Phase transition in the SRG flow of a chiral interaction

Varese S. Timóteo

State University of Campinas – UNICAMP, Limeira, São Paulo, Brazil

Sérgio Szpigel

Presbiterian University Mackenzie, São Paulo, São Paulo, Brazil

Enrique Ruiz Arriola

University of Granada, Granada, Andalucia, Spain

EFB23, Aarhus University, August 2016

OUTLINE

- Motivation
- Similarity Renormalization Group (SRG)
- Infrared limit of the SRG evolution (Toy model: 1SO & 3S1)
- Application: binding energies of light nuclei (Toy & N3LO)
- The on-shell transition (Chiral N3LO: 150)
- Final remarks

Chiral N3LO

PRELIMINARY

Toy model

PLB 728 (2014) 596 PLB 735 (2014) 149 AoP 353 (2015) 129 AoP 371 (2016) 398

MOTIVATION

- Infrared limit of the SRG evolution
- Diagonal (on-shell) interaction in momentum space
- Application to few-body and many-body problems
- Phase transition in the SRG flow

MOTIVATION (SRG)

 $\mathcal{H} |\psi\rangle = E |\psi\rangle$

- Pré-diagonalization
- Reduces off-shellness

S. Glazek K. Wilson

- R. Furnstahl R. Perry S. Bogner E. Jurgenson
- Improves convergence in many-body calculations
- Nuclei and Nuclear matter

R. Roth A. Schwenk P. Navratil J. Vary

H. Hammer K. Hebeler A. Calci S. Binder

Renormalization Group Flow

maps the theory at given scale to same theory at different scale

Similarity Renormalization Group

Similarity Transformation:

S. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993)

$$H_n \left[\Lambda_n \right] = T_{Sim.}^{(n)} \left\{ H_0 \left[\Lambda_0 \right] \right\}$$

Doesn't remove degrees of freedom

But suppresses states with large energy difference (off-diagonal elements): $\langle \psi_L | H | \psi_H \rangle \rightarrow \Lambda_n \leq (E_H - E_L) \leq \Lambda_0$ off-shellness

Unitary transformation: doesn't affect the spectrum

Similarity Renormalization Group

Wegner's formulation:

F. Wegner, Annalen der Physik (Berlin) 3, 77 (1994)

Flow equation:

 $H_s = U(s) \ H \ U^{\dagger}(s) = T + V_s$

similarity cutoff $\lambda :$ dimension of momentum

Flow parameter: $s = \frac{1}{\lambda^4}$ $(0 \le s \le \infty)$

 $\frac{d}{ds}H_s = [H_s, \eta_s]$ Boundary condition: $\lim_{s \to s_0} H_s = H_{s_0}$

Generators for the similarity transformation

Free hamiltonian (kinetic energy): $\eta_s = [H_s, T]$

Diagonal part of the running hamiltonian:

 $\eta_s = [H_s, H_D]$

SRG - WILSON GENERATOR

(two-nucleon system)

$$\eta_s = [H_s, T] \qquad \longrightarrow \qquad \frac{d}{ds} H_s = [H_s, [H_s, T]]$$

$$\frac{d}{ds}V_s(p,p') = -(p^2 - p'^2) V_s(p,p') + \frac{2}{\pi} \int dq \ q^2 \ (p^2 + p'^2 - 2q^2) V_s(p,q) \ V_s(q,p')$$

S. Szpigel and R. J. Perry, in "Quantum Field Theory, A 20th Century Profile", ed. A. N. Mitra, Hindustan Publishing, New Delhi (2000)

S.K. Bogner, R.J. Furnstahl, and R.J. Perry, Phys. Rev. C 75, 061001(R) (2007)

S.K. Bogner, R.J. Furnstahl, R.J. Perry, and A. Schwenk, Phys. Lett. B 649, 488 (2007)

E.D. Jurgenson, P. Navratil, R.J. Furnstahl, Phys. Rev. Lett. 103 (2009) 082501

 $V_{s=0}$ \longrightarrow regular or regularised

SRG - WEGNER GENERATOR

(two-nucleon system)

$$\lambda = \frac{1}{\sqrt[4]{s}}$$

 $\eta_s = [H_s, \operatorname{diag}(H_s)]$

$$\frac{d}{ds}H_s = [H_s, [H_S, \operatorname{diag}(H_s)]]$$

 $T |p\rangle = p^2 |p\rangle \quad [\operatorname{diag}(H_s)]|p\rangle = \epsilon_p |p\rangle$

$$\frac{d}{ds}V_s(p,p') = \frac{2}{\pi}\int_0^\infty dq \ q^2 \ (\epsilon_p + \epsilon_{p'} - 2\epsilon_q) \ H_s(p,q) \ H_s(q,p')$$

TOY MODEL - 1SO & 3S1

Typical SRG calculation with Av18:

Momentum grid: N = 200 , $p_{max} = 30 \text{ fm}^{-1}$

 $\lambda \sim 1 \ {\rm fm}^{-1}$ computational time: 100 – 1000 hours

$$V(p, p') = C e^{-(p^2 + p'^2)/L^2} \qquad p_{\text{max}} = 2 \text{ fm}^{-1}$$

Parameter	$lpha_0$	r_0	С	L
Units	(fm)	(fm)	(fm)	(fm^{-1})
${}^{1}S_{0}$	-23.74	2.77	-1.9158	0.6913
${}^{3}S_{1}$	5.42	1.75	-2.3006	0.4151

