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The hypercentral 

 Constituent Quark Model 

 Nonstrange baryon resonances with u  and d quarks can be classified using the 

non-relativistic quark model. The Constituent Quark Models (CQMs) have been 

recently widely applied to the description of baryon properties and most attention 

has been devoted to the spectrum [1-7].  

We consider baryons as bound states of three quarks. After removing the center 

of mass coordinate R, the internal quark motion is described by the Jacobi 

coordinates : 

Such that: 
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Here m1, m2 and m3 are the constituent quark masses. 
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 In order to describe three - quark dynamics, it is convenient to introduce the 

hypersperical coordinates, which are obtained by replacing the absolute values      

and    by:  

where r is the hyperradius and    is the hyperangle.  

In our model the interaction potential is assumed as:  

4 

3 

2
2

2 2 2 2
( ) ,

1 ( 1)

c d hr kr
V r ar br

r r r r
     

 

Killingbeck potential  Isotonic oscillator potentials  



First we will solve the Schrödinger equation with this potential exactly by 

means of the ansatz method, and give the closed-form expressions for the 

energies then by using the generalized GR mass formula we can try to find 

the baryons mass. For hypercentral potentials, the Schrödinger equation, in 

the hyperspherical coordinates, is simply reduced to a single hyperradial 

equation, while the angular and hyperangular parts of the 3q-states are the 

known hyperspherical harmonics [8]. 

Therefore the Hamiltonian will be:  
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Solution of the Schrödinger 

Equation for the Phenomenological 

Interaction Potential 
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The Schrödinger equation for a system containing three quarks with a 

potential            and by considering of                                can be written as: ( )V r 5/2( )u r r   
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        where    is the grand angular quantum number,     is the reduced mass and                   ( )u r 

is the hyperradial wave function.  
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By putting Eq. (4) in Eq. (6) we obtain the following equation: 
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We suppose the following form for the wave function: 
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Solution of the Schrödinger 

Equation for the Phenomenological 

Interaction Potential 

Now for the functions            and           we make use of the ansatz [9,10]: ( )f r ( )g r
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From Eq. (9) we obtain: 
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and from Eq. (10) we have: 
2 2 2

2 2 2 2

2 2 2 2 2 2 2

2 2 2 2

4 4 4 8 2
( ) 4 4 4 8 4 ,

1 ( 1) 1 1 1

2 4
( ) 2 ,

1 ( 1)

r
f r r r

r r r r r r r

f r
r r r

     
     

  


            
    

    
 

By putting Eq. (12) in Eq. (11) we will have: 
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By Comparing Eqs. (8) and (13), we can obtain: 
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The energy eigenvalues are given as follows: 
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Solution of the Schrödinger 

Equation for the Phenomenological 

Interaction Potential 

Equation (14) immediately yields: 
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Gürsey Radicati Mass 

Formula 

9  

The description of the nonstrange baryons spectrum obtained by the 

hypercentral Constituent Quark Model (hCQM) is fairly good and 

comparable to the results of other approaches, but in some cases the splitting 

within the various SU (6) multiplets are too low. The preceding results [11, 

12, 13] show that both spin and isospin dependent terms in the quark 

Hamiltonian are important. Description of the splitting within the SU (6) 

baryon multiplets is presented by the Gürsey Radicati mass formula [14]: 
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where M0 is the average energy value of the SU (6) multiplet, C2[SUS (2)] 
and C2[SUI (2)] are the SU (2) (quadratic) Casimir operators for spin and 

isospin, respectively, and C1[UY (1)] is the Casimir for the U (1) subgroup 

generated by the hypercharge Y.  



Generalized Gürsey 

Radicati Mass Formula 
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This mass formula has tested to be successful in the description of the ground 

state baryon masses, however, as stated by Gürsey and Radicati , it is not the 

most general mass formula that can be written on the basis of a broken SU (6) 

symmetry. In order to generalize Eq. (17), Giannini and his collegues 

considered a dynamical spin- flavor symmetry SUSF (6) [15] and described the 

SUSF (6) symmetry breaking mechanism by generalizing Eq. (17) as: 
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  In Eq. (18) the spin term represents spin-spin interactions, the flavor term 

denotes the flavor dependence of the interactions, and the SUSF (6) term 

depends on the permutation symmetry of the wave functions.  
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  The generalized Gürsey Radicati mass formula Eq. (18) can be used to 

describe the light baryons spectrum, provided that two conditions are fulfilled. 

The first condition is the feasibility of using the same splitting coefficients for 

different SU (6) multiplets. This seems actually to be the case, as shown by the 

algebraic approach to the baryon spectrum [1]. The second condition is given 

by the feasibility of getting reliable values for the unperturbed mass values M0 

[15].  

