Recent progresses in *ab-initio* studies of low-energy few-nucleon reactions of astrophysical interest

Laura E. Marcucci

University of Pisa INFN-Pisa

^{*e}FB*²³ Aarhus, Denmark, 8-12 August 2016</sup>

Results obtained in collaboration with:

- A. Kievsky & M. Viviani (INFN-Pisa Italy)
- E. Tognelli, S. Degl'Innocenti, & P. Prada Moroni (Univ. of Pisa - Italy)
- L. Girlanda (Univ. of Salento Italy)
- G. Mangano (INFN-Napoli Italy)
- J. Golak (Jagiellonian University, Cracow Poland)
- R. Schiavilla & A. Baroni (ODU & Jefferson Lab. USA)
- S. Pastore (LANL USA)
- M. Piarulli (ANL USA)

• <u>Ab-initio</u> framework for <u>few-nucleon</u> systems

- (Standard/Old fashion) phenomenological approach (PhenAp)
- Chiral effective field theory (χEFT)
- Tests
 - Electromagnetic structure of A = 2, 3, 4 nuclei
 - Muon capture on light nuclei
- Results
 - $p + p \rightarrow d + e^+ + \nu_e$
 - $p + d \rightarrow {}^{3}\text{He} + \gamma$
- Ongoing work
 - The weak sector in χEFT : \Rightarrow triton β -decay
- Outlook

Theoretical framework: ab-initio studies

A-nucleon system \leftrightarrow Cross section σ [or S-factor S(E)]

Ingredients

- Realistic nuclear Hamiltonian $H = T + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk}$
- <u>Ab-initio method</u> to solve the A-body quantum problem (HH method for A = 3, 4 both bound and scattering)
 → M. Viviani's talk
- <u>Realistic nuclear electroweak currents</u> j^{EW}

Nuclear Hamiltonian

 $\bullet \ \mathsf{PhenAp} \to \mathsf{AV18}/\mathsf{UIX}$

• $\chi \text{EFT} \rightarrow \text{N3LO}(\text{Idaho})/\text{N2LO}(\text{Iocal form}) - \Lambda = 500,600 \text{ MeV}$

Electroweak currents in PhenAp

EW operators: $\rho^{\gamma}, \mathbf{j}^{\gamma}; \rho^{V/A}, \mathbf{j}^{V/A}$ but $\text{CVC} \Rightarrow \rho^{V}/\mathbf{j}^{V} \rightarrow \rho^{\gamma}/\mathbf{j}^{\gamma}$

CCR "exact" with AV18/UIX [L.E. Marcucci *et al.*, PRC **72**, 014001 (2005)] • $\mathbf{j}^A \rightarrow \text{no CCR} \Rightarrow \mathbf{MD}$ Largest contribution to $\mathbf{j}^A(\text{MD})$ from \mathbf{g}_{A}^*

 g_A^* fit to observable: GT_{Exp} of tritium β -decay

T_{20} & T_{21} for $p + \vec{d} \rightarrow {}^{3}\mathrm{He} + \gamma$ with AV18/UIX

L.E. Marcucci et al., PRC 72, 014001 (2005)

T_{20} & T_{21} for $p + \vec{d} \rightarrow {}^{3}\mathrm{He} + \gamma$ with AV18/UIX

L.E. Marcucci et al., PRC 72, 014001 (2005)

Electroweak currents in χEFT : a short history

- Park *et al.* in heavy-baryon χ PT (HB χ PT) \rightarrow since \simeq 1995
- $\mathbf{j}^{\gamma} \bullet \mathbf{Pastore} \ et \ al.$ in time-ordered perturbation theory (TOPT) \rightarrow since 2009
 - Kölling *et al.* with the unitary transform method
 → in parallel since 2009
- Park *et al.* in HB χ PT \rightarrow since $\simeq 2000$
 - Baroni et al. in TOPT \rightarrow PRC **93**, 015501 (2016)

To be remarked:

• Park et al.: until now only available FULL set of operators

Electroweak currents in χEFT : power counting for \mathbf{j}^{γ}

$$\begin{array}{c|c} \mathcal{O}(Q^{-2}) & |_{\mathbb{Z}_{2}} \\ \end{array} & \mathbf{j}^{(-2)} \propto [e_{N}(1)(\mathbf{p}_{1}' + \mathbf{p}_{1}) + \mathrm{i}\mu_{N}(1)\sigma_{1} \times \mathbf{q}] \times \delta(\mathbf{p}_{2}' - \mathbf{p}_{2}) + 1 \leftrightarrow 2 \\ \\ \mathcal{O}(Q^{-1}) & |_{\mathbb{Z}_{2}^{-}} \\ \end{array} & \stackrel{|_{\mathbb{Z}_{2}^{-}} \\ |_{\mathbb{Z}_{2}^{-}} \\ |_{\mathbb{Z}_$$

- Similar results between Pastore et al. and Kölling et al.
- Differences with Park et al.

• LECs fitted to selected A = 2, 3 EM observables [$(\sigma_{np}) \ \mu_d, \mu^{S/V}(A = 3)$]

Electroweak currents in χEFT : power counting for \mathbf{j}^A

Note:

- \$\mathcal{O}(Q^1)\$: two-pion-exchange
 A. Baroni *et al.*, PRC **93**, 015501 (2016)
- Park *et al.* up to $\mathcal{O}(Q^0)$ \rightarrow one LEC - d_R

$$d_R = \frac{M_N}{\Lambda_\chi g_A} c_D + \frac{1}{3} M_N(c_3 + 2c_4) + \frac{1}{6}$$

A. Gardestig and D.R. Phillips, PRL 96, 232301 (2006)

• fit c_D and c_E (in TNI at N2LO) to B(A = 3) and GT_{Exp}

 $\Rightarrow \{c_D; c_E\}_{\rm MAX} \text{ and } \{c_D; c_E\}_{\rm MIN}$

Model	Λ	c _D	c _E	B(⁴ He)	² a _{nd}
	[MeV]			[MeV]	[fm]
N3LO/N2LO*	500	1.0	-0.029	28.36	0.675
N3LO/N2LO	500	-0.12	-0.196	28.49	0.666
N3LO/N2LO	600	-0.26	-0.846	28.64	0.696
Exp.				28.30	0.645(10)

L.E. Marcucci et al., PRL 108, 052502 (2012); M. Viviani et al., PRL 111, 172302 (2013)

	PhenAp	χEFT	Exp.
$r_c(d)$ [fm]	2.119	$\textbf{2.126} \pm \textbf{0.004}$	2.130 ± 0.010
$\mu(d)$ [n.m.]	0.847	<u>0.8574</u>	0.8574
Q(d) [fm ²]	0.280	$\textbf{0.2836} \pm \textbf{0.0016}$	0.2859 ± 0.0003
$r_c(^{3}\mathrm{He})$ [fm]	1.928	$\textbf{1.962} \pm \textbf{0.004}$	1.973 ± 0.014
<i>r_m</i> (³ He) [fm]	1.909	$1.920\pm\!0.007$	1.976 ± 0.047
$\mu(^{3}H)$ [n.m.]	2.953	<u>2.979</u>	2.979
$\mu(^{3}\text{He})$ [n.m.]	-2.125	<u>-2.128</u>	-2.128
$r_c(^{4}\text{He})$ [fm]	1.639	$\textbf{1.663} \pm \textbf{0.011}$	1.681 ± 0.004

L.E. Marcucci et al., JPG 43, 023002 (2016)

A = 3 charge form factors

A = 3 magnetic form factors

A = 4 form factor

Scaling function: $F_C(Q)_{\text{scaled}} = F_c(Q)/[F_0 \exp(-Q/k)]$, with $F_0 = 1 \& k = 0.760488 \text{ fm}^{-1}$

