

k

p2 − p2
k + iϵ

Vnk Tk,m(p), (14)

where p2 is the scattering energy. The on-shell limit is obtained 
by taking p = pl on the grid. As usual we switch to the reaction 
matrix which on the grid yields the equation for the half-on-shell 
amplitude

Rnm(pm) = Vnm + 2
π

∑

k≠m

wk
p2

k

p2
m − p2

k

Vnk Rk,m(pm), (15)

where the excluded sum embodies the principal value prescrip-
tion of the continuum version. This equation can be solved by 
inversion for any grid point pn and thus we may obtain the phase-
shifts

− tan δLS(pn)

pn
= Rnn(pn), (16)

where the supper-script LS denotes that these phase-shifts are ob-
tained from the solution of the LS equation on the grid. Of course, 
the limit N → ∞ should be understood in the end.

Let us analyze the behavior of the phase-shifts as computed 
from the definition given in Eq. (16) using the potentials Vnm(λ)

evolved according to the SRG flow equations, Eq. (1), on the fi-
nite grid. The results for the toy model potential in the 1 S0
(left) and 3 S1 (right) channels are presented in Fig. 3 for a high-
momentum UV cutoff Λ = 2 fm−1, N = 30 grid points and several 
values of the SRG cutoff λ. As we see, Levinson’s theorem [17], 
δLS
λ (p1) − δLS

λ (pN ) = nBπ , is fulfilled on the grid. However, while 
this discretization enables to handle SRG flow equations numer-
ically, the price to pay due to the finite momentum grid, how-
ever, is that on this grid the phase-shifts as obtained from the 
LS equation are not independent of the SRG cutoff variable λ. 
While the lack of phase-equivalence disappears for large N we 
want to analyze the possibility whether one can define SRG-
independent phase-shifts on the grid for any value of the dimen-
sion N .

E. Ruiz Arriola, S. Szpigel, VST, Physics Letters B 735 (2014) 149
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p2n +

2

⇡

X

k

p2k wk Vnk

#
 = P 2  

P 2
n = p2n +

2

⇡
p2n wn Vn

V �=0
n =

1
2
⇡p

2
nwn

�
P 2
n � p2n

�

�(pn) = � pn
2
⇡p

2
nwn

�
P 2
n � p2n

�

ordering

required

At λ → 0, V is diagonal:

Interaction at λ = 0 and can be calculated directly from the eigenvalues

E. Ruiz Arriola, S. Szpigel, VST, Physics Letters B 735 (2014) 149

H | i = E | i

= � pn V �=0
n

� = 0

Energy-shift formulas

Phase-shifts can be computed without solving the scattering equation



Possible orderings
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Fig. 3. Phase-shifts evaluated from the solution of the LS equation on the momentum grid with the toy model potential in the 1 S0 (left) and 3 S1 (right) channels evolved 
through the SRG transformation with Wilson generator for several values of the SRG cutoff λ. We have considered a high-momentum UV cutoff Λ = 2 fm−1 and N = 30 grid 
points.

4. The energy-shift operator

The most obvious phase-shift definition preserving phase-
equivalence on the grid should involve the spectrum. Fortunately, 
this was done long ago by Lifshits and has recently received a 
lot of attention by Kukulin et al. who extended the energy-shift 
approach to few-nucleon problems [11,12]. Their setup allows 
to solve scattering problems without ever solving the scattering 
equations, since it just involves the energy eigenvalues. It is im-
portant to note that for an N-dimensional momentum grid there 
are N! possible orderings for the eigenvalues of the Hamiltonian 
obtained from any diagonalization procedure and so the evalu-
ation of phase-shifts using the energy-shift approach necessarily 
involves a prescription to order the states.

The general result in the presence of nB bound-states derived 
by Kukulin et al. is written as

δKuk
n = −π

P 2
n+nB

− p2
n

2wn pn
, (17)

with n = 1, . . . , N − nB . According to this prescription, in order to 
evaluate the phase-shifts the eigenvalues P 2

n obtained from the di-
agonalization of the Hamiltonian H (arranged in ascending order) 
must be shifted to the left by nB positions with respect to the cor-
responding eigenvalues p2

n of the free Hamiltonian T . One should 
note that such a prescription implies that the first nB eigenvalues 
(those corresponding to the bound-states) are removed when the 
shift is implemented. The results obtained by applying Eq. (17) to 
evaluate the phase-shifts for the toy-model potential in the 1 S0
and 3 S1 channels with several number of grid points N can be 
seen in Fig. 4. In the case of the 1 S0 channel, which has no bound-
state, there is no shift of the eigenvalues P 2

n since nB = 0 and the 
prescription works rather well in the entire range of momenta as 
one can see in the upper-left panel. The situation for the 3 S1 chan-
nel is different since nB = 1 due to the presence of the deuteron 
bound-state. As we can see in the left-bottom panel, when no shift 
is applied the low-momenta behavior clearly violates Levinson’s 
theorem. As shown in the upper-right panel, the low-momenta be-
havior is properly fixed by shifting the eigenvalues according to 
Kukulin’s prescription and looks like fulfilling Levinson’s theorem 
for one bound-state. However, the large momentum behavior is 
greatly distorted due to the mismatch of the free momenta and 
the eigenvalues generated by the shift. This effect survives in the 
continuum limit and the upper bending indicates that Levinson’s 

theorem is fulfilled, however, with no bound states. Thus we are 
faced to the problem of defining an isospectral phase-shift with a 
proper high-energy behavior.

