Studies of Final-State Interactions via Helicity Asymmetries in Exclusive
 Pseudoscalar Meson Photoproduction off Deuteron

Yordanka Ilieva
University of South Carolina
for the CLAS Collaboration

The $23^{\text {rd }}$ European Conference on Few-Body Problems in Physics

The Nucleus as an Experimental Laboratory

Final-State Interactions (FSI)

Access to Elementary Scattering off the bound nucleon

- Scattering off quasi-bound nucleons (neutrons).
- Extraction of observables for scattering off the free neutron.

Access to Second-Step Scattering

- Hadron Beam produced in first step.
- Hadrons scatter off neutrons in a second step.

The Nucleus as an Experimental Laboratory

Final-State Interactions (FSI)

Challenges

- Contribution of FSI events to QF sample.
- Bound nucleon is not a free nucleon: off-shell and nuclear effects on observables.

Typically, theoretical corrections are needed.

Challenges

- Contributions of QF to FSI sample.
- Contributions of other FSI to rescattering sample.
Theoretical interpretation of experimental observables is needed.

Outline

1. Experimental studies of extraction of observables off the free nucleon from data off the bound nucleon.

- Determine the evolution of observables with target-nucleon Fermi momentum.
- Test results for method
- Helicity Asymmetries of $\mathrm{Yd} \rightarrow \mathrm{p} \pi^{+} \pi^{-}\left(n_{s}\right)$
- Hyperon polarizations in $\mathrm{yd} \rightarrow \mathrm{K}^{+} \wedge\left(n_{s}\right)$

2. Experimental studies of specific FSI selection.

- Kinematics.
- Helicity Asymmetries of $\mathrm{yd} \rightarrow \mathrm{K}^{+} \wedge n$.

3. Summary and Outlook.

Experimental Facility: CLAS at Jefferson Lab Experiment E06-103 (g13)

Circularly Polarized Photons (g13a)

- $\mathrm{E}_{\mathrm{e}}=2 \mathrm{GeV} ; 2.65 \mathrm{GeV}$
- electron polarization: ~ 80\%
- triggers: $\sim 20 \times 10^{9}$ triggers

Fully Exclusive Measurements

P. Nadel-Turonski, B. Berman, YI, D. Ireland, A. Tkabladze et al., E06-103: "Kaon Production on the Deuteron Using Polarized Photons"

Suppression/Selection of Quasi-Free Mechanism/FSI

Event Distribution over Missing Momentum

$$
P_{x}\left(\gamma d \rightarrow K^{+} \Lambda X\right)
$$

Comparison with Model Distribution

Paris Potential describes well low Px data. High-momentum tail drops off at $\sim 0.6 \mathrm{GeV} / \mathrm{c}$: effect on data interpretation.

Helicity Asymmetries: $\gamma\left(p_{s}\right) \rightarrow p \pi^{+} \pi^{-}$

Fitted to:
$A_{e x p}(\varphi)=\sum_{k=1}^{3} a_{k} \sin (k \varphi)+\sum_{k=1}^{3} b_{k} \cos (k \varphi)$
$b_{k} \sim 0$

Evolution with Spectator-Nucleon Momentum
 Helicity Asymmetries

Lin. Extrapolation	Average $0 .-0.2 \mathrm{GeV} / \mathrm{c}$	Average $0 .-0.15$ $\mathrm{GeV} / \mathrm{c}$	Average $0 .-0.1 \mathrm{GeV} / \mathrm{c}$
-0.17 ± 0.02	$-0.15 \pm 0.0 \mathrm{I}$	$-0.15 \pm 0.0 \mathrm{I}$	$-0.16 \pm 0.0 \mathrm{I}$
-0.28 ± 0.02	$-0.25 \pm 0.0 \mathrm{I}$	$-0.25 \pm 0.0 \mathrm{I}$	$-0.27 \pm 0.0 \mathrm{I}$
$-0.2 \mathrm{I} \pm 0.02$	$-0.22 \pm 0.0 \mathrm{I}$	$-0.22 \pm 0.0 \mathrm{I}$	$-0.22 \pm 0.0 \mathrm{I}$
-0.13 ± 0.02	$-0.1 \mathrm{I} \pm 0.0 \mathrm{I}$	$-0.1 \mathrm{I} \pm 0.0 \mathrm{I}$	$-0.12 \pm 0.0 \mathrm{I}$

