Solvable Models for a Few Atoms in a Few One-Dimensional Wells

Nathan L. Harshman

Permanent: American University, Temporary: Aarhus University EFB 23, 14:20-14:40 PM, Tuesday, 09 August, 2016

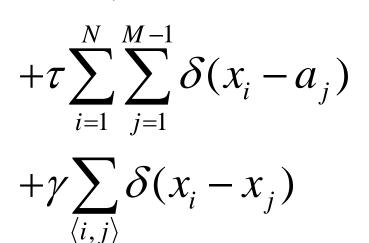
References:

- N.L. Harshman, "One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries: I. One, Two, and Three Particles," Few-Body Systems, 75, 11-43 (2016), arXiv: 1501.00215
- N.L. Harshman, "One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries: II. *N* Particles," Few-Body Systems, 75, 45-69 (2016), arXiv: 1505.00659
- N.L. Harshman, "Symmetries of Two Interacting Particles in One-Dimensional Double Wells," to appear.

The Model

$$H = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x_i^2} + V(x_i) \right)$$

N non-interacting particles in trap



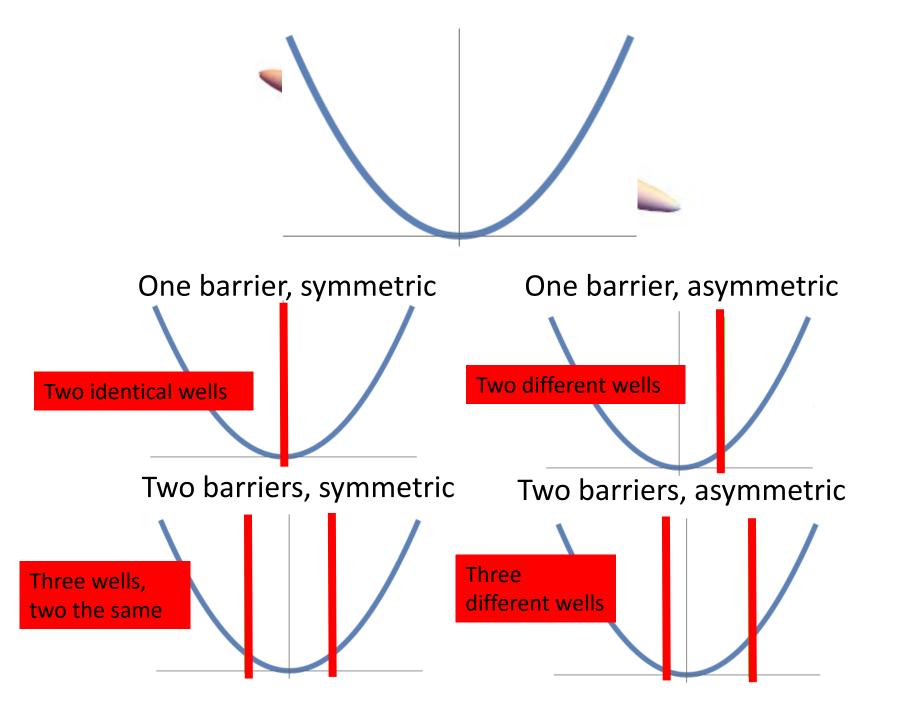
(M-1) barriers, M wells

Contact interactions

Symmetry, integrability, and solvability depend on

 $N, V(x), \tau, a_i, \gamma$

• Experimentally relevant: one-dimensional traps with tunable barriers and interactions



- Experimentally relevant: one-dimensional traps with tunable barriers and interactions
- Identify integrable and solvable models
 - Mathematical touchstones
 - Integrability and chaos

Symmetries of Limiting Cases

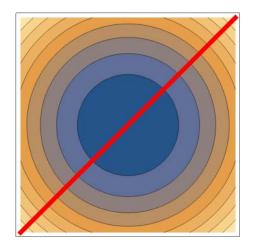
Besides parity and permutation symmetry

• Symmetry of separability

– No interactions
$$\gamma = 0$$

- Well permutation symmetry No tunneling between wells $\tau \rightarrow \infty$
- Ordering permutation symmetry