Clearly, in order to avoid the high-energy mismatch the con-
stant shift implied by Kukulin’s formula should not be used. On 
the other hand, the shifted formula complies to Levinson’s the-
orem at low-energies. Thus, even within the isospectral scenario 
there seems to be a conflict between high-energy behavior and 
the fulfillment of Levinson’s theorem. Therefore, the question is 
at what location should the shift of the eigenvalues be applied in 
order to obtain phase-shifts that have a proper behavior both at 
low-energies and high-energies.

5. The SRG induced ordering of states

As pointed out before, in the case of the SRG evolution with 
Wilson generator there is only one asymptotically stable final or-
dering of the eigenvalues, corresponding to the permutation in 
which the eigenvalues are ordered according to the kinetic energy 
(i.e., in ascending order). On the other hand, the SRG evolution 
with Wegner generator allows in principle any asymptotically sta-
ble final ordering of the eigenvalues. However, the uniqueness of 
the solution implies that just one ordering takes place asymptoti-
cally for λ → 0. In the absence of bound-states, the final ordering 
for the Wegner generator is the same as for the Wilson generator 
(ascending order).

We define the SRG-ordered phase-shift for the generator G as 
follows

δG
n = −π lim

λ→0

H G,λ
n,n − p2

n

2wn pn
. (18)

If we denote by En the spectrum of H G,λ
n,n in ascending order, i.e. 

E1 < · · · < E N , we generally have

lim
λ→0

H G,λ
n,m = δn,m Eπ(n) = δn,m P 2

π(n), (19)

where π(n) is one of the N! permutations of the N-plet (1, . . . , N).
For the Wilson generator, Gs = T , one can show that the as-

cending order is asymptotically preserved [3,8],

lim
λ→0

HWil,λ
n,m = δn,m En, (20)

154 E.R. Arriola et al. / Physics Letters B 735 (2014) 149–156

Fig. 4. Phase-shifts for the toy model potential in the 1 S0 and 3 S1 channels evaluated by the eigenvalue method with the eigenvalues sorted in several ways. Upper left panel: 
1 S0 channel in ascending order. Upper right panel: 3 S1 channel in ascending order. Lower left panel: 3 S1 channel with Kukulin et al. order. Lower right panel: 3 S1 channel 
in permuted ordering. Some of these orderings can be identified with Wilson or Wegner SRG generators when the infrared limit is taken λ → 0. We have considered a 
high-momentum UV cutoff Λ = 2 fm−1 and different number of grid points N = 10, 20, 30, 40, 50, 100. The points corresponding to the momentum at which the deuteron 
bound-state eigenvalue is placed on the diagonal of the Hamiltonian are omitted. We also show the exact phase-shifts obtained from the solution of the standard LS equation.

and thus

δWil
n = −π lim

λ→0

HWil,λ
n,n − p2

n

2wn pn
= −π

P 2
n − p2

n

2wn pn
(21)

which corresponds to Kukulin’s formula with no shift and thus 
leads to the violation of Levinson’s theorem in the presence of 
bound-states.

For the Wegner generator case, Gs = diag(Hs),

δ
Weg
n = −π lim

λ→0

HWeg,λ
n,n − p2

n

2wn pn
. (22)

Our analysis of the results obtained for the SRG evolution of 
the toy-model Hamiltonian, shown in Fig. 2, suggests an alternative 
prescription to order the eigenvalues when using the energy-shift 
approach to evaluate the phase-shifts. By placing the bound-state 
eigenvalue at the position induced by the SRG evolution with Weg-
ner generator in the infrared limit (λ → 0), which corresponds to 
the grid momentum pnBS , we have

lim
λ→0

HWeg,λ
n,m = δn,m

⎧
⎪⎨

⎪⎩

P 2
n+1 if n < nBS,

−γ 2 if n = nBS,

P 2
n if n < nBS.

(23)

Literal application of this result in Eq. (22) generates a discontinu-
ity at δnBS . We can instead just remove the point at the position

n = nBS corresponding to the location of the bound-state eigen-
value, similar to what is done in Kukulin’s prescription, or in-
terpolate between the neighboring values, taking P 2

nBS
→ P̄ 2

nBS
=

(P 2
nBS+1 + P 2

nBS−1)/2. This yields

δ̄
Weg
n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−π
P 2

n+1−p2
n

2wn pn
if n < nBS,

−π
P̄ 2

n−p2
n

2wn pn
if n = nBS,

−π
P 2

n−p2
n

2wn pn
if n > nBS.

