

NN and Nd scattering with intermediate dibaryons

<u>Maria Platonova</u>, Vladimir Kukulin, Lomonosov Moscow State University

> 23rd European Conference on Few-Body Problems in Physics, August 8 - 12, 2016, Aarhus University, Denmark

Nature of NN interaction

<u>r_{NN} > 1 fm</u>: meson exchange between isolated (point-like) nucleons;
 One-Boson-Exchange (OBE) models for nuclear force

 <u>r_{NN} < 1 fm</u>: two nucleons are overlapped with each other their quark structure should be taken into account; a six-quark bag (*dibaryon*) dressed with meson fields might be produced; such mechanisms are absent in OBE models but predicted in QCD

Do dibaryons really exist in Nature?

First prediction of dibaryon states in NN system

F.J. Dyson and N.-H. Xuong, PRL **13**, 815 (1964): Theoretical prediction of 6 zero-strangeness low-lying dibaryons (on the basis of SU(6) symmetry)

Table I. $Y = 2$ states with zero strangeness predicted by the <u>490</u> multiplet.						
Particle	Т	J	SU(3) multiplet	Comment	Predicted mass	
<i>D</i> ₀₁	0	1	<u>10</u> *	Deuteron	Α	
D_{10}	1	0	27	Deuteron singlet state	A	
D ₁₂	1	2	27	S-wave $N-N^*$ resonance	A + 6B	
D ₂₁	2	1	35	Charge-3 resonance	A + 6B	
D_{03}	0	3	<u>10</u> *	S-wave N*-N* resonance	A + 10B	
D_{30}	3	0	28	Charge-4 resonance	A + 10B	

- The deuteron $D_{01}(1876)$ is the lowest dibaryon state strongly coupled to NN S-wave ٠ channel.
- SU(6) mass formula: M = A + B[T(T+1)+J(J+1)-2] (A deuteron mass, $B \approx 47$ MeV) • Prediction for masses of $N-\Delta$ and $\Delta-\Delta$ *S*-wave resonances:

 $M(D_{12}) \approx 2160 \text{ MeV} \approx M(N) + M(\Delta) - 10 \text{ MeV},$ $M(D_{03}) \approx 2350 \text{ MeV} \approx M(\Delta) + M(\Delta)$ - 110 MeV.

Indications of D_{12} and other isovector dibaryons

- Experiments on $\vec{p} + \vec{p}$ elastic scattering (I. Auer et al., 1978) and partial wave analyses (PWA) for $pp \rightarrow pp$, $\pi^+d \rightarrow \pi^+d$ and $\pi^+d \rightarrow pp$ (N. Hoshizaki, 1979, 1993; R. Arndt et al., 1981, 1993; etc.) revealed the series of isovector resonances in NN channels 1D_2 , 3F_3 , 1G_4 , 3P_2 , etc.
- The lowest (¹D₂) isovector resonance with $I(J^P) = 1(2^+)$ is the predicted D_{12} dibaryon: $M \approx 2140-2160 \text{ MeV} \approx M(N+\Delta) - (10-30 \text{ MeV}), \quad \Gamma \approx 100-120 \text{ MeV} \approx \Gamma(\Delta).$

• There might be true resonances or "pseudoresonances" (intermediate $N\Delta$ states). 4

New evidence for isovector *P*-wave dibaryons

PHYSICAL REVIEW C 93, 065206 (2016)

Evidence for excitation of two resonance states in the isovector two-baryon system with a mass of 2.2 GeV/ c^2

ANKE/COSY experiment (V. Komarov et al.): $p + p \rightarrow pp({}^{1}S_{0}) + \pi^{0}$

Resonance parameters:

	E_R [MeV]	Γ_R [MeV]
${}^{3}P_{2}d(2^{-})$	2197 ± 8	130 ± 21
${}^{5}P_{0}s(0^{-})$ ${}^{3}P_{2}d(2^{-})^{a}$	2201 ± 5 2207 ± 12	91 ± 12 170 ± 32
${}^{3}P_{0}^{s}(0^{-})^{a}$	2204 ± 4	95 ± 9

^aThe results of the global fit

From PWA (SAID) of *pp* elastic scattering (R. Arndt et al., PRD35(1987)128):

State	W_p (MeV)
$^{1}D_{2}$	2148 - <i>i</i> 63
${}^{3}F_{3}$	2183 — <i>i</i> 79
$^{3}P_{2}$	2163 — <i>i</i> 75
${}^{3}F_{2}$	2163 — <i>i</i> 75
${}^{3}F_{4}$	2210 — <i>i</i> 78
${}^{3}H_{4}$	2210 <i>— i</i> 78

 ${}^{3}P_{0}$ resonance was not observed before.