- Unitary limit $\gamma \rightarrow \infty$



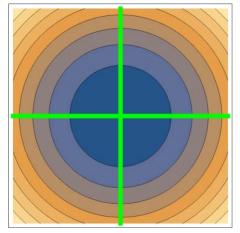
$$\tau = 0, \gamma = 0$$
$$\tau = 0, \gamma \neq 0$$
$$\tau = 0, \gamma \rightarrow \infty$$

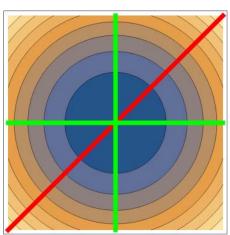
 $\tau \rightarrow \infty, \gamma \neq 0$

 $\tau \neq 0, \gamma \rightarrow \infty$

 $\tau \to \infty, \gamma \to \infty$

 $\tau \neq 0, \gamma \neq 0$

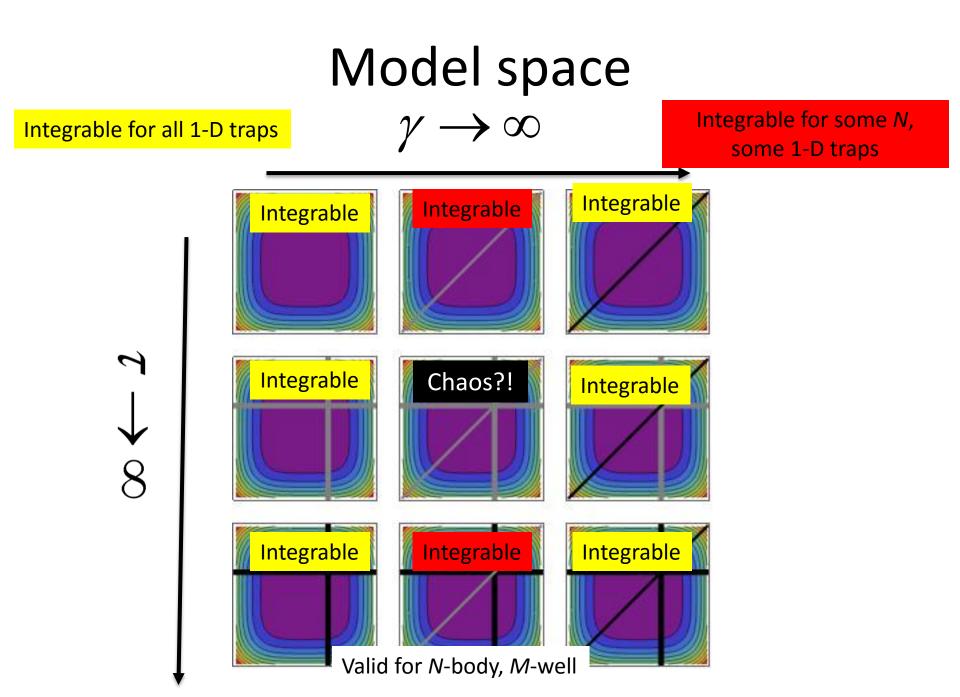




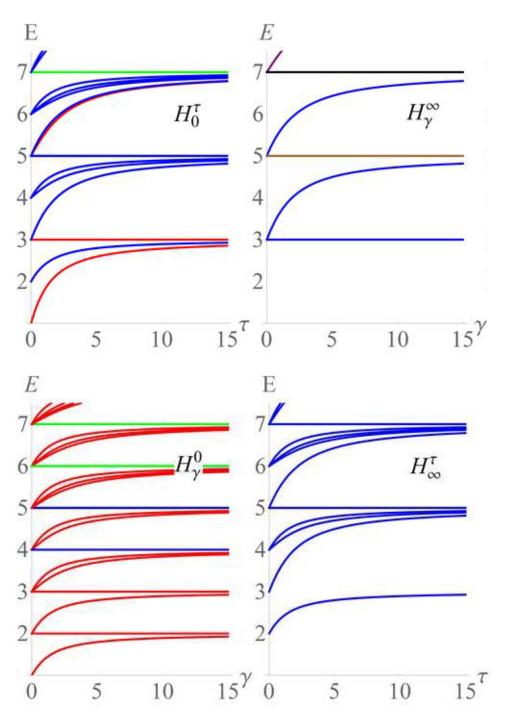
 $\tau \neq 0, \gamma = 0$ Solvable $\tau \rightarrow \infty, \gamma = 0$ Algebraically solvable