(24)

In this way, we get an ordering prescription in which only
the eigenvalues corresponding to momenta pn < pnBS are shifted 
one position to the left, unlike Kukulin’s prescription in which 
all eigenvalues are shifted. As pointed before, the position of the 
bound-state eigenvalue induced by the SRG evolution with Weg-
ner generator changes when using different values for the number 
of grid points N and so the momentum pnBS below which the 
shift is applied. In the bottom-right panel of Fig. 4 we show the 
phase-shifts evaluated from Eq. (24) for different number of grid 
points N , compared to the exact results obtained from the solution 
of the standard LS equation. As one can see, both low-energy and 
high-energy behaviors are correct within the expected uncertain-
ties of the finite grid. The good job performed by the SRG evolution 
with Wegner generator in properly locating the momentum pnBS

154 E.R. Arriola et al. / Physics Letters B 735 (2014) 149–156

Fig. 4. Phase-shifts for the toy model potential in the 1 S0 and 3 S1 channels evaluated by the eigenvalue method with the eigenvalues sorted in several ways. Upper left panel: 
1 S0 channel in ascending order. Upper right panel: 3 S1 channel in ascending order. Lower left panel: 3 S1 channel with Kukulin et al. order. Lower right panel: 3 S1 channel 
in permuted ordering. Some of these orderings can be identified with Wilson or Wegner SRG generators when the infrared limit is taken λ → 0. We have considered a 
high-momentum UV cutoff Λ = 2 fm−1 and different number of grid points N = 10, 20, 30, 40, 50, 100. The points corresponding to the momentum at which the deuteron 
bound-state eigenvalue is placed on the diagonal of the Hamiltonian are omitted. We also show the exact phase-shifts obtained from the solution of the standard LS equation.

and thus

δWil
n = −π lim

λ→0

HWil,λ
n,n − p2

n

2wn pn
= −π

P 2
n − p2

n

2wn pn
(21)

which corresponds to Kukulin’s formula with no shift and thus 
leads to the violation of Levinson’s theorem in the presence of 
bound-states.

For the Wegner generator case, Gs = diag(Hs),

δ
Weg
n = −π lim

λ→0

HWeg,λ
n,n − p2

n

2wn pn
. (22)

Our analysis of the results obtained for the SRG evolution of 
the toy-model Hamiltonian, shown in Fig. 2, suggests an alternative 
prescription to order the eigenvalues when using the energy-shift 
approach to evaluate the phase-shifts. By placing the bound-state 
eigenvalue at the position induced by the SRG evolution with Weg-
ner generator in the infrared limit (λ → 0), which corresponds to 
the grid momentum pnBS , we have

lim
λ→0

HWeg,λ
n,m = δn,m

⎧
⎪⎨

⎪⎩

P 2
n+1 if n < nBS,

−γ 2 if n = nBS,

P 2
n if n < nBS.

(23)

Literal application of this result in Eq. (22) generates a discontinu-
ity at δnBS . We can instead just remove the point at the position

n = nBS corresponding to the location of the bound-state eigen-
value, similar to what is done in Kukulin’s prescription, or in-
terpolate between the neighboring values, taking P 2

nBS
→ P̄ 2

nBS
=

(P 2
nBS+1 + P 2

nBS−1)/2. This yields

δ̄
Weg
n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−π
P 2

n+1−p2
n

2wn pn
if n < nBS,

−π
P̄ 2

n−p2
n

2wn pn
if n = nBS,

−π
P 2

n−p2
n

2wn pn
if n > nBS.

(24)

In this way, we get an ordering prescription in which only
the eigenvalues corresponding to momenta pn < pnBS are shifted 
one position to the left, unlike Kukulin’s prescription in which 
all eigenvalues are shifted. As pointed before, the position of the 
bound-state eigenvalue induced by the SRG evolution with Weg-
ner generator changes when using different values for the number 
of grid points N and so the momentum pnBS below which the 
shift is applied. In the bottom-right panel of Fig. 4 we show the 
phase-shifts evaluated from Eq. (24) for different number of grid 
points N , compared to the exact results obtained from the solution 
of the standard LS equation. As one can see, both low-energy and 
high-energy behaviors are correct within the expected uncertain-
ties of the finite grid. The good job performed by the SRG evolution 
with Wegner generator in properly locating the momentum pnBS

ascending with no shift

ascending with shift to discard BS

shift below BS,

ascending above BS
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Figure 1: On-shell K-matrix in the e↵ective range expansion (ERE) to order O(k2) for the 1S 0 channel and the 3S 1 channel NN interactions.