Evidence for isoscalar D_{03} **dibaryon**

 $D_{03} \approx \Delta\Delta(30\%) + C\overline{C}(70\%)$ [Y. Dong et al., PRC91(2015)064002; F. Huang et al., nucl-th/1505.05395; see also M. Bashkanov, S. Brodsky, H. Clement, PLB727(2013)438]

- R.m.s. radius $r(D_{03}) \approx 0.7-0.9$ fm (from microscopic quark model calculations)
- Full width $\Gamma(D_{03}) = 70 90 \text{ MeV} \ll 2\Gamma(\Delta) = 235 \text{ MeV}$

 D_{03} resonance appears to be the *truly dibaryon (6q) state* coupled to $\Delta\Delta$ channel and not only the $\Delta\Delta$ bound state!

Additional confirmation of D_{12} and D_{03} resonances

• From solving exact Faddeev equations for πNN and $\pi N\Delta$ systems the robust dibaryon poles corresponding to D_{12} and D_{03} were found:

$$M(D_{12}) = 2151 \pm 2 \text{ MeV}, \quad \Gamma(D_{12}) = 120 \pm 6 \text{ MeV}$$

 $M(D_{03}) = 2363 \pm 20 \text{ MeV}, \quad \Gamma(D_{03}) = 65 \pm 17 \text{ MeV}$

[A. Gal & H. Garcilazo, PRL111(2013)172301; NPA928(2014)73]

• Very good agreement with Dyson and Xuong predictions as well as with experimental findings.

- Cross sections for dibaryon resonance production are generally small compared to the conventional meson exchange processes.
- Manifestation of dibaryon d.o.f. can be tested in processes with high momentum transfers which probe short *NN* distances, e.g., *inelastic NN and Nd scattering with one- or two-pion production, or elastic Nd scattering at large angles*.

Dibaryons in $pp \rightarrow d\pi^+$ reaction

ONE (one-nucleon exchange) + $N\Delta$ (N+ Δ intermediate state) + D^* (dibaryon resonances)

Partial cross sections for 3 dominant amplitudes:

• Conventional (ONE+N Δ) mechanisms with soft shortrange cut-off $\Lambda_{\pi N\Delta}$ in the $\pi N\Delta$ vertex (derived from πN elastic scattering) give 40-50% of the ${}^{1}D_{2}P$ and ${}^{3}F_{3}D$ cross sections and only 2.5% of the ${}^{3}P_{2}D$ cross section.

• Enhancing $\Lambda_{\pi N\Delta}$ ad hoc does not help to describe all three amplitudes simultaneously.

• We found significant contributions of intermediate dibaryons in three dominant resonant amplitudes, *especially in the* ³*P*₂*D one*.

[M.N.P. & V.I.K., NPA946 (2016) 117 and to be published]

Dibaryons in $pp \rightarrow d\pi^+$ reaction

Dibaryon resonance parameters:	$2S+1L_{I}$	Mr. (MeV)	Γ _D (MeV)
			1 D (110)
(Cf. new ANKE exp. results on $pp \rightarrow pp({}^{1}S_{0}) + \pi^{0}$	${}^{1}D_{2}$	2155	101
[PRC93(2016)065206] for ${}^{3}P_{2}$ resonance:	${}^{3}F_{3}$	2197	152
$M = 2207 \pm 12 \text{ MeV}, \Gamma = 170 \pm 32 \text{ MeV})$	${}^{3}P_{2}$	2211	195

Results for the total and differential cross sections:

For unpolarized cross sections, the proper description of two dominant ${}^{1}D_{2}P$ and ${}^{3}F_{3}D$ amplitudes is the most important; the ${}^{3}P_{2}D$ amplitude gives just a moderate correction.