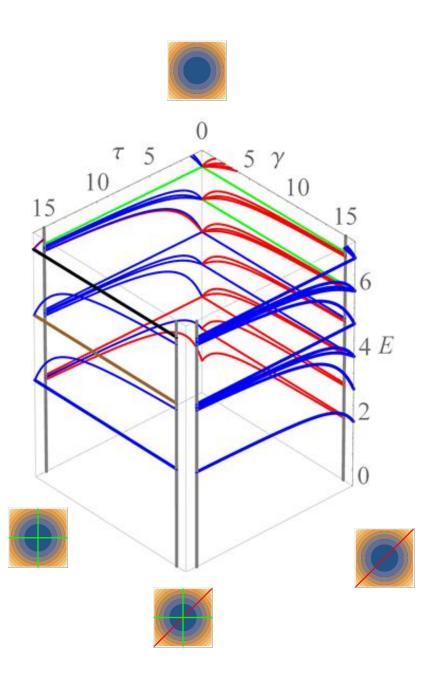
> Solvable Solvable

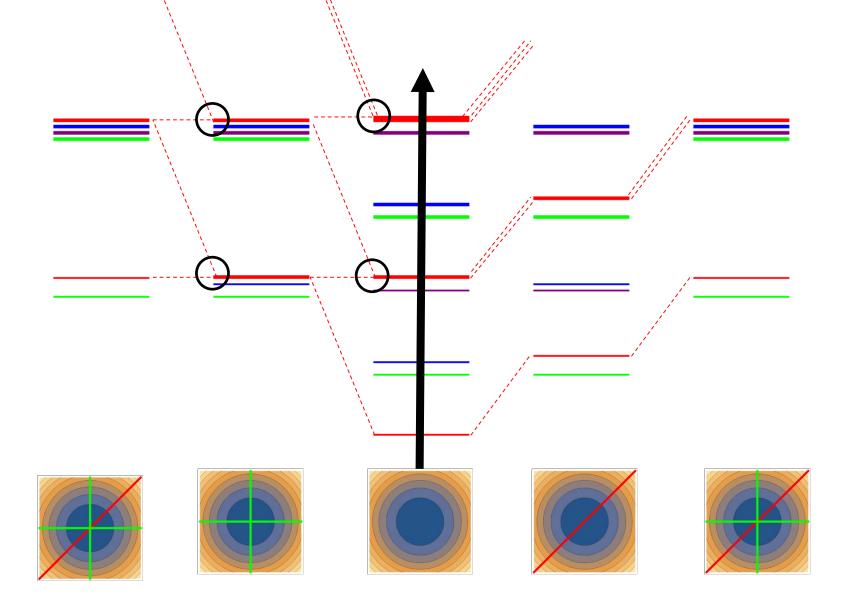
Algebraically solvable
Nuffin!



- Experimentally relevant: one-dimensional traps with tunable barriers and interactions
- Identify integrable and solvable models
 - Mathematical touchstones
 - Integrability and chaos
- Digitization and control of few-body quantum states for quantum information processing
 - Quantum abacus
 - Quantum combinatorics







Positive parity bosons

Negative parity bosons

Positive parity fermions

Negative parity fermions

- Experimentally relevant: one-dimensional traps with tunable barriers and interactions
- Identify integrable and solvable models
 - Mathematical touchstones
 - Integrability and chaos
- Digitization and control of few-body quantum states for quantum information processing
 - Quantum abacus
 - Quantum combinatorics
- Bridge to many-body, many-well models