One should note that the deuteron pole in the T -matrix for the 3S 1 channel located at imaginary momentum k = i �
corresponds to a pole in the K-matrix located at a di↵erent a distinct real momentum �, as shown in Fig. 1. From
Eq. (5) we have,

1
K(k, k; k2)

=
1
a0
� 1

2
re k2 = 0) k = � =

"
2

a0 re

#1/2

. (7)

The relation between � and � is then given by

� =

2
666664

1
re
�

 
1
r2

e
� �2

!1/23777775 . (8)

By replacing the experimental values of a0 and re for the 3S 1 channel in Eqs. (6) and (7) we obtain � ⇠ 0.2313 fm�1

and � ⇠ 0.4592 fm�1. Using M = 938.919 MeV = 4.7581 fm�1 we obtain the deuteron binding energy Bd = �2/M ⇠
2.219 MeV.

2.3. Contact theory regulated by a sharp momentum cuto↵
While the NN potential is fairly general, we will analyze here the simple case of hermitian polynomial potentials

which correspond to contact or zero-range interactions,

V(p, p0) = V (0)(p, p0) + V (2)(p, p0) + V (4)(p, p0) + . . .
= C0 +C2(p2 + p02) +C4(p4 + p04) +C04 p2 p02 + . . . . (9)

In this case the LS equation is divergent, so we can endow the partial-wave K-matrix regulated by a sharp momentum
cuto↵ ⇤,

K⇤(p, p0; k2) = V(p, p0) +
2
⇡
P

Z ⇤

0
dq q2 V(p, q)

k2 � q2 K⇤(q, p0; k2) . (10)

and determine the unknown ⇤-dependent coe�cients C0,C2,C4,C04, . . . through a renormalization procedure. This
equation has been solved in a number of occasions and the idea is, for a given cuto↵ value ⇤, to fix the unknown
coe�cients by fitting the experimental values of the ERE parameters. We solve Eq. (10) analytically and match the
expansion of the inverse on-shell K-matrix in powers of k2 to the ERE up to a given order.

For the contact theory potential at leading-order (LO),

VLO(p, p0) = V (0)(p, p0) = C(0)
0 , (11)

5

SRG with Wilson generator

SRG with Wegner generator
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FIG. 10: The first two panels show the diagonal matrix-elements of the toy potential in the 1S0 channel evolved down to
� = 0.05 fm�1 using Wilson’s generator and Wegner’s generator. The third panel displays the matrix-elements Vnn(� ! 0)
evaluated by the eigenvalue method with the eigenvalues sorted in ascending order. The sharp momentum cut-o↵ is ⇤ = 2 fm�1

and the number of grid points is in between N = 10 and N = 50.

corresponding to the pole in the scattering amplitude while the eigenphase is shifted by �⇡ below the momentum
where the negative eigenvalue is placed in the diagonal of the hamiltonian when the interaction is SRG evolved with
the Wegner’s generator.

Let us give a closer look at the eigenvalue method in order to understand the di↵erences observed in the 3S1 channel
due to the presence of the bound state. We consider three di↵erent prescriptions to compute the phases from the
eigenvalues: sorting the eigenvalues in ascending order, sorting the eigenvalues in ascending order but left-shifting the
eigenvalues so that the bound state is eliminated (Kukulin et al.) and sorting the eigenvalues in the same order as
the SRG evolution with the Wegner’s generator places the diagonal elements in the limit � = 0.

In the 1S0 channel, the three prescriptions give the same result and Fig. (??) shows the eigenvalues of the Toy
hamiltonian sorted in ascending order compared to the free hamiltonian. When the interaction is turned on, there is
a shift in the value of the highest eigenvalues. In the 3S1 channel, due to the bound state, the three prescriptions give
di↵erent results as can be seen in Fig. ??.

Now let us look at the eigenphases obtained with the three orderings for di↵erent grid sizes. They are shown in Fig.
19 where we can see that the eigenphases computed with the Wegner’s ordering match the ones calculated with the
Kukulin’s prescription below the momentum corresponding to the bound state, and match the ones calculated with
the eigenvalues sorted in ascending order above the momentum corresponding to the bound state. As we increase the
number of grid points, the results with Kukulin’s prescription improves and match the eigenphases from the Wegner’s
ordering for momenta below p ⇠ 1.7 fm�1. Above this value, however, Kukulin’s prescription deviates from the
correct result. On the other hand, sorting the eigenvalues in ascending order gives the correct result only above the
momentum corresponding to the bound state.

Another interesting di↵erence between the infrared limit of Wilson’s and Wegner’s SRG evolution is observed in
the running of the diagonal elements of the potential / hamiltonian with the similarity cuto↵ �. As we approach
smaller similarity cuto↵s, there is no crossing amongst the diagonal elements in the 1S0 channel with both Wilson’s
and Wegner’s generators. This can be seen in Figs. 20 and 22. In the 3S1 channel there is also no crossing with the
Wilson’s generator, but the diagonal matrix elements do cross when we make the SRG evolution with the Wegner’s
generator as can be observed in Figs. 21 and 23.

