Different properties of $\overline{K}NN$ and $\overline{K}\overline{K}N$ systems

N.V. Shevchenko Nuclear Physics Institute, Řež, Czech Republic

The history

K-pp quasi-bound state

Prediction of the existence of deep and narrow K⁻ pp bound state (G-matrix calculation, complex potential): $E_B = -48$ MeV, $\Gamma = 61$ MeV *T. Yamazaki and Y. Akaishi, Phys. Lett. B535 (2002) 70*

Many theoretical calculations, different models and inputs (Faddeev, variational calculations, FCA):

 $E_B \sim -14 - 80 \text{ MeV}, \quad \Gamma \sim 40 - 110 \text{ MeV}$

FINUDA collaboration: evidence for a deeply bound state (correlated Λ and p) with $E_B = -115$ MeV, $\Gamma = 67$ MeV: *M. Agnello et. al., Phys. Rev. Lett.* 94 (2005) 212303

DISTO collaboration: $E_B = -103$ MeV, $\Gamma = 118$ MeV T. Yamazaki et al. Phys. Rev. Lett. 104, (2010)

 \rightarrow Faddeev calculation of K⁻ pp quasi-bound state with phenomenological and chiral-motivated two-body input (\overline{KN}) $\overline{K}N - \pi\Sigma$ is the <u>basic interaction</u>

How to investigate: - fit to two-body experimental data (not enough),
- use in a few- or many-body calculation and compare with experiment.

1. Faddeev calculation of K^-d scattering length with phenomenological and chirally-motivated two-body input (not directly measurable)

Experiment: measurement of kaonic deuterium *Is* level shift and width (SIDDHARTA, SIDDHARTA-2) \rightarrow calculation of the observables, corresponding to the obtained $a(K^- d)$ (*plus:* search of a quasi-bound state in $K^- d$)

- 2. Calculation of elastic $K^- d$ scattering amplitudes and construction of a two-body $K^- d$ complex potential, based on them.
- 3. Use the potential for calculation of the *1s* level shift and width of kaonic deuterium (to be measured)

<u>One more three-body system</u> with strangeness and possible qbs: $\overline{K}\overline{K}N - \overline{K}\pi\Sigma$

 $\overline{K}NN - \pi \Sigma N$ and $\overline{K}\overline{K}N - \overline{K}\pi \Sigma$ systems: coupled-channel Faddeev equations in Alt-Grassberger-Sandhas form

$$U_{ij}^{\alpha\beta} = \delta_{\alpha\beta} (1 - \delta_{ij}) (G_0^{\alpha})^{-1} + \sum_{k,\gamma=1}^3 (1 - \delta_{ik}) T_k^{\alpha\gamma} G_0^{\gamma} U_{kj}^{\gamma\beta}, \quad i, j = 1, 2, 3$$

 $\overline{K}N \text{ interaction is strongly coupled with } \pi\Sigma \Rightarrow \text{particle channels}(\alpha):$ $\alpha = 1: |\overline{K}_1 N_2 N_3\rangle, \quad \alpha = 2: |\pi_1 \Sigma_2 N_3\rangle, \quad \alpha = 3: |\pi_1 N_2 \Sigma_3\rangle(\overline{K}NN)$ $\alpha = 1: |\overline{K}_1 \overline{K}_2 N_3\rangle, \quad \alpha = 2: |\overline{K}_1 \pi_2 \Sigma_3\rangle, \quad \alpha = 3: |\pi_1 \overline{K}_2 \Sigma_3\rangle(\overline{K}\overline{K}N)$

<u>Quantum numbers</u>: spin $S = 0 (K^- pp)$, $S = 1 (K^- d)$ or $S = 1/2 (K^- K^- p$ system), orbital momentum L = 0, isospin I = 1/2

Two identical nucleons - antisymmetrization,

two identical antikaons - symmetrization \Rightarrow system of 10 integral equations

