Measurement of tensor asymmetry T_{20} in coherent π° photoproduction on deuteron

<u>I. A. Rachek</u>,¹ V. F. Dmitriev,^{1,2} R. R. Dusaev,³ V. V. Gauzshtein,³ A. V. Gramolin,¹ B. A. Lazarenko,¹ S. I. Mishnev,¹ D. M. Nikolenko,¹ R. Sh. Sadykov,¹ Yu. V. Shestakov,^{1,2} V. N. Stibunov,³ D. K. Toporkov^{1,2} and S. A. Zevakov¹

¹ Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
² Novosibirsk State University, Novosibirsk, Russia
³ Institute of Physics and Technology, National Polytechnical University, Tomsk, Russia

The 23rd European Conference on Few-Body Problems in Physics Aarhus University August 8, 2016

T20 in $\gamma d \rightarrow \pi^{o} d$

Introduction

d – the simplest compound nucleus and the only bound system of two nuleons

Coherent π^o photoproduction on deuteron

$$\gamma + \vec{d} \rightarrow \pi^0 + d$$

the only pion photoproduction reaction on deuteron with two-body final state.

motivations to investigate this reaction:

- elementary photoproduction reaction on **neutron**
- influence of a nuclear environment on the elementary production amplitude
- pion production on off-shell nucleon
- $N\Delta$ -interaction in a nuclear medium
- elastic $\pi^o d$ scattering
- nuclear structure, NN-interactions
- at threshold chiral dynamics on neutron

Theoretical approaches

$\overline{\text{PWIA:} (\gamma N \rightarrow \pi N) + \text{DWF}}$

- π^o production on single nucleon:
 - Feynman diagrams: Born, vector meson exchange and resonance terms
 - MAID Unitary Isobar model
 - ELA Effective Lagrangian Approach
- Fermi motion: factorization or full account
- Deuteron Wave Function: various NN potentials

from Darwish&Al-Thoyaib

but rescattering is important in this process!

beyond IA – FSI, MEC

- perturbatively (e.g. Garchilazo et al)
 - questionable: $N\Delta$ is strong interacting system!
- Faddeev equations for the πNN system (Blaazer *et al*)
- $N\Delta$ πNN NN coupled-channels approach (Wilhelm&Arenhövel)
- KMT multiple-scattering approach (Kamalov et al)
- Coupled-channels retarded interaction model (Schwamb)

Experimental data for $\gamma d \rightarrow \pi^0 d$

Cross Section

Long history of studying total and differential cross section.

Latest accurate data – from MAMI and JLab

Polarisation observables

Polarized data are very limited. Only linear photon asymmetry Σ was measured.

Tensor observables

 $cross\ section\ in\ case\ of\ polarized\ spin-1\ target\ and\ unpolarized\ photon\ beam:$

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= \frac{d\sigma_0}{d\Omega} \left\{ 1 - \sqrt{3/4} \ \mathbf{P_Z} \sin \theta_H \sin \phi_H \ \cdot \mathbf{T_{11}}(E\gamma, \theta_\pi^{CM}) \\ &+ \sqrt{1/8} \ \mathbf{P_{ZZ}} \left[(3\cos^2 \theta_H - 1) \ \cdot \mathbf{T_{20}}(E\gamma, \theta_\pi^{CM}) \\ &- \sqrt{3/2} \sin 2\theta_H \ \cos \phi_H \ \cdot \mathbf{T_{21}}(E\gamma, \theta_\pi^{CM}) \\ &+ \sqrt{3/2} \sin^2 \theta_H \ \cos 2\phi_H \ \cdot \mathbf{T_{22}}(E\gamma, \theta_\pi^{CM}) \right] \right\} \end{aligned}$$

I.A.Rachek

Previous data on T_{2i} in $\gamma d \rightarrow \pi^{\circ} d$

 $\gamma + \vec{d} \rightarrow \pi^0 + d'$ events have been selected from the statistics collected during the deuteron photodisintegration experiment at VEPP-3 [PRL 98 (2007) 182303].

VEPP-3 electron-positron storage ring

Polarized Deuterium Gas Target

S1–S5 – 6-pole magnets MFT, SFT – RF transition units IT – inlet tube

top view at the target section

superconducting 6-pole magnets

Particle Detector

Detector pictures

drift chambers, scintillators at VEPP-3

LQP electron arm

Target Polarimeter

LQ-Polarimeter

elastic (ed)-scattering at small angle:

 $Q^2 \approx 0.1 (\text{GeV/c})^2$ Form factors of **d** at small Q^2 are known with high accuracy $\Rightarrow d\sigma/d\Omega$ and T₂₀ are known \Rightarrow allows to measure target parameters: **polarization** and effective thickness

T20 in elastic ed-scattering

Q². (GeV/c)²

LQ-polarimeter point

Degree of tensor polarization: Thickness

Event selection

selection criteria

- in **deuteron**-arm:
 - single track in wire chamber
 - large signal in plastics
 - deuteron identification
- in π^0 -arm:
 - no signal in charged veto
 - large signal in calorimeter
- $\mathbf{d} \pi^0$ angular correlations (for 2- γ events in calorimeter)

deuteron identification

- Time of Flight analysis: flight distance ~ 115cm, $v_d/c = 0.1 \div 0.5$
- ΔE/E analysis for deuterons stopped in 2nd scintillation layer

Monte Carlo simulation

Based on GEANT-4 toolkit and GENBOS event generator from JLab/INFN

GENBOS:

- describes photoreactions on free nucleons and on deuterons for photon energy from pion production threshold up to 10 GeV.
- 31 different reaction channels in a phenomenological way
- both the resonant and non resonant contributions are taken into account.