When there is no bound state, the SRG evolution with Wilson’s or Wegner’s generator are practically the same and
the order of the eigenvalues is not modified so that the eigenphases can be obtained by simply using the eigenvalues
in ascending order. This can be seen if Fig. 24 where we show the eigenphases in the 1S0 channel for 0  �  1 fm�1

and di↵erent number of grid points. When a bound state is present, the SRG evolution with the Wegner’s generator
modifies the ordering of the eigenvalues and the eigenphases have to be computed using the order of the diagonal
elements of the hamiltonian in the limit � ! 0. This can be seen if Fig. 25 where we show the eigenphases in the 3S1

channel for 0  �  1 fm�1 and di↵erent number of grid points.
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FIG. 10: The first two panels show the diagonal matrix-elements of the toy potential in the 1S0 channel evolved down to
� = 0.05 fm�1 using Wilson’s generator and Wegner’s generator. The third panel displays the matrix-elements Vnn(� ! 0)
evaluated by the eigenvalue method with the eigenvalues sorted in ascending order. The sharp momentum cut-o↵ is ⇤ = 2 fm�1

and the number of grid points is in between N = 10 and N = 50.

corresponding to the pole in the scattering amplitude while the eigenphase is shifted by �⇡ below the momentum
where the negative eigenvalue is placed in the diagonal of the hamiltonian when the interaction is SRG evolved with
the Wegner’s generator.

Let us give a closer look at the eigenvalue method in order to understand the di↵erences observed in the 3S1 channel
due to the presence of the bound state. We consider three di↵erent prescriptions to compute the phases from the
eigenvalues: sorting the eigenvalues in ascending order, sorting the eigenvalues in ascending order but left-shifting the
eigenvalues so that the bound state is eliminated (Kukulin et al.) and sorting the eigenvalues in the same order as
the SRG evolution with the Wegner’s generator places the diagonal elements in the limit � = 0.

In the 1S0 channel, the three prescriptions give the same result and Fig. (??) shows the eigenvalues of the Toy
hamiltonian sorted in ascending order compared to the free hamiltonian. When the interaction is turned on, there is
a shift in the value of the highest eigenvalues. In the 3S1 channel, due to the bound state, the three prescriptions give
di↵erent results as can be seen in Fig. ??.

Now let us look at the eigenphases obtained with the three orderings for di↵erent grid sizes. They are shown in Fig.
19 where we can see that the eigenphases computed with the Wegner’s ordering match the ones calculated with the
Kukulin’s prescription below the momentum corresponding to the bound state, and match the ones calculated with
the eigenvalues sorted in ascending order above the momentum corresponding to the bound state. As we increase the
number of grid points, the results with Kukulin’s prescription improves and match the eigenphases from the Wegner’s
ordering for momenta below p ⇠ 1.7 fm�1. Above this value, however, Kukulin’s prescription deviates from the
correct result. On the other hand, sorting the eigenvalues in ascending order gives the correct result only above the
momentum corresponding to the bound state.

Another interesting di↵erence between the infrared limit of Wilson’s and Wegner’s SRG evolution is observed in
the running of the diagonal elements of the potential / hamiltonian with the similarity cuto↵ �. As we approach
smaller similarity cuto↵s, there is no crossing amongst the diagonal elements in the 1S0 channel with both Wilson’s
and Wegner’s generators. This can be seen in Figs. 20 and 22. In the 3S1 channel there is also no crossing with the
Wilson’s generator, but the diagonal matrix elements do cross when we make the SRG evolution with the Wegner’s
generator as can be observed in Figs. 21 and 23.

When there is no bound state, the SRG evolution with Wilson’s or Wegner’s generator are practically the same and
the order of the eigenvalues is not modified so that the eigenphases can be obtained by simply using the eigenvalues
in ascending order. This can be seen if Fig. 24 where we show the eigenphases in the 1S0 channel for 0  �  1 fm�1

and di↵erent number of grid points. When a bound state is present, the SRG evolution with the Wegner’s generator
modifies the ordering of the eigenvalues and the eigenphases have to be computed using the order of the diagonal
elements of the hamiltonian in the limit � ! 0. This can be seen if Fig. 25 where we show the eigenphases in the 3S1

channel for 0  �  1 fm�1 and di↵erent number of grid points.
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FIG. 10: The first two panels show the diagonal matrix-elements of the toy potential in the 1S0 channel evolved down to
� = 0.05 fm�1 using Wilson’s generator and Wegner’s generator. The third panel displays the matrix-elements Vnn(� ! 0)
evaluated by the eigenvalue method with the eigenvalues sorted in ascending order. The sharp momentum cut-o↵ is ⇤ = 2 fm�1

and the number of grid points is in between N = 10 and N = 50.

corresponding to the pole in the scattering amplitude while the eigenphase is shifted by �⇡ below the momentum
where the negative eigenvalue is placed in the diagonal of the hamiltonian when the interaction is SRG evolved with
the Wegner’s generator.