Nilson

Neoner

H MATRIX ELEMENTS IN THE LIMIT $\lambda \rightarrow 0$

E. Ruiz Arriola, S. Szpigel, VST, Physics Letters B 735 (2014) 149

Energy-shift formulas

E. Ruiz Arriola, S. Szpigel, VST, Physics Letters B 735 (2014) 149

$$\mathcal{H} |\psi\rangle = E |\psi\rangle \qquad \longrightarrow \qquad \left[p_n^2 + \frac{2}{\pi} \sum_k p_k^2 w_k V_{nk} \right] \psi = P^2 \psi$$

At $\lambda \rightarrow 0$, V is diagonal:

$$P_n^2 = p_n^2 + \frac{2}{\pi} p_n^2 w_n V_n^{\lambda = 0}$$

$$V_n^{\lambda=0} = \frac{1}{\frac{2}{\pi} p_n^2 w_n} \left(P_n^2 - p_n^2 \right) \qquad \begin{array}{l} \text{ordering} \\ \text{required} \end{array}$$

$$\delta(p_n) = -\frac{p_n}{\frac{2}{\pi}p_n^2 w_n} \left(P_n^2 - p_n^2\right) = -p_n V_n^{\lambda=0}$$

Interaction at $\lambda = 0$ and can be calculated directly from the eigenvalues Phase-shifts can be computed without solving the scattering equation

E. Ruiz Arriola, S. Szpigel, VST, Physics Letters B 735 (2014) 149

$$\delta_n^{\text{Wil}} = -\pi \lim_{\lambda \to 0} \frac{H_{n,n}^{\text{Wil},\lambda} - p_n^2}{2w_n p_n} = -\pi \frac{P_n^2 - p_n^2}{2w_n p_n}$$

ascending with no shift SRG with Wilson generator

$$\delta_n^{\text{Weg}} = -\pi \lim_{\lambda \to 0} \frac{H_{n,n}^{\text{Weg},\lambda} - p_n^2}{2w_n p_n}$$

$$\lim_{\lambda \to 0} H_{n,m}^{\text{Weg},\lambda} = \delta_{n,m} \begin{cases} P_{n+1}^2 & \text{if } n < n_c \\ -\gamma^2 & \text{if } n = n_c \\ P_n^2 & \text{if } n > n_c \end{cases}$$

shift below BS, ascending above BS SRG with Wegner generator

$$B_d = \gamma^2 / M$$

NN toy potential in the infrared limit - 150

NN toy potential in the infrared limit - 3S1

NN phase-shifts in the limit $\lambda \rightarrow 0$

E. Ruiz Arriola, S. Szpigel, VST, Physics Letters B 735 (2014) 149

SRG evolution - Chiral N3LO - 1SO

D. R. Entem and R. Machleidt, Phys. Rev. C 68 (2003) 041001

E. Epelbaum, W. Glöckle and U.-G. Meissner, Nucl. Phys. A 747 (2005) 362

Variational binding energies (Toy)

no three-body force

E. Ruiz Arriola, S. Szpigel, VST, Annals of Physics 371 (2016) 398

N3LO

Binding energies per nucleon (N3LO)

3N force in the limit $\lambda o 0$: Triton $B_t^\lambda(3) = B_t(\exp) - B_t^\lambda(2)$

3N force in the limit $\lambda \to 0$: Helium $B_{\alpha}^{\lambda}(3) = B_{\alpha}(\exp) - B_{\alpha}^{\lambda}(2) - B_{\alpha}^{\lambda}(4)$ if $B_{\alpha}^{\lambda}(4) \sim 0 \longrightarrow B_{\alpha}^{\lambda}(3) = B_{\alpha}(\exp) - B_{\alpha}^{\lambda}(2)$

Tjon line

5

0

-5

() -10 -15 m^o -20

-20

-25

-30

-35 _9

-8

-7

N = 20

Toy model

Only S-waves, no repulsion

Up to G-waves

-6

 B_t^{-5} (MeV)

-3

-2

-1

0

But how can we quantify off-shellness ?

The Frobenius norm:

$$\phi = ||V_{\lambda}|| = \sqrt{\mathrm{Tr} \ V_{\lambda}^2}$$

$$V_{\lambda}^2 = \frac{2}{\pi} \int_0^\infty dq \ q^2 \ V_{\lambda}(p,q) \ V_{\lambda}(q,p')$$

Order parameter:

$$\beta = \frac{d\phi}{d\lambda}$$

Similarity susceptibility:

$$\eta = \frac{d\beta}{d\lambda}$$

The Frobenius norm

Toy model - 1SO

The Frobenius norm

Chiral N3LO - 1SO

The on-shell transition - N3LO

Order parameter

0

10

20 N 30

β reminds $\langle M \rangle$ and $\langle \bar{q}q \rangle$

FINAL REMARKS

- The Toy model allowed us to explore the fixed points of the SRG for different generators with the evolution up to $\lambda \to 0$
- In the infrared limit, 2N forces are small and 3N forces are large
- Evolution of Chiral N3LO interaction towards the infrared region
- Phase transition in the SRG flow at about $\lambda c = 0.9~{
 m fm}^{-1}$
- Interactions at small λ are universal