 

Therefore, the light baryons masses are obtained by three quark masses and the 

eigenenergies  of the radial Schrödinger equation with the expectation values 

of HGR as follows: 

 

 In order to simplify the solving procedure, the constituent quarks masses are 

assumed to be the same for up and down quark flavors . In previous section we 

determined eigenenergies by exact solution of the radial Schrödinger equation 

for the hypercentral Potential. The expectation values of HGR , is completely 

identified by the expectation values of the Casimir operators [16]: 

Generalized Gürsey 

Radicati Mass Formula 

3 GRM m E H    19 



Calculating the Masses of 

 Nonstrange Baryons Resonances  

12  

2

2

45
[56]

4

33
[ (6)] [70]

4

21
[20]

4

3 [8]

[SU (3)] 6 [10]

0 [1]

SF

F

for

C SU for

for

for

C for

for






 








 



2

1

2

[ (2)] ( 1)

[ (1)]

[ (2)] ( 1)

I

Y

S

C SU I I

C U Y

C SU S S

 



 

20 

For calculating the light baryons mass according to Eq. (19), we need to find 

the unknown parameters. For this purpose we choose a limited number of 

well-known light resonances and express their mass differences using HGR 

and the Casimir operator expectation values: 

 
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Table 1 
  

     The fitted values of the parameters of the Eq. (19), obtained with resonances mass  

differences and global fit to the experimental resonance masses [17]. 

Parameter A B C E m 

Value 
-18.23 
MeV 

-3.13   
MeV 

38.3  
59.1 
MeV 

265 

MeV 
-0.21 

 

0.573 

MeV 
0.401 0.51 

  d 

2MeV

 We found the C  parameter from Eq. (21) and determined m,       ,      ,        and      

and  the three coefficients A, B and E of Eq. (20) in a simultaneous fit to 

the 3 and 4 star resonances of Table 2 which have been assigned as octet 

and decuplet states. The fitted parameters are reported in Table 1. The 

corresponding numerical values are given in Table 2. Comparison between 

our results and the experimental masses show that the light baryon spectra 

are, in general, fairly well reproduced.  

  d 
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Calculating the Masses of 

 Nonstrange Baryons Resonances  

Table 2 
  

Mass spectrum of baryons resonances (in 

MeV) calculated with the mass formula Eq. 

(19). The column               contains our 

calculations with the parameters of table 1. 
Our Ca lcM

Baryon Status Mass(exp)[17] State 

N(938) P11 **** 938 281/2[56, 0+] 938.1  

N(1440) P11 **** 1420-1470 281/2[56, 0+] 1447.9 

N(1520) D13 **** 1515-1525 283/2[70, 1-] 1517.42 

N(1535) S11 **** 1525-1545 281/2[70, 1-] 1517.42 

N(1650) S11 **** 1645-1670 481/2[70, 1-] 1667.26 

N(1675) D15 **** 1670-1680 485/2[70, 1-] 1667.26 

N(1680) F15 *** 1680-1690 285/2[56, 2+] 1722.24 

N(1700) D13 *** 1650-1750 483/2[70, 1-] 1667.26 

N(1710) P11 *** 1680-1740 281/2[70, 0+] 1680.85 

N(1720) P13 **** 1700-1750 283/2[56, 2+] 1722.24 

N(2190) G17 **** 2100-2200 287/2[70, 3-] 2130.44 

N(2220) H19 **** 2200-2300 289/2[56, 4+] 2258.21 

N(2250) G19 **** 2200-2350 489/2[70, 3-] 2246.3 

N(2600) I1,11 *** 2550-2750 2811/2[70, 5-] 2574.34 

Δ (1232) P33 **** 1231-1233 4103/2[56, 0+] 1232.02 

Δ (1600) P33 *** 1550-1700 4103/2[56, 0+] 1590.13 

Δ (1700) D33 **** 1670-1750 2103/2[70, 1-] 1700.32 

Δ (1905) F35 **** 1865-1915 4105/2[56, 2+] 1892.51 

Δ (1910) P31 **** 1870-1920 4101/2[56, 2+] 1892.51 

Δ (1920) P33 *** 1900-1970 4103/2[56, 0+] 1942.26 

Δ (1950) F37 **** 1915-1950 4107/2[56, 2+] 1892.51 

Δ (2420) H3, 11 **** 2300-2500 41011/2[56, 4+] 2464.45 

Our Ca lcM

 Comparison between our results 

and the experimental masses [17] 

show that the light baryon spectra 

are, in general, fairly well 

reproduced.  
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Conclusion  

 The overall good description of the spectrum which we obtain by this 

combination of potentials shows that our model can also be used to give a fair 

description of the energies of the excited multiplets up to three GeV and not 

only for the ground state octets and decuplets.  

 

Our model can also be used to give a fair description of the negative-parity 

resonance. 

 

  

Our model reproduces the position of the Roper resonances of the nucleon. 
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