• $\mu^- + d \rightarrow n + n + \nu_{\mu} \longrightarrow$ capture rate in the doublet hyperfine state Γ^D • $\mu^- + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu} \qquad \Gamma_0$ • $\mu^- + {}^{3}\text{He} \rightarrow n + d + \nu_{\mu} \longrightarrow$ total capture rate Γ_{nd} • $\mu^- + {}^{3}\text{He} \rightarrow n + n + p + \nu_{\mu} \qquad \Gamma_{nnp}$

Muon capture on A = 3

$$\Gamma_0(PhenAp)=1495(11) s^{-1}$$

 $\Gamma_0(\chi EFT)=1494(21) s^{-1}$

vs.
$$\Gamma_0(Exp) = 1496(4) \text{ s}^{-1}$$

L.E. Marcucci et al., PRC 83, 014002 (2011); PRL 108, 052502 (2012)

	capture rate Γ in s $^{-1}$			
PhenAp:1b+FE	Гл	nd	Γ _{nnp}	$\Gamma_{nd} + \Gamma_{nnp}$
	SPW	Full	Full	Full
AV18	2046	604	169	773
AV18+Urbana IX	1956	544	154	698
Experimental results:				
O.A. Zaĭmidoroga <i>et al</i> ., PLB 6 , 100 (1963)				660 ± 160
L.B. Auerbach et al., PRB 138, 127 (1965)				665 $^{+170}_{-430}$
E.M. Maev et al., Hyp. Interact. 101/102, 423 (1996)				720 ± 70
V.M. Bystritsky <i>et al.</i> , PRA 69 , 012712 (2004)				
method I	$491 \pm$	125	187 ± 11	678 ± 126
method II	497 :	± 57	190 ± 7	687 ± 60

J. Golak *et al.*, PRC **90**, 024001 (2014) \longrightarrow J. Golak's talk

The proton-proton weak capture reaction

S(E)in χ EFT and PhenAp • Energy range 2 keV - 100 keV

• PhenAp or χ EFT + FULL EM interaction

• pp $L \le 1$ partial waves: ${}^{1}S_{0} + \text{all } P$ -waves

S(0) cumulative contributions (in 10^{-23} MeV fm²)

		${}^{1}S_{0}$	$\cdots + {}^{3}P_{0}$	$\cdots + {}^{3}P_{1}$	$\cdots + {}^{3}P_{2}$
	PhenAp	4.000(3)	4.003(3)	4.015(3)	4.033(3)
)	χ EFT	4.008(6)	4.011(6)	4.020(6)	4.030(6)

$$S(0)$$
=(4.030 ± 0.006) × 10⁻²³ MeV fm²
vs.
 $S(0)^{SFII}$ =(4.01 ± 0.04) × 10⁻²³ MeV fm²

SFII: E.G. Adelberger et al., RMP 83, 195 (2011)

L.E. Marcucci et al., PRL 110, 192503 (2013)

Latest calculation in χEFT consistent up to N2LO

B. Acharya et al., PLB 760, 584 (2016) — B.D. Carlsson's talk

Effects on

- age of mid and old stellar clusters (1-12 Gyr)
- standard solar model predictions

Neutrino fluxes relative differences

	MSV13(S+P)	MSV13(S)	NACRE99	SFII	JINA	
	reference	r	relative differences			
$T_c [10^7 { m K}]$	1.54794	-1%	-3‰	-2‰	-1%	
$\Phi^{ u}_{ m pp} [10^{10}]$	6.020	1‰	2‰	2‰	1%	
$\Phi_{\rm pep}^{\hat{ u}^{*}}$ [10 ⁸]	1.446	-2‰	-6%	-2%	-1%	
$\Phi_{ m hep}^{ u}$ [10 ³]	8.584	-1%	-3%	< 1%	2‰	
$\Phi_{ m Be-7}^{ u}$ [10 ⁹]	4.503	-1%	-3%	-1%	-9%	
$\Phi^{ u}_{ m B-8}[10^6]$	3.694	-3%	-7%	-4%	-2%	
$\Phi^{ u}_{ m N-13}$ [10 ⁸]	2.417	-2%	-6%	-3%	-1%	
$\Phi^{ u}_{ m O-15}$ [10 ⁸]	1.811	-3%	-8%	-4%	-2%	
$\Phi^{ u}_{ m F-17}[10^6]$	3.373	-3%	-8%	-4%	-2%	

$$r_{12} \rightarrow \int_0^\infty S(E) \exp\left(-2\pi\eta - \frac{E}{kT_c}\right) dE \qquad \eta = \frac{Z_1 Z_2 \alpha}{v_{rel}}$$