Hyperon Polarizations: $\gamma\left(p_{s}\right) \rightarrow \mathrm{K}^{+} \Lambda$

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma}{d \Omega_{0}}\left[1-\alpha \cos \theta_{x} P_{\text {cirt }} C_{x}-\alpha \cos \theta_{z} P_{\text {crit }} C_{z}+\alpha \cos \theta_{y} P\right]
$$

Λ self-analysing power:

$$
\alpha=0.642 \pm 0.013
$$

Evolution with Spectator-Nucleon Momentum Hyperon Polarizations

Studies of Specific FSI Selection

 Kinematic Constraints by Two-Body Kinematics

Assumption: The sequential $2 \rightarrow 2$ scatterings occur on a nucleon at rest

Strategy: Test if the 3-vector of each particle obeys 2-body kinematics at first step:

$$
\begin{aligned}
& \gamma p \rightarrow K^{+} \Lambda \\
& \Delta p_{\Lambda}^{*}=p_{\Lambda, \text { meas }}^{C M-K \Lambda}-p_{\Lambda, 2 b o d y}^{C M-K \Lambda} \\
& p_{\Lambda, 2 b o d y}^{C M-K \Lambda}=F\left(E_{\gamma}, m_{p}, m_{\Lambda}, m_{K}\right)
\end{aligned}
$$

$\gamma p \rightarrow K^{+} \Lambda$
$\Delta p_{K}=p_{K, \text { meas }}^{L S}-p_{K, 2 \text { body }}^{L S}$
$p_{K, 2 \text { body }}^{L S}=F\left(E_{\gamma}, \theta_{\text {meas }}^{L S}\right)$

Studies of Specific FSI Selection Helicity Asymmetries: $\gamma \mathrm{d} \rightarrow \mathrm{K}^{+} \Lambda \mathrm{n}$

^n Rescattering

$P_{n}>0.2 \mathrm{GeV} / \mathrm{c}$

Work by Weizhi Xiong

Studies of Specific FSI Selection Helicity Asymmetries: $\gamma \mathrm{d} \rightarrow \mathrm{K}^{+} \wedge \mathrm{n}$

$P_{n}>0.2 \mathrm{GeV} / \mathrm{c}$

Work by Weizhi Xiong

Studies of Specific FSI Selection Helicity Asymmetries: $\gamma \mathrm{d} \rightarrow \mathrm{K}^{+} \Lambda \mathrm{n}$

$P_{n}>0.2 \mathrm{GeV} / \mathrm{c}$

Work by Weizhi Xiong

Summary and Outlook

- High-Statistics Exclusive Measurements of scattering off the bound nucleon in deuteron allow for extraction of evolution of observables with target's Fermi momentum p .
- Polynomial extrapolation to $p=0 \mathrm{MeV} / \mathrm{c}$ allows to obtain more accurate estimates of observables for scattering off the free nucleon than integrating over a range of p. Important for very high-statistics samples.
- Kinematics constraints combined with studies of helicity asymmetries allow to identify kinematics where specific FSI may be dominant.
- Large \wedge scattering angles for Λn FSI.
- Large K scattering angles for Kn FSI.
- Further validation with comprehensive simulation studies (realistic QF and FSI dynamics implemented for each step).
- Model interpretation is not obsolete: realistic deuteron wave functions are needed at high nucleon momenta; realistic model of reaction dynamics needed.

Acknowledgments

Nick
Zachariou

Tongtong
Cao

Colin
Gleason

The End