Let us give a closer look at the eigenvalue method in order to understand the di↵erences observed in the 3S1 channel
due to the presence of the bound state. We consider three di↵erent prescriptions to compute the phases from the
eigenvalues: sorting the eigenvalues in ascending order, sorting the eigenvalues in ascending order but left-shifting the
eigenvalues so that the bound state is eliminated (Kukulin et al.) and sorting the eigenvalues in the same order as
the SRG evolution with the Wegner’s generator places the diagonal elements in the limit � = 0.

In the 1S0 channel, the three prescriptions give the same result and Fig. (??) shows the eigenvalues of the Toy
hamiltonian sorted in ascending order compared to the free hamiltonian. When the interaction is turned on, there is
a shift in the value of the highest eigenvalues. In the 3S1 channel, due to the bound state, the three prescriptions give
di↵erent results as can be seen in Fig. ??.

Now let us look at the eigenphases obtained with the three orderings for di↵erent grid sizes. They are shown in Fig.
19 where we can see that the eigenphases computed with the Wegner’s ordering match the ones calculated with the
Kukulin’s prescription below the momentum corresponding to the bound state, and match the ones calculated with
the eigenvalues sorted in ascending order above the momentum corresponding to the bound state. As we increase the
number of grid points, the results with Kukulin’s prescription improves and match the eigenphases from the Wegner’s
ordering for momenta below p ⇠ 1.7 fm�1. Above this value, however, Kukulin’s prescription deviates from the
correct result. On the other hand, sorting the eigenvalues in ascending order gives the correct result only above the
momentum corresponding to the bound state.

Another interesting di↵erence between the infrared limit of Wilson’s and Wegner’s SRG evolution is observed in
the running of the diagonal elements of the potential / hamiltonian with the similarity cuto↵ �. As we approach
smaller similarity cuto↵s, there is no crossing amongst the diagonal elements in the 1S0 channel with both Wilson’s
and Wegner’s generators. This can be seen in Figs. 20 and 22. In the 3S1 channel there is also no crossing with the
Wilson’s generator, but the diagonal matrix elements do cross when we make the SRG evolution with the Wegner’s
generator as can be observed in Figs. 21 and 23.

When there is no bound state, the SRG evolution with Wilson’s or Wegner’s generator are practically the same and
the order of the eigenvalues is not modified so that the eigenphases can be obtained by simply using the eigenvalues
in ascending order. This can be seen if Fig. 24 where we show the eigenphases in the 1S0 channel for 0  �  1 fm�1

and di↵erent number of grid points. When a bound state is present, the SRG evolution with the Wegner’s generator
modifies the ordering of the eigenvalues and the eigenphases have to be computed using the order of the diagonal
elements of the hamiltonian in the limit � ! 0. This can be seen if Fig. 25 where we show the eigenphases in the 3S1

channel for 0  �  1 fm�1 and di↵erent number of grid points.

correct p -> 0 limit: V(0,0) = a

a = -23.7 fm

E. Ruiz Arriola, S. Szpigel, VST, Annals of Physics (2016)
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FIG. 12: Top panels: diagonal matrix-elements of the separable potential in the 3S1 channel evolved through the SRG trans-
formation to a similarity cuto↵ � = 0.05 fm�1 using Wilson’s generator and Wegner’s generator for a sharp momentum cut-o↵
⇤ = 2 fm�1 and di↵erent number of gauss points; Middle panels: matrix-elements Vnn(� ! 0) evaluated by the eigenvalue
method with the eigenvalues sorted both in ascending order and in the order determined by the SRG flow with Wegner’s
generator; Bottom panels: ratios Vnn(� ! 0)/Vnn(� = 0.05).
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FIG. 12: Top panels: diagonal matrix-elements of the separable potential in the 3S1 channel evolved through the SRG trans-
formation to a similarity cuto↵ � = 0.05 fm�1 using Wilson’s generator and Wegner’s generator for a sharp momentum cut-o↵
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method with the eigenvalues sorted both in ascending order and in the order determined by the SRG flow with Wegner’s
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Fig. 4. Phase-shifts for the toy model potential in the 1 S0 and 3 S1 channels evaluated by the eigenvalue method with the eigenvalues sorted in several ways. Upper left panel: 
1 S0 channel in ascending order. Upper right panel: 3 S1 channel in ascending order. Lower left panel: 3 S1 channel with Kukulin et al. order. Lower right panel: 3 S1 channel 
in permuted ordering. Some of these orderings can be identified with Wilson or Wegner SRG generators when the infrared limit is taken λ → 0. We have considered a 
high-momentum UV cutoff Λ = 2 fm−1 and different number of grid points N = 10, 20, 30, 40, 50, 100. The points corresponding to the momentum at which the deuteron 
bound-state eigenvalue is placed on the diagonal of the Hamiltonian are omitted. We also show the exact phase-shifts obtained from the solution of the standard LS equation.