E. Tognelli et al., PLB 742, 189 (2015)

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

August 12, 2016 23 / 33

The $p + d \rightarrow {}^{3}\mathrm{He} + \gamma$ reaction in the BBN energy range

New ongoing measurement by the **LUNA Collab.** at LNGS in the energy range of interest for BBN

SFII: E.G. Adelberger et al., RMP 83, 195 (2011)

Planck Collab., arXiv:1501.01589 (2015)

- $V_{NN} + V_{NNN} \rightarrow \text{AV18} + \text{UIX} \Rightarrow A = 3$ systems well reproduced
- test of the nuclear scattering wave functions by calculating $\langle H \rangle = \langle \Psi^{LSJ} | H | \Psi^{LSJ} \rangle = E_{cm} B_d$ in a box with $R_{box} = 70$ fm
- EM current \rightarrow state-of-the-art (1b + 1b RC* + MEC)

* 1b $\mathcal{O}(1/m^3)$ term \rightarrow RC "borrowed" from χ EFT L. Girlanda *et al.*, PRL **105**, 232502 (2010): few % contribution to $n + d \rightarrow {}^{3}\text{H} + \gamma$

 \Rightarrow included in the study of $p + d \rightarrow {}^{3}\text{He} + \gamma$

Implications for Big Bang Nucleosynthesis

- $S(E) \rightarrow \text{primordial }^2\text{H} \text{ abundance}$
- ${}^{2}H/H$ abundance as function of $\Omega_{b}h^{2}$ and N_{eff}
- Likelihood function to get the best fit on $\Omega_b h^2$ and N_{eff}

 ${}^{2}\text{H/H}|_{TH} = (2.46 \pm 0.03 \pm 0.03) \times 10^{-5}$ $\Omega_{b}h^{2} \rightarrow \text{Planck 2015 \& standard } N_{eff}$ vs. ${}^{2}\text{H/H}|_{Exp} = (2.53 \pm 0.04) \times 10^{-5}$

L.E. Marcucci *et al.*, PRL **116**, 102501 (2016) Erratum: PRL **117**, 049901 (2016)

PRELIMINARY RESULTS in χ EFT: zoom for E = 0 - 250 keV

Ongoing work: the weak sector in $\chi {\rm EFT}$

- Weak current up to $O(Q^1) + N3LO(Idaho)/N2LO(Iocal form)$
- Fit c_D and c_E using B(A = 3) and GT_{Exp}

Λ [MeV]		c _D	CE	a _{nd} [fm]
500	$\mathcal{O}(Q^0)$	-0.353	-0.305	0.665
	$\mathcal{O}(Q^1)$	-1.847	-0.548	0.654
600	$\mathcal{O}(Q^0)$	0.443	1.224	0.699
	$\mathcal{O}(Q^1)$	2.030	1.553	0.688
Exp.				0.645(10)

A. Baroni, arXiv:1605.01620, PRC in press

$\Lambda = 500 \text{ MeV}$

Λ =600 MeV

Using the χ EFT weak current up to $\mathcal{O}(Q^1)$

- μ -capture on deuteron and ³He
- $p + p \rightarrow d + e^+ + \nu_e$
- $p + {}^{3}\mathrm{He} \rightarrow {}^{4}\mathrm{He} + e^{+} + \nu_{e}$ the *hep* reaction

Within the PhenAp

- μ -capture on ³He breakup channels: beyond 1b term
- μ -capture on ³H [$\mu^- + {}^{3}H \rightarrow n + n + n + \nu_{\mu}$] $\Rightarrow T = 3/2$ channel \longrightarrow J. Golak's talk