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                  A.Deloff in „Fundamentals in hadronic atom theory”: 

 

      „.. the conventional picture of hadronic atoms (is) based on a two-body  

          model Hamiltonian in which all strong interaction effects have been  

          simulated by an absorptive potential representing the complicated  

          interaction between the hadron and the nucleus...”   

Well, it is not a two-body system 
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  The simplest case to study deviation from two-body picture: 

   hadronic deuterium (kaonic in our case) : 
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Powerful methods to treat 3-body problem: 

 

(a)  - Faddeev equations 

(b)  - variational methods (w.f. expansion in coordinate space) 

But: 

 

(a)  - everlasting problem with the long range Coulomb force (especially attractive) 

(b)  - two very different – and relevant - distance scales in hadronic atoms  

Some years ago Z. Papp proposed a method for simultaneous  

treatment of short range and Coulomb forces in 3-body problem. 

Basic idea: transform the Faddeev integral equations into matrix 

equations  using  a special discrete and complete set of the  

Coulomb Sturmian  functions as a basis.  

Successfully applied for short range + repulsive Coulomb forces 

(nuclear case) and purely Coulomb systems with attraction and 

repulsion.  
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The most remarkable feature of the CS basis: the matrices of 

and               are tridiagonal. This allows to set up an infinite tridiagonal  

set of equations for the matrix elements of                                and 

                            , which can be solved exactly for any     .  
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Unfortunately, due to the lack of  time, I have to rush through the  

formalism. For those, who are interested, the details can be found  

                              in arXiv  1608.01802                  

Appeared today !! 
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Assuming that particles 1,2 and 3 are distinguishable, we have 3 coupled 

particle channels:                                                          and correspondingly 

a column wave function      ,which is then separated into the ususal Faddeev 

components:         
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Faddeev equations for our system 
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Using particle representation of the interactions we get coupled Faddeev  

equations for the 9 unknown functions. Symmetrization with respect to 

barion labels 1,2 simplifies the system: symmetric and antisymmetric combinations 

are decoupled. Since the deuteron is antisymmetric in these indices             , 

              disappears from the equations and we have to keep the 4 antisymmetric  

combinations (4, not 3, due to the dual nature of  particle pair 3). 

For them the Noble form of homogeneous Faddeev equations (Coulomb  

interaction is added to       )   reads: 
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with 
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The Coulomb interaction is the same in each Green’s function, expressed  

in different Jacobi coordinates 
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Introducing a double CS basis for each set of Jacobi coordinates 

 

 

the unknown functions        for                                       can be expanded 
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(1) When operators expressed in one set of Jacobi coordinates act on  

      functions, depending on another set, a characteristic feature of 

      Faddeev equations, we have to insert a transformation matrix: 

 

 

     

      where             is the overlap matrix of the two CS basis sets,  

      depending on different Jacobi coordinates: 
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(2) When calculating the matrix elements of the Green-operators, two 

     cases has to be distinguished. In                   the Coulomb interaction 

     depends on its “native” relative coordinate       thus it corresponds to 

     a Green-operator of two non-interacting subsystems, sharing a common 

     total energy. For this case, a calculation scheme exists. In the other two 

     Green-operators the Coulomb interaction depends on both “native” coor- 

     dinates and in order to reduce them to a calculable form, we have to split 

     the Coulomb interaction into  “channel” and “polarization” parts: 

 

                                                               ;  (     is a mass-coefficient )                                                         
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The Green-operators of the first two Faddeev equations satisfy the 

 resolvent equations 

 

                                        and   
ch ch

np np np np npG G G U G 
ch ch

K n K n K n K n K n
G G G U G     

with the channel Green operators 

 

 

 

 

 

                                                                                                 

 

and the polarization potentials         and          . 

  

1
2

1 1 0 1 0 1 1

1

1
2

2 2 0 2 0 2 2

2

( , ; ) ( ) ( ) ( )

( , ; ) ( ) ( ) ( )

ch

np np

ch

K n K n

e
G x y E E h x h y v x

y

e
G x y E E h x h y v x

y
 





 
     
 

 
     
 

npU
K n

U 

14 



EFB23, Aarhus, 7-12 August 2016 

1 1

1 1 1 1 1 1 1 2 2 3 3

2 2

2 2 2 2 2 2 2 1 1 3 3

( , )

( , ; )[ ( , ) ( , ) ( )( ( , ) ( , ))]

( , )

( , ; )[ ( , ) ( , ) ( )( ( , ) ( , ))]

np

ch

np np np np K n K p

K n

ch

npK n K n K n K n K p

x y

G x y E U x y x y v x x y x y

x y

G x y E U x y x y v x x y x y

 



    

 

   

 

   

With their help the first two Faddeev equations can be rewritten as 

 

15 



EFB23, Aarhus, 7-12 August 2016 
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Now all matrix elements are in calculable form and our final matrix equation  

reads                        with 

 

 

 

 

 

                                                                                                                                  . 

 

 

Bold face letters stand for the vectors and matrices in the corresponding Coulomb 

Sturmian basis. Our task is to find the (complex) solution       of the equation 

                                 close to the unperturbed value                                   .  