Results for spin-correlation parameters at $T_p = 582$ MeV

[[]M.N.P. & V.I.K., to be published]

- 30 60 90 120 150 180 θ_{π} [deg] Experiment [NPA] 379(1982)369; 415(1984)365] ---- ONE + $N\Delta$ ---- ONE + $N\Delta$ + $^{1}D_{2}$ ----- ONE + $N\Delta$ + ${}^{1}D_{2}$ + ${}^{3}F_{3}$ $ONE + N\Delta + {}^{1}D_{2} + {}^{3}F_{3} + {}^{3}P_{2}$ Accurate three-body πNN calculation (without dibaryons) [Lamot et al., PRC35(1987)239]
- Very sensitive spin-correlation parameters:

no satisfactory description by conventional models.

Adding ${}^{1}D_{2}$ and ${}^{3}F_{3}$ dibaryons does not help either.

 Just the proper description of the ³P₂D amplitude (dominated by a dibaryon resonance) changes the behavior of these observables, thus turning them into qualitative (or even semiquantitative) agreement with experimental data.

Puzzling *pd* **large-angle scattering** Exp. data vs. 3-body Faddeev calculations **Differential cross section**

Proton analyzing power

- Similar results for diff. cross section and polarization observables
- Large-angle discrepancy increases with energy
- Adding 2π -exchange 3N force with intermediate Δ improves description of data only partially

Exp.: PRL 86 (2001) 5862; PRC 66 (2002) 044002; AIP Conf.Proc. 915 (2007) 765; Figs. from talks K. Sekiguchi, FB19 and K. Suda, SPIN2007

Puzzling pd large-angle scattering

Energy dependence of *pd* backward cross section:

Similar "bumps" arise in *d*-fragmentation $d+A \rightarrow p+X$ [see, e.g., V. Ableev et al., NPA 393(1983)491]

<u>*The model*</u>: ONE + Single scattering + Δ excitation

[Yu. Uzikov, Fiz.Elem.Chastits.At.Yadra 29 (1998) 1405]

1,2,3 – different parameterizations of $NN \rightarrow N\Delta$ ampl.; 3 – fit to pn \rightarrow pn π^+ , best fit to pd \rightarrow dp.

If dibaryons are manifested in $NN \rightarrow d\pi \& NN \rightarrow NN\pi$, they should also contribute to $pd \rightarrow dp$ and $dp \rightarrow pnp$.

Additional 3N force -

meson exchange between nucleon and dibaryon (*D* – dibaryon component of the deuteron,

D* – excited dibaryon (resonance)):

Conventional 2π -exchange 3N force:

Both mechanisms Ninclude NN $\rightarrow d\pi$ in the same energy region!

12

Dibaryons in 2π production and ABC effect

A. Abashian, N.E. Booth, K.M. Crowe, PRL 5 (1960) 258; 7 (1961) 35: Inclusive experiment $pd \rightarrow {}^{3}\text{He}X @ T_{p} = 0.743 \text{ GeV}$

Observation of an <u>anomalous enhancement just above 2π -production threshold</u>

ABC effect: $I(J^P) = 0(0^+)$, $m_X \approx 300 \text{ MeV} = 2m_{\pi^0} + 30 \text{ MeV}$

Later on the similar enhancements were observed in reactions

$$pn \to dX,$$
$$dd \to {}^{4}\text{He}X$$

<u>Basic reaction</u>: $pn \rightarrow d + (\pi \pi)_{I=0}$

Conventional mechanism of 2π production and ABC effect – *t*-channel excitation of intermediate $\Delta\Delta$ state (T. Risser & M. Shuster, 1973): qualitative description of some old inclusive data, but strong disagreement with the new <u>exclusive</u> data.

New exclusive experiments of the WASA@COSY Collaboration

First exclusive high-statistics experiments in full 4π geometry

$$p + d \rightarrow p_{\text{spectator}} + d + \pi^0 \pi^0$$
, $T_p = 1.0 - 1.4 \text{ GeV}$

New exclusive experiments of the WASA@COSY Collaboration

The same isoscalar resonance along with ABC enhancement were then observed also in $pd \rightarrow {}^{3}\text{He} + \pi^{0}\pi^{0}$ and $dd \rightarrow {}^{4}\text{He} + \pi^{0}\pi^{0}$ [P. Adlarson et al., PRC 91 (2015) 015201; 86 (2012) 032201].