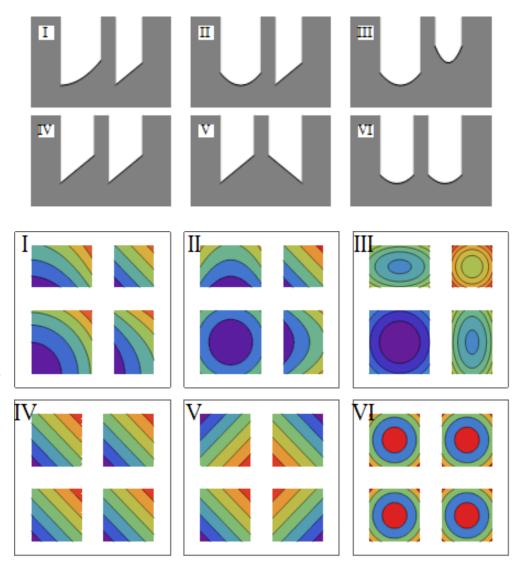
Types of Symmetries

- Configuration space:
 - Parity, particle permutations, well permutations, ordering permutations
 - Linear vs. non-linear; global vs. local
 - Single-particle generated vs. emergent

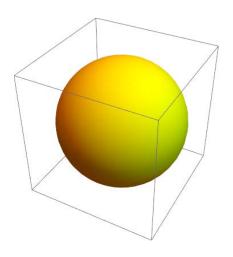
Well Permutation Symmetry

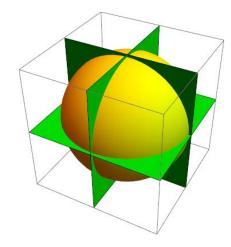
 One particle, two wells

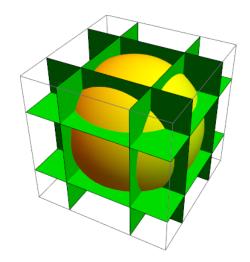
 Two particles, two wells

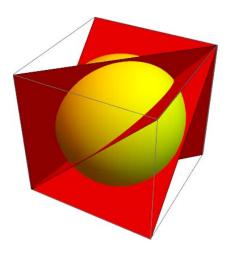


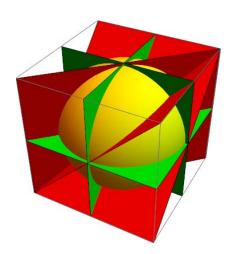
Ordering Permutation Symmetry

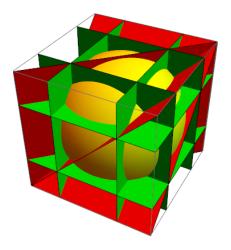












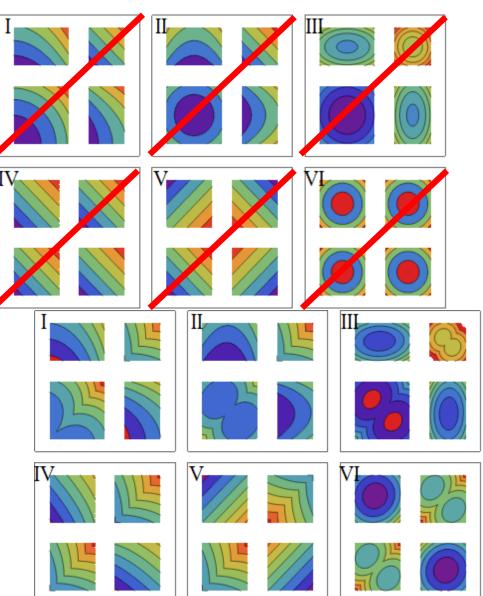
Types of Symmetries

- Configuration space:
 - Parity, particle permutations, well permutations, ordering permutations
 - Linear vs. non-linear; global vs. local
 - Single-particle generated vs. emergent
- Phase space:
 - Symmetry of separability
 - Harmonic oscillators: superintegrability and exact solvability

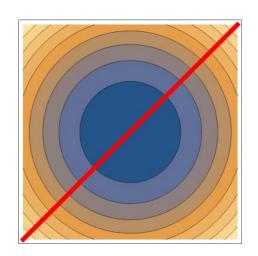
Symmetry of Separability

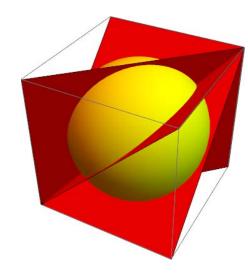
• No interactions

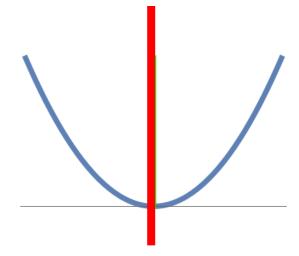
- Zero range interactions
- Finite range interactions