and thus

δWil
n = −π lim

λ→0

HWil,λ
n,n − p2

n

2wn pn
= −π

P 2
n − p2

n

2wn pn
(21)

which corresponds to Kukulin’s formula with no shift and thus 
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Our analysis of the results obtained for the SRG evolution of 
the toy-model Hamiltonian, shown in Fig. 2, suggests an alternative 
prescription to order the eigenvalues when using the energy-shift 
approach to evaluate the phase-shifts. By placing the bound-state 
eigenvalue at the position induced by the SRG evolution with Weg-
ner generator in the infrared limit (λ → 0), which corresponds to 
the grid momentum pnBS , we have
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Literal application of this result in Eq. (22) generates a discontinu-
ity at δnBS . We can instead just remove the point at the position

n = nBS corresponding to the location of the bound-state eigen-
value, similar to what is done in Kukulin’s prescription, or in-
terpolate between the neighboring values, taking P 2
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(24)

In this way, we get an ordering prescription in which only
the eigenvalues corresponding to momenta pn < pnBS are shifted 
one position to the left, unlike Kukulin’s prescription in which 
all eigenvalues are shifted. As pointed before, the position of the 
bound-state eigenvalue induced by the SRG evolution with Weg-
ner generator changes when using different values for the number 
of grid points N and so the momentum pnBS below which the 
shift is applied. In the bottom-right panel of Fig. 4 we show the 
phase-shifts evaluated from Eq. (24) for different number of grid 
points N , compared to the exact results obtained from the solution 
of the standard LS equation. As one can see, both low-energy and 
high-energy behaviors are correct within the expected uncertain-
ties of the finite grid. The good job performed by the SRG evolution 
with Wegner generator in properly locating the momentum pnBS
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Fig. 4. Phase-shifts for the toy model potential in the 1 S0 and 3 S1 channels evaluated by the eigenvalue method with the eigenvalues sorted in several ways. Upper left panel: 
1 S0 channel in ascending order. Upper right panel: 3 S1 channel in ascending order. Lower left panel: 3 S1 channel with Kukulin et al. order. Lower right panel: 3 S1 channel 
in permuted ordering. Some of these orderings can be identified with Wilson or Wegner SRG generators when the infrared limit is taken λ → 0. We have considered a 
high-momentum UV cutoff Λ = 2 fm−1 and different number of grid points N = 10, 20, 30, 40, 50, 100. The points corresponding to the momentum at which the deuteron 
bound-state eigenvalue is placed on the diagonal of the Hamiltonian are omitted. We also show the exact phase-shifts obtained from the solution of the standard LS equation.

and thus

δWil
n = −π lim

λ→0

HWil,λ
n,n − p2

n

2wn pn
= −π

P 2
n − p2

n

2wn pn
(21)

which corresponds to Kukulin’s formula with no shift and thus 
leads to the violation of Levinson’s theorem in the presence of 
bound-states.

For the Wegner generator case, Gs = diag(Hs),

δ
Weg
n = −π lim

λ→0

HWeg,λ
n,n − p2

n

2wn pn
. (22)

Our analysis of the results obtained for the SRG evolution of 
the toy-model Hamiltonian, shown in Fig. 2, suggests an alternative 
prescription to order the eigenvalues when using the energy-shift 
approach to evaluate the phase-shifts. By placing the bound-state 
eigenvalue at the position induced by the SRG evolution with Weg-
ner generator in the infrared limit (λ → 0), which corresponds to 
the grid momentum pnBS , we have

lim
λ→0

HWeg,λ
n,m = δn,m

⎧
⎪⎨

⎪⎩

P 2
n+1 if n < nBS,

−γ 2 if n = nBS,

P 2
n if n < nBS.

(23)

Literal application of this result in Eq. (22) generates a discontinu-
ity at δnBS . We can instead just remove the point at the position

n = nBS corresponding to the location of the bound-state eigen-
value, similar to what is done in Kukulin’s prescription, or in-
terpolate between the neighboring values, taking P 2

nBS
→ P̄ 2

nBS
=

(P 2
nBS+1 + P 2

nBS−1)/2. This yields

δ̄
Weg
n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−π
P 2

n+1−p2
n

2wn pn
if n < nBS,

−π
P̄ 2

n−p2
n

2wn pn
if n = nBS,

−π
P 2

n−p2
n

2wn pn
if n > nBS.

