EFB23

23RD EUROPEAN CONFERENCE ON Few-body problems in physics

DEPARTMENT OF MATHEMATICS, AARHUS UNIVERSITY, DENMARK 8TH-12TH AUGUST 2016

Measurement of polarization transferred to a proton bound in nuclei

<u>New data from MAMI / A1 (d)</u> +data from JLab. (⁴He and d) Eli Piasetzky Tel Aviv University, ISRAEL

Nucleons are complex objects . Are nucleons being modified in the nuclear medium ?

Free neutron

Bound neutron

The challenge is to observe or exclude e conce for changes in the bound nucleon compare to a free one.

Do nucleons change their quark-gluon structure in the nuclear medium ?

Structure Function In-Medium vs. Free

Do nucleons change global properties (radius, mass ...) ?

Form Factors In-Medium vs. Free

 σ^{DIS} per nucleon in nuclei $\neq \sigma^{DIS}$ per nucleon in deuteron

PRL 106, 052301 (2011), also PRC 85 047301 (2012)

the EMC effect is associated with large virtuality ($v = p^2 - m^2$)

SRC Scaling Factor: Probability to find SRC pairs (low c.m., <u>high relative</u> <u>momentum</u>) in the nucleus

Structure Function In-Medium vs. Free

EMC effect

DIS

Do nucleons change global properties (radius, mass ...) ?

Form Factors In-Medium vs. Free

Fock space decomposition of:

- FREE proton $|proton\rangle = \alpha_{PLC} |PLC\rangle + \alpha_{3qg} |3q + g\rangle ... + \alpha_{3q\pi} |3q + \pi\rangle + \alpha |\rangle$
- BOUND proton $|proton^*\rangle = \alpha^*_{PLC} |PLC\rangle + \alpha^*_{3qg} |3q + g\rangle ... + \alpha^*_{3q\pi} |3q + \pi\rangle + \alpha^* |\rangle$

Suppression of PLC → less high momentum (large xB) valance quark → larger radius

Qasi Free Scattering (QF)

The observable of choice:

The recoil polarization of a knockout proton in quasi-elastic scattering

 $*G_{Ep}/G_{Mp}$

* obtained from a single measurement with syst. and stat. uncertainties ~1%.
 *sensitive to the properties of the nucleon (size, charge dist...
 *only moderately sensitive to MEC, IC, FSI.
 *Minimal affected by radiative corrections.

The polarization of the knockout proton in quasi-elastic scattering

 $A(\vec{e}, e'\vec{p})$

⁴ $He(\vec{e}, e'\vec{p})$ Px/Pz polarization transferred ratio

QF ⁴He ≠ free proton ≠ calc. with free FF

Can be explained by: Medium FF≠ Free

Q² (GeV/c)²

${}^{4}He(\vec{e}, e'\vec{p})$ Px/Pz polarization transferred ratio bound nucleon \neq free nucleon

BUT

 $d(\vec{e}, e'\vec{p})$

If it due to in-medium FF modification

Does it depend on ?

The virtuality (momentum off -shellness) of the nucleon

The local nuclear density

$$^{12}C(\vec{e},e'\vec{p})$$

s- and p- shell removal

Use a large-virtuality bound proton in the deuteron

idea,

MAMI / A1 June – July 2012

 $d(\vec{e}, e'\vec{p})$ data

Setup Name	Q ² [(GeV/c) ²]	B/C (e')	Pmiss [MeV/c]	Р _е [MeV/c]	$ heta_e$ [deg]	Р _р [MeV/c]	$ heta_p$ [deg]	Nx [10 ⁶]	Events [10 ⁶]
K30_H	0.4	С	0	384	82.4	668	-34.7	9	32
K30	0.4	С	0	384	82.4	668	-34.7	9	21
K18	0.4	С	150	462.8	73.8	495	-43.3	18	74
G90	0.175	С	186	397.6	49.4	665	-39.1	60	191
G91	0.175	В	50	508.6	43.4	484	-53.3	159	245

virtuality defined as:

No Nuclear density (B.E.) dependence !

Compare to calculations with free FFs

H. Arenhovel (7 models)

- 1. NORMAL (DWIA)
- 2. PWBA
- 3. NORMAL+MEC
- 4. NORMAL+MEC+IC
- 5. NORMAL+REL
- 6. PWBA (RC)
- 7. NORMAL+MEC+IC+REL

For each bin the calculation were done for The same kinematical condition as the real data in that bin $f(E', \theta_e, \theta_{pq}, \phi_{pq})$.

PHYSICAL REVIEW C

VOLUME 43, NUMBER 3

MARCH 1991

Inclusive deuteron electrodisintegration with polarized electrons and a polarized target

W. Leidemann Istituto Nazionale di Fisica Nucleare, gruppo collegato di Trento, Dipartimento di Fisica, Università di Trento, I-38050 Povo, Italy

E.L. Tomusiak Department of Physics and Saskatchewan Accelerator Laboratory, University of Saskatchewan, Saskatoon, Canada

H. Arenhövel Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-6500 Mainz, Federal Republic of Germany (Received 1 October 1990)

Compare to calculations (free FFs)

* The virtuality dependence is reproduced by the calculations

TEL AUIU UNIVERSITY

What produce the virtuality dependence?

FSI

Effect of first order relativistic correction:

Compare to calculations (Free FFs) * Calculation with FF are below the data

Calculation < data

Calculations > data

- 10 % is a large deviation !
- Changing NN potential AV18→Bonn
- Changing FFs shape to dipole
- <u>Changing FFs for free proton and neutron</u>
- <u>(within measured)unceratinties</u>

Dependent on nuclear local density:

Ron, Cosyn, Piasetzky, Ryckebusch, Lichtenstat, PRC87,028208 (2013).

Very preliminary ¹²C data

Summary

- no Q² dependence.
- No nuclear density (binding energy) dependence.

Deuteron QF ≠ free

- calculations predicts the smooth virtuality dependence (FSI).
- The calculations are off by an overall 10%.

Why ? Is it a "baryon" or "nuclear" issue ?

Acknowledgment

Polarization-transfer measurement to a large-virtuality bound proton in the deuteron Nucl-ex arXiv:1602.06104 My colleges : <u>A1 Collaboration</u>: <u>I. Yaron , D. Izraeli</u>, P. Achenbach, H. <u>Arenhövel</u> , J. Beričič , R. Böhm , D. Bosnar , L. Debenjak , M., O. Distler , A. Esser , I. Friščić , R. Gilman , I. Korover , J. Lichtenstadt, H. Merkel , D. G. Middleton , M. Mihovilovič , U. Müller, E. Piasetzky S. Širca , S. Strauch J. Pochodzalla , G. Ron , B. S. Schlimme , M. Schoth , F. Schulz , C. Sfienti , M. Thiel , A. Tyukin , A. Weber

and the organizers for the invitation.

Dmitri Fedorov