σ [μb]

"That way the ABC effect in the double-pionic fusion to nuclei is traced back to a **pn resonance**, which obviously is strong enough to survive even in the nuclear medium." – P. Adlarson *et al.*, PRC 86 (2012) 032201

this work

CELSIUS

Saclay

CELSIUS-WASA Birmimgham

AA mass

4.2

What mechanism of the D_{03} -resonance decay leads to ABC enhancement? 15

Dibaryon model for the reaction $pn \rightarrow d + (\pi\pi)_0$ in the ABC region

Dibaryon model for the reaction pn → d + (ππ)₀ at energies T_p = 1-1.3 GeV (s^{1/2} = 2.32-2.44 GeV) includes production of the D₀₃(2380) dibaryon and its subsequent decay into the final deuteron and isoscalar ππ pair via two interfering routes:
 (a) emission of ππ pair from a scalar σ meson produced from dibaryon meson cloud;
 (b) sequential emission of two pions via an intermediate isovector dibaryon D₁₂(2150)

- Transitions between different dibaryon states are considered for the first time, similarly to the known transitions between baryons (cf. the Roper resonance decay routes: $N^*(1440) \rightarrow N + \sigma \rightarrow N + \pi\pi$ and $N^*(1440) \rightarrow \Delta(1232) + \pi \rightarrow N + \pi\pi$).
- <u>Invariant mass distribution</u>: $d\sigma / dM_{\pi\pi} = (\text{phase space}) \times \iint d\Omega_d^{\text{c.m.}} d\Omega_{\pi\pi}^{\pi\pi} \sum_{\text{spin}} |A^{(a)} + A^{(b)}|^2$
- <u>3 model parameters</u>: M_{σ} , Γ_{σ} and the relative weight of the amplitudes $A^{(a)}/A^{(b)}$.

[M.N.P. & V.I.K., PRC 87 (2013) 025202]

Results of the model calculations

- ✓ ABC enhancement appears as a consequence of σ meson production.
- ✓ Peak in $M_{d\pi}$ spectrum reflects production of isovector dibaryon $D_{12}(2150)$.
- ✓ Other isovector dibaryons should also contribute, but would be less intensive and further suppressed by an angular momentum barrier (d-wave pions).

Extension to $pd \rightarrow {}^{3}\text{He} + (\pi\pi)_{0}$

• At the experimental total cross section peak in $pd \rightarrow {}^{3}\text{He} + \pi^{0}\pi^{0}$:

$$\left(\sqrt{s}\right)_{pd} = 3.35 \text{ GeV}, T_p = 0.88 \text{ GeV} \Longrightarrow \left(\sqrt{s}\right)_{pn} \approx 2.28 \text{ GeV}$$

• One possible mechanism – the same as in $pn \rightarrow d + \pi^0 \pi^0$ (WASA@COSY):

$$p \xrightarrow{p} D_{03} \xrightarrow{\pi} \pi E_{pn}^* \approx 400 \text{ MeV} (\approx 500 \pm 35 \text{ MeV needed for } D_{03})$$

$$d \xrightarrow{p} 3 \text{He}$$

• We propose also a different mechanism $-D_{03}$ excitation from the deuteron as a whole (i.e., from its short-range dibaryon component) by, e.g., σ exchange

• Relative contributions of different mechanisms to *pd* double-pionic fusion need more detailed investigation. Calculations in progress...

Parameters of the σ meson

• From our model description of the ABC peak

$$m_{\sigma} \simeq 300 \text{ MeV}, \quad \Gamma_{\sigma} \simeq 100 \text{ MeV}$$

[M. Platonova, V. Kukulin, PRC 87 (2013) 025202]

• From $\pi\pi$ elastic scattering in free space:

$$m_{\sigma} = 441^{+16}_{-8} \text{ MeV}, \quad \Gamma_{\sigma} = 544^{+18}_{-25} \text{ MeV}$$

[I. Caprini, G. Colangelo, H. Leutwyler, PRL 96 (2006) 132001]

Is there a real contradiction?