<u>Coupled-channel</u> $\overline{KN - \pi\Sigma - \pi\Lambda}$ interaction

Experimental data

- 1s level shift and width of kaonic hydrogen (by SIDDHARTA) $\Delta_{1s}^{SIDD} = -283 \pm 36 \pm 6 \,\text{eV}, \quad \Gamma_{1s}^{SIDD} = 541 \pm 89 \pm 22 \,\text{eV}$
- Cross-sections of $K^- p \to K^- p$ and $K^- p \to MB$ reactions
- Threshold branching ratios γ , R_c and R_n
- $\circ \Lambda(1405)$ with one or two pole structure
 - $M_{\Lambda(1405)}^{PDG} = 1405.1_{-1.0}^{+1.3} \text{ MeV}, \ \Gamma_{\Lambda(1405)}^{PDG} = 50.5 \pm 2.0 \text{ MeV}$

<u>Phenomenological and "chirally-motivated" potentials</u> with isospin-breaking effects:

- 1. Kaonic hydrogen: direct inclusion of *Coulomb interaction*
- 2. Use of the <u>physical masses</u>: $m_{K^{-}}, m_{\overline{K}^{0}}, m_{p}, m_{n}$ instead of $m_{\overline{K}}, m_{N}$

<u>Phenomenological $KN - \pi\Sigma$ potentials</u> with one- or two-pole structure of the $\Lambda(1405)$ resonance, equally properly reproducing all experimental data, except $\pi\Lambda$ channel (taken into account indirectly)

$$V_{I}^{\alpha\beta}(\vec{k}^{\,\alpha},\vec{k}^{\,\beta}) = g_{I}^{\,\alpha}(\vec{k}^{\,\alpha})\,\lambda_{1}^{\alpha\beta}\,g_{I}^{\,\beta}(\vec{k}^{\,\beta}), \text{ form-factors:}$$

•1-pole $\Lambda(1405)$:

$$g_{I,1pole}^{\alpha}(k^{\alpha}) = \frac{1}{(k^{\alpha})^{2} + (\beta_{I}^{\alpha})^{2}}$$

for $\alpha = K$ ($\overline{K}N$ channel) or π ($\pi\Sigma$ channel)

• 2 - pole
$$\Lambda(1405)$$
:

$$g_{I,1pole}^{\alpha}(k^{\alpha}) = \frac{1}{(k^{\alpha})^{2} + (\beta_{I}^{\alpha})^{2}} \qquad \text{for } \alpha = K \ (\overline{K}N \text{ channel})$$

$$g_{I,2pole}^{\alpha}(k^{\alpha}) = \frac{1}{(k^{\alpha})^{2} + (\beta_{I}^{\alpha})^{2}} + \frac{s \ (\beta_{I}^{\alpha})^{2}}{[(k^{\alpha})^{2} + (\beta_{I}^{\alpha})^{2}]^{2}} \qquad \text{for } \alpha = \pi \ (\pi\Sigma \text{ channel}).$$

<u>"Chirally-motivated" $KN - \pi\Sigma - \pi\Lambda$ potential</u>, properly reproducing all experimental data (two-pole $\Lambda(1405)$ resonance structure)

$$V_{I}^{\alpha\beta}(\vec{k}^{\,\alpha},\vec{k}^{\,\prime\,\beta};\sqrt{s}\,) = \sqrt{\frac{M_{\alpha}}{2\omega_{\alpha}E_{\alpha}}}g_{I}^{\,\alpha}(\vec{k}^{\,\alpha}\,)\,\frac{C_{I}^{\,\alpha\beta}(\sqrt{s}\,)}{(2\pi)^{3}f_{\alpha}f_{\beta}}\,\sqrt{\frac{M_{\beta}}{2\omega_{\beta}E_{\beta}}}\,g_{I}^{\,\beta}(\vec{k}^{\,\prime\,\beta}\,),$$

Yamaguchi form-factors:
$$g_I^{\alpha}(k^{\alpha}) = \frac{(\beta_I^{\alpha})^2}{(k^{\alpha})^2 + (\beta_I^{\alpha})^2}$$

The leading-order Weinberg-Tomozawa term

$$C_{I}^{\alpha\beta}(\sqrt{s}) = -C^{WT}(2\sqrt{s} - M_{\alpha} - M_{\beta})$$

Parameters: f_K , f_π (pseudoscalar meson decay constants) $\beta_I^{\ \alpha}$ (range parameters) Experimental and theoretical <u>Is level shifts and widths</u> <u>of kaonic hydrogen</u>