  

E

( ( )) 0Det E I A 0 1 ( )d sE E K d  

16 



EFB23, Aarhus, 7-12 August 2016 

The crucial point of the method is the calculation of the matrix elements of 

the Green-operators, all of which correspond now to those of non-interacting  

subsystems. They can be written in the form 

 

 

and for them the following convolution integral representation exists: 

 

 

 

with                                                    and                                                    .    
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For our operators                                                                           
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The choice of       depends on the particular physical problem 

 

-  for “ordinary” 3-body problem (real energy, bound or scattering states) 

   on the physical sheet  

-  for 3-body problem with absorptive potentials (complex energy eigen- 

   values) – still on the physical sheet. Our previous test calculation 

  

    (P. Doleschall, J. Révai and N. V. Shevchenko PLB 744 (2015) 105 

 

    was of this type 

 -  search for resonance poles in scattering – complex eigenvalue on the 

    non-physical sheet. The path must be continued to the non-physical 

    sheet (several papers of  Z. Papp et al.)     

-   interaction with several thresholds and cuts – complicated Riemann  

    surface of at least one of the     -s. Our present case: the sought  

    eigenvalue, a quasi bound state is on one of the unphysical sheets.    

- the Coulomb Sturmian matrix elements strongly oscillate along the real 

axis; it is desirable to move the integration path into the complex plane 

as much as possible 

c

ig
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After a brief outline of the general formalism, some details of the present  

calculation 

        interactions 

 

 -  test calculation: simple one-term separable potentials with (constant) 

    complex coupling strength to account for the absorption; 

 -  present: 3 versions of realistic, multichannel potentials 

    SIDD1  -                      coupled channels, one-pole structure of the                 

    SIDD2  -                      coupled channels, two-pole structure of the  

    Chiral   -                              coupled channels, energy dependent coupling  

                    strength, channel coupling according to chiral perturbation theory 

KN

KN   (1405)

KN   (1405)

KN    

Separable potentials  with simple Yamaguchi form-factors. 

Reproduce all known         data, including the       level shift of kaonic hydrogen. KN 1s
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KNN

      interactions 

 

  -  simple one-term attractive separable potential, reproduces the  

     deuteron binding energy and size 

  -  two-term attractive plus repulsive separable potential, reproduces 

     the deuteron and the        phase shifts untill 300 MeV   

 

 

np

3

1S

All potentials were constructed and fitted to experimental data earlier  and  

already used in Coulomb-less Faddeev calculations for the            system. 

N. V. Shevchenko, Nucl.Phys. A890-891,50(2012) 

N. V. Shevchenko and J. Révai, Phys.Rev. C90,034003(2014) 

J. Révai and N. V. Shevchenko, Phys.Rev. C90,034004(2014)  
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Reduction to the             particle channel 

 

“Exact optical potential” for a given channel – reproduces the elastic t-matrix 

of the multichannel interaction in that channel both on- and off- energy shell. 

For separable potentials its construction is straightforward, e.g. for a two- 

channel interaction: 
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Integration path 

 

Depends on the properties of the two subsystem Green-operators and 

on the location of the sought eigenvalue on the Riemann surface of the 

system. Our shifted energy eigenvalue    is somewhat below the 

threshold, on the physical sheet for the closed             channel, and on 

the closest unphysical sheet  for the open             (or            in the chiral 

case) channels. 

 

Two examples:  

 

  (a)   channel             , interacting pair          - physical sheet 

 

  (b)   channel             , interacting pair            ; in this case the 

         interaction – due to the “exact optical” construction – “remembers” 

         the          cut, and with respect to it, the eigenvalue      is on the  

         unphysical sheet.  
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Similar cosiderations for the       (matrix) case and for the 3-channel  

chiral         interaction – two cuts to be turned.   
3G

KN

Energy dependent interactions and the convolution integral 

 

Strong interactions enter the Faddeev equations in the form: 

                                        and                                 . How to proceed, 

if the potentials depend on energy :                   and                ?  
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Similar cosiderations for the       (matrix) case and for the 3-channel  

chiral         interaction – two cuts to be turned.   
3G

KN

Energy dependent interactions and the convolution integral 

 

Strong interactions enter the Faddeev equations in the form: 

                                        and                                 . How to proceed, 
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c
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And in the same way for                             . 

                             , 

Fortunately, for separable potentials        is even simpler, than 

itself. Its Coulomb Sturmian matrix elements for Yamaguchi form- 

Factors can be calculated analytically. 

3 3 3 3 3( , ) ( )G x y v x

gv g
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The main results of the calculation can be summarized in the table 
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We can compare our (converged) 3-body results with those of  commonly 

used approximations for the same level shifts :  

 

 

 

 

 

 

 

 

 

 

 

                                             in  

 

It is evident, that the most popular and unconditionally trusted “corrected 

Deser formula” has little to do with the exact result, especially for the 

imaginary part of the level shift.  

 

E eV
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Conclusions 

-  The present calculations suggest, that the level shift         should  

    be in the in the range                                                        , Now 

    it is the turn of experimentalists.    

  

-  This is the first exact calculation of the level shift in a hadronic atom, 

    which uses realistic, multichannel hadron-nucleon interaction and 

    goes beyond the conventional two-body picture. 

 

 -  For the strangeness nuclear physics the main significance of the  

    results is not as much in the obtained numbers, as in the first  

    possibility to relate an important an hopefully measurable observable  

    of the           system to the input       interactions without relying upon 

    uncontrollable approximations. 

 

  - The proposed method can serve as an important tool in fixing the yet  

    uncertain properties of the basic        interactions. 

 

   

   

 

KNN KN

KN

E
(800 30) (480 20)E eV   
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