Chiral Symmetry Restoration (χSR)

- <u>Two basic phenomena of nonperturbative QCD:</u> confinement & chiral symmetry breaking Prediction at very high energies: deconfinement & chiral symmetry restoration
- Partial xSR can occur already in
- isolated excited hadrons at $E^* \ge 500 \text{ MeV}$ [L. Glozman, PLB475(2000)329; PRL99(2007)191602],
- nuclear matter at finite density ($\rho \ge \rho_0$) and/or temperature ($T \ge 100 \text{ MeV}$)

[T. Hatsuda, T. Kunihiro, H. Shimizu, PRL82(1999)2840;M. Volkov et al., PLB424(1998)235];

is manifested in reduction of scalar σ -meson mass and $\sigma \rightarrow \pi\pi$ decay width.

• Dibaryon $D_{03}(2380)$: high density ($r \approx 0.7-0.9$ fm; $\rho \approx 6-8 \rho_0$) + excitation energy ($E^* \approx 500$ MeV)

partial \chiSR can occur in dibaryon states. This can be visible in parameters of σ mesons produced from dibaryons.

ABC effect may be considered as a first experimental indication of this prediction.

Basic NN attraction in nuclei and scalar σ meson

- Light scalar meson σ (or $f_0(500)$), $I(J^p) = O(0^+)$, plays a fundamental role •
 - in QCD (provides hadron masses through chiral symmetry breaking; is sometimes called the "Higgs boson of strong interaction" [M. Schumacher, Eur.Phys.J.C67(2010)283]),
 - in nuclear physics (responsible for the basic NN attraction in nuclei)
- Conventional mechanism of the basic *NN* attraction ($r_{NN} \sim 1$ fm): • *t*-channel σ exchange; **no width for σ meson is assumed!**

 $\pi + \pi \rightleftharpoons \sigma$ — very broad resonance in $\pi\pi$ scattering: $\Gamma_{\sigma} \simeq 500 \text{ MeV}$

Such highly unstable σ meson can hardly bind the nucleons in nuclei! ٠ Need some physical mechanism to stabilize the scalar σ field.

σ

N

N

The σ-dressed dibaryon model for short-range *NN* interaction

• The basic mechanism of short-range NN interaction in the dibaryon model for nuclear force – instead of *t*-channel σ exchange:

[V. Kukulin et al., J. Phys. G 27 (2001) 1851]

• Scalar σ field arises within a transition from the dominant (2ħ ω -excited) mixedsymmetry 6q configuration s^4p^2 to a fully symmetric one s^6 :

$$N + N \rightarrow |s^4 p^2[42] L_q = 0,2; ST \rightarrow |s^6[6] L_q = 0, ST \rightarrow \sigma$$

- The σ field stabilizes the 6q bag and shifts its bare mass from $\sim 3 \text{ GeV}$ to $\sim 2.2 \text{ GeV}$.
- The σ field itself is also stabilized (its mass and width are shifted downwards due to partial χ SR in excited 6*q* bag).

The σ -dressed dibaryons in NN interaction

• Within the dibaryon model, a very good description of *NN*-scattering phase shifts up to $T_N = 1$ GeV and also of the lightest nuclei properties was achieved with only a few basic parameters and $m_{\sigma} \approx 300-400$ MeV (not 500–600 MeV as in conventional OBE *NN*-force models).

[V. Kukulin et al., Int. J. Mod. Phys. E 11 (2002) 1]

- If this picture is realized in Nature, dibaryon states should be produced *in all NN partial waves* (however, with different probabilities).
- Further tests of the model in few-nucleon systems and nuclear matter are needed. 23

Conclusions

- Due to significant progress of experimental technique, new quite convincing evidences for existence of dibaryon (6q) states in NN system have been found, 50 years after their first theoretical prediction.
- Taking intermediate isovector and isoscalar dibaryon resonances into account allows to describe reasonably a number of processes accompanied with high momentum transfers, e.g., one- and two-pion production in NN and Nd collisions, etc.
- Concept of σ-dressed dibaryon combined with idea of chiral symmetry restoration in dense and excited quark matter provides a new explanation for the long-standing ABC puzzle and has important consequences for treatment of short-range nuclear force.
- One can suggest the dibaryon resonances to be not only "multiquark exotics" but also a manifestation of fundamental properties of nonperturbative QCD which govern short-range NN interaction and correlations in nuclei.

Thank You!