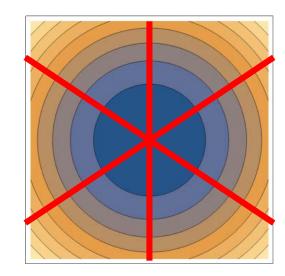


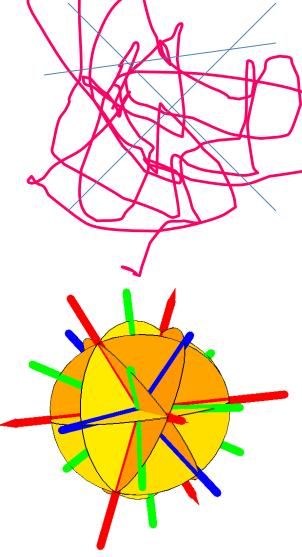
HO Separability in Configuration Space











Types of Symmetries

- Configuration space:
 - Parity, particle permutations, well permutations, ordering permutations
 - Linear vs. non-linear; global vs. local
 - Single-particle generated vs. emergent
- Phase space:
 - Symmetry of separability
 - Harmonic oscillators: superintegrability and exact solvability
- Hilbert space:
 - Kinematic vs. dynamic
 - Total vs. partial: state permutation symmetry

What symmetry analysis gives

- Degeneracy of energy levels and spectroscopic labels
- Conserved quantities and efficient approximation schemes
- Adiabatic maps between energy level of different models
- Symmetry protected sectors of the Hilbert space
- Symmetry breaking analysis for more realistic models
- Diagnosis of integrability and solvability
- Different perspective on universality as emergent symmetry

Parameters $a \neq 0$ $a = 0$				
$ au eq 0, \ \gamma = 0$		1, 2	1, 2	
	$ eq 0, \gamma eq 0$	1	1	
$ au eq 0, \ \gamma \to \infty \qquad 2 \qquad 2$				
$ au o \infty, \ \gamma = 0 \qquad 1,2 \qquad 4,8$				
au -	$ ightarrow\infty,\gamma eq 0$		2, 6	
$ au o \infty, \gamma o \infty 2 \qquad 2,8$				
γ		K		
$\gamma = 0$	$(T_a \times P_2) \int W_{ABCD}$			
$\gamma \neq 0$	$P_2 \int W_{AC} \times (T_a \times P_2) \int W_{BD}$			
•				
$\gamma \rightarrow \infty$	$T_a J O_{2A} J W_{AC}$	$\times (T_a \times P)$	W_{BD}	
0				
× 10 γ				
20				
		1	20 20	2
1	X		20	J
K				30
		\sim		F
			X	15
\sim				15
K				
X				0
$\langle \rangle$		/		0
			5 0)
		10	3	
		15τ		
	20			

Thanks!

- To the Local Organizers for EFB23
- To Aarhus University and Nikolai Zinner for hosting my sabbatical
- To American University faculty and alumni: Jennifer DeMell, Jessica Hirtenstein, Phil Johnson, David Lockerby, Jarrett Revels, Michael Roberts, Jennifer Verniero, Brian Weinstein, Allison Taylor

Recent funding:

• DC NASA Spacegrant Consortium, Anacapa Society, Aarhus University Research Foundation

References:

- N.L. Harshman, "One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries: I. One, Two, and Three Particles," Few-Body Systems, 75, 11-43 (2016), arXiv: 1501.00215
- N.L. Harshman, "One-Dimensional Traps, Two-Body Interactions, Few-Body Symmetries: II. *N* Particles," Few-Body Systems, 75, 45-69 (2016), arXiv: 1505.00659
- N.L. Harshman, "Symmetries of Two Interacting Particles in One-Dimensional Double Wells," to appear.