Background Subtraction

Background Subtraction

Kinematic Coverage and Binning

Preliminary results: T_{20} vs. θ_{π^0}

Preliminary results: T_{20} vs. E_{γ}

I.A.Rachek

T20 in $\gamma d \rightarrow \pi^{o} d$

August 8, 2016 17/19

Discussion

- the quality of agreement between theory and experiment decreases at higher energies.
- this looks very similar to what was seen in deuteron photodisintegration
- in PD it was demonstrated that a novel approach by M.Schwamb&Co, incorporating a π -MEC retardation mechanism, provides much better description
- we are waiting for similar calculations for π^0 photoproduction.

I.A.Rachek

Summary

- An accurate measurement of energy and angular dependencies of tensor asymmetry T_{20} in coherent π^0 photoproduction on deuteron has been performed at VEPP-3 for photon energy up to 500 MeV, using the method of superthin internal target in electron storage ring and an approach of almost-real photons.
- Preliminary results of data analysis are available.
- It is seen that a number of theoretical calculations provide good description of our data at photon energy below ~ 300 MeV.
- The quality of agreement between theory and experiment decreases at higher photon energies ⇒ *improvements in theoretical models are needed.*

Summary

- An accurate measurement of energy and angular dependencies of tensor asymmetry T_{20} in coherent π^0 photoproduction on deuteron has been performed at VEPP-3 for photon energy up to 500 MeV, using the method of superthin internal target in electron storage ring and an approach of almost-real photons.
- Preliminary results of data analysis are available.
- It is seen that a number of theoretical calculations provide good description of our data at photon energy below ~ 300 MeV.
- The quality of agreement between theory and experiment decreases at higher photon energies ⇒ *improvements in theoretical models are needed.*

THANK YOU FOR YOUR ATTENTION!

Support

This work was supported by Ministry of Education and Science of the Russian Federation and by RFBR grant No 13-02-00991-a, *except* the part, related to the photon reconstruction algorithm in the electromagnetic calorimeter, which was supported by the Russian Science Foundation (project No. 14-50-00080).

Appendix

Backup slides

Almost–real photon approach

- electron is not detected.
- Electroproduction cross-section is strongly forward peaked (due to $\sim 1/Q^2$ dependence of virtual photon flux)
- therefore such approach is nearly equivalent to photo-production, while the systematic error due to small virtuality can be estimated as:

$$for \ \theta_e \approx 0: \qquad T_{2M}^{electro} \left(\theta_e\right) \approx T_{2M}^{photo} \cdot \left(1 - \frac{\rho_L}{\rho_T}\right)$$

for small $\ \theta_e: \ \rho_L/\rho_T = \left[\frac{1-r}{r(1-r/2)} \cdot \theta_e\right]^2, \text{ where } r = E_{\gamma}/E_e.$

e.g. for $E_{\gamma}/E_e = 500/2000 = 0.25$ and $\overline{\theta_e} \approx 0.5^{\circ}$: $\delta \mathbf{T_{2M}}/\mathbf{T_{2M}} \approx \mathbf{10^{-3}}$ • photon energy \mathbf{E}_{γ} is reconstructed from E_d , θ_d : $\mathbf{E}_{\gamma} = \frac{M_d + M_{\pi}^2/E_d}{\sqrt{1+2M_d/E_d} \cos \theta_d - 1}$

List of references

THEORY:

- **9** E.M.Darwish, N.Akopov and M. El-Zohry "Coherent π^0 photoproduction on the deuteron including polarization observables", AIP Conf. Proc. 1370 (2011) 242.
- 2 D. Drechsel, S.S. Kamalov, L. Tiator "Unitary isobar model MAID2007" Eur. Phys. J. A34 (2007) 69.
- O.Fernandez-Ramirez, E. Moya de Guerra, J.M. Udias, "Effective Lagrangian Approach to pion photoproduction from the nucleon", Ann. Phys. 321 (2006) 1408.
- **9** H. Garcilazo and E. Moya de Guerra, "Pion photoproduction on the deuteron: The reaction $\gamma d \to \pi^0 d$ " Phys. Rev. C 49 (1995) 49.
- E.Blaazer, B.L.G. Bakker, H.J.Boersma, "Rescattering effects in coherent pion production on the deuteron", Nuclear Physics A 590 (1995) 750.
- P. Wilhelm and H. Arenhoevel "Rescattering effects in coherent pion photoproduction on the deuteron in the Δ resonance region", Nucl.Phys. A609 (1996) 469.
- O S.S. Kamalov, L. Tiator, C. Bennhold, "Coherent π^0 and η photoproduction on the deuteron", PRC 55 (1997) 54.
- S M.Schwamb, "Unified description of hadronic and electromagnetic reactions of the two-nucleon system", Physics Reports 485 (2010) 109.
- **9** A.Fix "Signature of the ηNN configurations in coherent π^0 photoproduction on the deuteron", Eur. Phys. J. A 26 (2005) 293 and private communication.
- M.Levchook, private communication.

DATA:

- B. Krusche et al., Eur. Phys. J. A 6 (1999) 309.
- Y. Ilieva et al., Eur. Phys. J. A 43 (2010) 261.
- K. Ukai and T. Nakamura, Institute for Nuclear Study Rep. No INS-TEC-22 (1985).
- D.M.Nikolenko, et al., JETP Lett. 89, 518 (2009)