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X Nonstrange baryon resonances with ¢ and & quarks can be classified using the
non-relativistic quark model. The Constituent Quark Models (CQMs) have been
recently widely applied to the description of baryon properties and most attention
has been devoted to the spectrum [1-7].

*2*We consider baryons as bound states of three quarks. After removing the center
of mass coordinate R, the internal quark motion is described by the Jacobi
coordinates :
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Here m,, m,and mjare the constituent quark masses.
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¢ In order to describe three - quark dynamics, it is convenient to introduce the
hypersperical coordinates, which are obtained by replacing the absolute values

,and Aby:

= \/p: + A7 £ = arctan(%) e

where ris the hyperradius and< is the hyperangle.

@ In our model the interaction potential is assumed as:
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Killingbeck potential  [sotonic oscillator potentials
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& First we will solve the Schrodinger equation with this potential exactly by
means of the ansatz method, and give the closed-form expressions for the
energies then by using the generalized GR mass formula we can try to find
the baryons mass. For hypercentral potentials, the Schrodinger equation, in
the hyperspherical coordinates, is simply reduced to a single hyperradial
equation, while the angular and hyperangular parts of the 3g-states are the
known hyperspherical harmonics [8].

& Therefore the Hamiltonian will be:

. 2
H =2iv2 () (5

7
The Schrodinger equation for a system containing three quarks with a
potential V (r) and by considering of v, =u,, (r)r > can be written as:

d uw(r)+2/{E Y (r)_(2y+85)(r22y+3)}uw(r)20’ e
y7;

dr?
where y Is the grand angular quantum number, £ is the reduced mass and u L, (r)
Is the hyperradial wave function. 5
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# By putting Eq. (4) in Eq. (6) we obtain the following equation:

deu  (r 2
L():_zﬁ{E_arz_br_g_ol_ hr kr —(2”5)(2”3)}%(0, a
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regardin - we hav

by regardi g(Ir T rPal (rFepF enave

du_(r

A_[ 2 UE +2par? +2,ubr+2,u +2,u—d + 21 ?r +2u 2k
dr? +1 r-+1

k (2 +5)(2y +3)

— + u r ’

ﬂ(r2+1)2 4r° u, (r)

We suppose the following form for the wave function:

U, (r)=g(r) exp(f (r)). O




Solution of the Schrédinger u
. 'Equation for the Phenomenological \
' Interaction Potential

4o

ﬂ Now for the functions f (r) and g(r) we make use of the ansatz [9,10]:
1 v=0

g(r)z t[(r_aiv) v>1 @

f(N=ar*+pr+Ainr+xIn(r’+1) , a>0,

From Eqg. (9) we obtain:

ur ()= {f () +f () + 2 (r)gg((”;g”(”} ()

and from Eq. (10) we have:
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f'(r)=2a-—-
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By putting Eq. (12) in Eq. (11) we will have:

2
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By Comparing Egs. (8) and (13), we can obtain:
A2 — - 2pd — (27/+5)4(27/+3) _o,

A0

da® =2ua, —4n*+4n=-2uk,

ABn=2uh, 4n° +4in—-8an-2n=2uk, 4af3=2ub,
2P =2uc, P +dai+8an+2a=-2uF,

Equation (14) immediately yields:

i—1+‘/1+8ﬂd+(27/+5)(27/+3) o __ |ua 11+ 20k
> , 5 n > > @
ﬁ:ﬂ, b:M, c:@,
21 H H

m The energy eigenvalues are given as follows:

E, __ L (B aai18an+2a). @
2u
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m The description of the nonstrange baryons spectrum obtained by the
hypercentral Constituent Quark Model (hCQM) is fairly good and
comparable to the results of other approaches, but in some cases the splitting
within the various SU (6) multiplets are too low. The preceding results [11,
12, 13] show that both spin and isospin dependent terms in the quark
Hamiltonian are important. Description of the splitting within the SU (6)
baryon multiplets is presented by the Giirsey Radicati mass formula [14]:

M =M +CC,[SU, (2)]+DC,[U, O]+E[C,[SU, (2)]—%(C1[UY DD°]

® where M, is the average energy value of the SU (6) multiplet, C,/SU; (2)]
and C,/SU, (2)] are the SU (2) (quadratic) Casimir operators for spin and

Isospin, respectively, and C,/UY (1)/is the Casimir for the U (1) subgroup
generated by the hypercharge Y.
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» This mass formula has tested to be successful in the description of the ground
state baryon masses, however, as stated by Giirsey and Radicati , it is not the
most general mass formula that can be written on the basis of a broken SU (6)
symmetry. In order to generalize Eqg. (17), Giannini and his collegues
considered a dynamical spin- flavor symmetry SU.. (6) [15] and described the
SU,-(6) symmetry breaking mechanism by generalizing Eq. (17) as:

M =M ,+AC,[SU. (6)]+BC,[SU . (3)]+CC,[SU  (2)]+DC,U, ()]
+E[C,[SU, (1-3(C,U, M) (18,

» In Eq. (18) the spin term represents spin-spin interactions, the flavor term
denotes the flavor dependence of the interactions, and the SU.- (6) term
depends on the permutation symmetry of the wave functions.