Strong pole positions (MeV)

1-pole phenom. $V(\overline{K}N)$	2-pole phenom. $V(\overline{K}N)$	Chirally motiv. $V(\overline{K}N)$
1426 – <i>i</i> 48	1414 – <i>i</i> 58 1386 – <i>i</i> 104	1417 – <i>i</i> 33 1406 – <i>i</i> 89

Comparison with experimental data on $K^- p$ cross-sections phenomenological and chiral-motivated potentials

Three-body quasi-bound states

$\overline{KNN}(\overline{Kpp})$ pole positions (MeV)

1-pole phenom. $V(\overline{K}N)$	2-pole phenom. $V(\overline{K}N)$	Chirally motiv. $V(\overline{K}N)$	
- 53.3 - <i>i</i> 32.4	-47.4 - i 24.9	-32.2-i 24.3	

No pole positions were found in the K^-d system

$\overline{K}\overline{K}N$ pole positions (MeV)

1-pole phenom. $V(\overline{K}N)$	2-pole phenom. $V(\overline{K}N)$	Chirally motiv. $V(\overline{K}N)$
- 19.5 - <i>i</i> 51.0	-25.9 - i 42.3	- 16.1 - <i>i</i> 30.7

Strong dependence on the $\overline{K}N$ model

K^-d scattering

<u> $K^{-}d$ scattering length (fm)</u>

1-pole phenom. $V(\overline{K}N)$	2-pole phenom. $V(\overline{K}N)$	Chirally motiv. $V(\overline{K}N)$
-1.49 + i 1.24	-1.51 + i 1.25	-1.59 + i 1.32

Weak dependence on the $\overline{K}N$ model

Near-threshold K^-d scattering amplitudes \longrightarrow approximate evaluation of *1s* level shift and width of kaonic deuterium:

 $K^{-}d$ system = K^{-} + point-like deuteron

1s level shift and width of kaonic deuterium

1. Two-body strong $K^- - d V^S_{K^-d}$ potential: reproduces the $K^- d$ scattering amplitudes

2. Energy of the *ls* level of kaonic deuterium: Lippmann-Schinger equation with the strong and Coulomb potentials $H = H_0 + V_{K^-d}^S(k,k') + V^{Coul} \implies E_{1s}^{S+Coul}$

3. *Is* level shift caused by strong interaction: $\Delta E_{1s} = E_{1s}^{Coul} - \text{Re}(E_{1s}^{S+Coul})$

	<i>Is</i> level shift $\Delta E_{1s}^{K^{-d}}$ (eV)) and width $\Gamma_{1s}^{K^-d}$ (eV	<i>V</i>) of kaonic deuterium
--	---	--------------------------------------	--------------------------------

1-pole phen	om. $V(\overline{K}N)$	2-pole phenom. $V(\overline{K}N)$		Chirally motiv.	$V(\overline{K}N)$
$\Delta E_{1s}^{K^-d}$	$\Gamma_{1s}^{K^-d}$	$\Delta E_{1s}^{K^-d}$	$\Gamma_{1s}^{K^-d}$	$\Delta E_{1s}^{K^-d}$	$\Gamma_{1s}^{K^-d}$
- 785	1018	- 797	1025	- 828	1055

Weak dependence on the \overline{KN} model

Conclusions

The constructed:

- phenomenological $\overline{K}N \pi\Sigma$ with <u>one-pole</u> $\Lambda(1405)$ resonance
- phenomenological $\overline{K}N \pi\Sigma$ with <u>two-pole</u> $\Lambda(1405)$ resonance
- <u>chirally motivated</u> $\overline{KN} \pi \Sigma \pi \Lambda$ potentials

reproduce SIDDHARTA data on kaonic hydrogen 1s level shift and width and the scattering $K^{-}p$ data with the same level of accuracy

Used in the three-body calculations:

- The pole position of the K^-pp and K^-K^-p quasi-bound state strongly depends on the \overline{KN} model
- Dependence of the K^-d scattering length and Is level shift and width of kaonic deuterium on the form of the \overline{KN} potential is weak.