(24)
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one position to the left, unlike Kukulin’s prescription in which 
all eigenvalues are shifted. As pointed before, the position of the 
bound-state eigenvalue induced by the SRG evolution with Weg-
ner generator changes when using different values for the number 
of grid points N and so the momentum pnBS below which the 
shift is applied. In the bottom-right panel of Fig. 4 we show the 
phase-shifts evaluated from Eq. (24) for different number of grid 
points N , compared to the exact results obtained from the solution 
of the standard LS equation. As one can see, both low-energy and 
high-energy behaviors are correct within the expected uncertain-
ties of the finite grid. The good job performed by the SRG evolution 
with Wegner generator in properly locating the momentum pnBS
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Fig. 4. Phase-shifts for the toy model potential in the 1 S0 and 3 S1 channels evaluated by the eigenvalue method with the eigenvalues sorted in several ways. Upper left panel: 
1 S0 channel in ascending order. Upper right panel: 3 S1 channel in ascending order. Lower left panel: 3 S1 channel with Kukulin et al. order. Lower right panel: 3 S1 channel 
in permuted ordering. Some of these orderings can be identified with Wilson or Wegner SRG generators when the infrared limit is taken λ → 0. We have considered a 
high-momentum UV cutoff Λ = 2 fm−1 and different number of grid points N = 10, 20, 30, 40, 50, 100. The points corresponding to the momentum at which the deuteron 
bound-state eigenvalue is placed on the diagonal of the Hamiltonian are omitted. We also show the exact phase-shifts obtained from the solution of the standard LS equation.
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In this way, we get an ordering prescription in which only
the eigenvalues corresponding to momenta pn < pnBS are shifted 
one position to the left, unlike Kukulin’s prescription in which 
all eigenvalues are shifted. As pointed before, the position of the 
bound-state eigenvalue induced by the SRG evolution with Weg-
ner generator changes when using different values for the number 
of grid points N and so the momentum pnBS below which the 
shift is applied. In the bottom-right panel of Fig. 4 we show the 
phase-shifts evaluated from Eq. (24) for different number of grid 
points N , compared to the exact results obtained from the solution 
of the standard LS equation. As one can see, both low-energy and 
high-energy behaviors are correct within the expected uncertain-
ties of the finite grid. The good job performed by the SRG evolution 
with Wegner generator in properly locating the momentum pnBS
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Fig. 4. Phase-shifts for the toy model potential in the 1 S0 and 3 S1 channels evaluated by the eigenvalue method with the eigenvalues sorted in several ways. Upper left panel: 
1 S0 channel in ascending order. Upper right panel: 3 S1 channel in ascending order. Lower left panel: 3 S1 channel with Kukulin et al. order. Lower right panel: 3 S1 channel 
in permuted ordering. Some of these orderings can be identified with Wilson or Wegner SRG generators when the infrared limit is taken λ → 0. We have considered a 
high-momentum UV cutoff Λ = 2 fm−1 and different number of grid points N = 10, 20, 30, 40, 50, 100. The points corresponding to the momentum at which the deuteron 
bound-state eigenvalue is placed on the diagonal of the Hamiltonian are omitted. We also show the exact phase-shifts obtained from the solution of the standard LS equation.
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In this way, we get an ordering prescription in which only
the eigenvalues corresponding to momenta pn < pnBS are shifted 
one position to the left, unlike Kukulin’s prescription in which 
all eigenvalues are shifted. As pointed before, the position of the 
bound-state eigenvalue induced by the SRG evolution with Weg-
ner generator changes when using different values for the number 
of grid points N and so the momentum pnBS below which the 
shift is applied. In the bottom-right panel of Fig. 4 we show the 
phase-shifts evaluated from Eq. (24) for different number of grid 
points N , compared to the exact results obtained from the solution 
of the standard LS equation. As one can see, both low-energy and 
high-energy behaviors are correct within the expected uncertain-
ties of the finite grid. The good job performed by the SRG evolution 
with Wegner generator in properly locating the momentum pnBS
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Variational binding energies (Toy)
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But how can we quantify off-shellness ?

� = ||V�|| =
q

Tr V 2
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The Frobenius norm:
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The on-shell transition - N3LO
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● Ising: H0 = 0
■ Ising: H0 = 5 × 10-3 a.u.
◆ Ising: H0 = 10 × 10-3 a.u.
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● NJL:m0 = 0
■ NJL:m0 = 5 × 10-3 GeV
◆ NJL:m0 = 10 × 10-3 GeV
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2D Ising model SU(2) NJL model

N3LO (N = 30, λc = 0.9 fm-1)
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FINAL REMARKS

• The Toy model allowed us to explore the fixed points of the SRG for different   
generators with the evolution up to λ → 0


• In the infrared limit, 2N forces are small and 3N forces are large


•  Evolution of Chiral N3LO interaction towards the infrared region


•  Phase transition in the SRG flow at about λc = 0.9 fm    

•  Interactions at small λ are universal

-1