10
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» The generalized Giirsey Radicati mass formula Eq. (18) can be used to
describe the light baryons spectrum, provided that two conditions are fulfilled.
The first condition is the feasibility of using the same splitting coefficients for
different SU (6) multiplets. This seems actually to be the case, as shown by the
algebraic approach to the baryon spectrum [1]. The second condition is given
by the feasibility of getting reliable values for the unperturbed mass values Mo
[15].

» Therefore, the light baryons masses are obtained by three quark masses and the
eigenenergies of the radial Schrodinger equation with the expectation values

of H,, as follows: M :3m-|—EW+<HGR> @

> In order to simplify the solving procedure, the constituent quarks masses are
assumed to be the same for up and down quark flavors . In previous section we
determined eigenenergies by exact solution of the radial Schrodinger equation
for the hypercentral Potential. The expectation values of H,, , Is completely
Identified by the expectation values of the Casimir operators [16]:

11
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(C,[SU (8)])

(3 for [8]

(C,[SU, (3)]) =16 for[10]

0 for[]]

For calculating the light baryons mass according to Eqg. (19), we need to find

the unknown parameters. For this purpose we choose a limited number of
well-known light resonances and express their mass differences using Hgs

and the Casimir operator expectation values:
N (1650)S 11— N (1535)S 11=3C
A(1232)P 33—N (938)P11=9B +3C +3E @
N (1535)S 11— N (1440)S 11=(E 10— E 01)+12A 19
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Nonstrange Baryons Resonances

» We found the C parameter from Eq. (21) and determined m, a B d and 7
and the three coefficients A, B and £ of Eq. (20) in a simultaneous fit to
the 3 and 4 star resonances of Table 2 which have been assigned as octet
and decuplet states. The fitted parameters are reported in Table 1. The
corresponding numerical values are given in Table 2. Comparison between
our results and the experimental masses show that the light baryon spectra
are, in general, fairly well reproduced.

Table 1

The fitted values of the parameters of the Eqg. (19), obtained with resonances mass
differences and global fit to the experimental resonance masses [17].

Parameter| A B c| E| m o Vi d n
-18.23 | -3.13 59.1 | 265 -0.21 0.573

13
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Table 2

Mass spectrum of baryons resonances (in
MeV) calculated with the mass formula Eq.
(19). The column M ., contains our
calculations with the parameters of table 1.

» Comparison between our results
and the experimental masses [17]
show that the light baryon spectra
are, in general, fairly well
reproduced.

d

Nonstrange Baryons Resonances S

Baryon Status | Mass(exp)[17] State M our Cale
N(938) P11 | s#skxx 938 28, ,[56, 0*] 938.1
N(1440) P11 [  #%xx 1420-1470 28, ,[56, 0*] 1447.9
N(1520) D13 | ##x* 1515-1525 28,,[70, 1] 1517.42
N(1535) S11 | #x** 1525-1545 28,,[70, 1] 1517.42
N(1650) S11 | ##** 1645-1670 48,,[70, 1] 1667.26
N(1675) D15 | ##xx 1670-1680 48,,[70, 1] 1667.26
N(1680) F15 | *** 1680-1690 28.,,[56, 2] 1722.24
N(1700) D13 | ##x 1650-1750 48,,[70, 1] 1667.26
N(1710) P11 |  s#xx 1680-1740 28, ,[70, 0*] 1680.85
N(1720) P13 | **** 1700-1750 28,,,[56, 2*] 1722.24
N(2190) G17 | **** 2100-2200 28,,[70, 3] 2130.44
N(2220) H19 | **** 2200-2300 28,,,[56, 4] 2258.21
N(2250) G19 | **** 2200-2350 484,,[70, 3] 2246.3
N(2600) 11,11 *Ex 2550-2750 28,,,[70, 5] 2574.34
A (1232) P33 | #xsx 1231-1233 410,,,[56, 0*] 1232.02
A (1600) P33 |  s#x*x* 1550-1700 410,,,[56, 0*] 1590.13
A (1700) D33 |  s##xx 1670-1750 210,,[70, 17] 1700.32
A (1905) F35 |  sxxx 1865-1915 410,,[56, 2*] 1892.51
A (1910) P31 | sxxx 1870-1920 410,,,[56, 2*] 1892.51
A (1920) P33 |  s#*x 1900-1970 410,,,[56, 0*] 1942.26
A (1950) F37 | sxxx 1915-1950 410,,,[56, 2*] 1892.51

A (2420) H3, 11 | #x%x 2300-2500 | 410,,,[56, 4+] 2464.45

14
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» The overall good description of the spectrum which we obtain by this
combination of potentials shows that our model can also be used to give a fair
description of the energies of the excited multiplets up to three GeV and not
only for the ground state octets and decuplets.

»Our model can also be used to give a fair description of the negative-parity
resonance.

> Our model reproduces the position of the Roper resonances of the nucleon.

15
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