Conventional description for $pp \rightarrow d\pi^+$ **:**

ONE (one-nucleon exchange) + $N\Delta$ (*N*+ Δ intermediate state)

• The basic difficulty is the choice of the short-range cut-off parameters Λ and Λ_* in meson-baryon vertices πNN and $\pi N\Delta$ with a virtual pion. $f_* p_0^2 + \tilde{\Lambda}_*^2$

- Cut-off parameters describing precisely the πN elastic scattering \implies conventional mechanisms (ONE+N Δ) give only a half the partial (${}^{1}D_{2}P$) $pp \rightarrow d\pi^{+}$ cross section.
- The magnitude of the $pp \rightarrow d\pi^+$ cross section can be approximately reproduced by enhancing the $\pi N\Delta$ cut-off value. However, this way is fully *ad hoc*.
- <u>An alternative way</u>: taking the intermediate dibaryon resonances in the NN channels ${}^{1}D_{2}$, ${}^{3}F_{3}$, ${}^{3}P_{2}$, etc., into account.

Isovector dibaryon signals in reaction $pp \rightarrow pp + \pi^0 \pi^0$

- The one- and two-pion production cross sections in *pp* collisions can be qualitatively described with account of intermediate isovector dibaryon resonances; however interference with the *resonance-like background* and the *problem of meson-baryon vertex parametrization* complicate unambiguous identification of dibaryon contributions.
- It is important to find such processes where dibaryon resonances are manifested more clearly and cannot be "imitated" by *t*-channel meson-exchange mechanisms with enhanced cut-off parameters.
- A good candidate for such a process is *two-pion production in pn collisions*.

The deuteron in dibaryon model

• The deuteron wave function (d.w.f.) in dibaryon model is described as <u>a two-</u> <u>component Fock column</u>:

$$\Psi_d = \begin{pmatrix} \Psi_{NN} \\ \Psi_{6q+\sigma} \end{pmatrix}$$

- The second component of the deuteron $\Psi_{6q+\sigma}$ is a 6q bag surrounded by σ -meson cloud, in the same way that the nucleon is a 3q bag dressed with pion cloud.
- However, closeness to NN threshold makes this "elementary deuteron" to be coupled strongly to NN channel. As a result, the quark-meson component $\Psi_{6q+\sigma}$ gives just a small contribution (~ 2–3%) to the total d.w.f. normalization, however it is still dominant at short NN distances, i.e., when two nucleons are overlapped with each other.
- Analogously, the D_{12} and D_{03} states may be considered as dressed dibaryons coupled to $N\Delta$ and $\Delta\Delta$ channels, respectively.
- We claim that D₁₂ and D₀₃ resonances may be treated as excited states of the deuteron D₀₁, in the same way that nucleon resonances Δ, N*(1440), etc., are treated as excited nucleon states.

The role of the σ meson in heavy-ion collisions at ultra-relativistic energies

A. Andronic, P. Braun-Munzinger, J. Stachel Phys. Lett. B673(2009)142; nucl-th/0812.1186

"Thermal hadron production in relativistic nuclear collisions: the hadron mass spectrum, the horn, and the QCD phase transition"

"In summary, we have demonstrated that by inclusion of the σ meson and many higher mass resonances into the resonance spectrum employed in the statistical model calculations <u>an improved description is obtained</u> of hadron production in central nucleus-nucleus collisions <u>at ultra-relativistic</u> <u>energies</u>."

"It is interesting to note that central questions in hadron spectroscopy such as the existence (and nature) of the σ meson apparently play an important role in <u>quark-gluon plasma physics</u>."

Dibaryon Spectroscopy

- Nijmegen & ITEP model

 [P. Mulders et al., PRD21(1980)2653;
 L. Kondratyuk et al., Sov.J.Nucl.Phys.45(1987)776]

 Dibaryons as orbital excitations

 of two-cluster system q⁴-q²;
 Regge trajectory on (J, M²)
- For the lowest states $(\Delta M \ll M_0)$: non-relativistic rigid-rotor model

$$M(L) \simeq M_0 + \frac{\hbar^2}{2\mathcal{I}}L(L+1)$$

Almost straight line on (L(L+1), M)!

 Tetraquark q⁴ (S=1,T=0); Diquark q²: scalar (S'=T'=0) for I=0 dibaryons, axial (S'=T'=1) for I=1 dibaryons
 Each I=1 dibaryon should have an I=0

Each *I*=1 dibaryon should have an *I*=0 partner.

[M.N.P. & V.I.K., NPA 946 (2016) 117] ³⁰