

Strong decay mode $J/\psi p$ for the pentaquark states $P_c(4380), P_c(4450)$

Yubing Dong

Institute of High Energy physics (IHEP), Chinese Academy of Sciences China

1, A Brief Introduction (recent multi-quark states)

- 2, Interpretations of Pc states in molecular scenario and their strong decay
- 3, Production of neutral Pc states @ J-PARC

4, Summary

Introduction (recent multi-guark)

(New resonances, five-quark)

13 Jul 2015

arXiv:1507.03414v1 [hep-ex]

Observation of a Charmed Baryon Decaying to $D^0 p$ at a Mass Near 2.94 GeV/ c^2

(BABAR Collaboration)

2016/8/10

The results for the $\Lambda_c(2940)^+$ baryon are

$$m = [2939.8 \pm 1.3(\text{stat}) \pm 1.0(\text{syst})] \text{ MeV}/c^2,$$

 $\Gamma = [17.5 \pm 5.2(\text{stat}) \pm 5.9(\text{syst})] \text{ MeV}.$

For the $\Lambda_c(2880)^+$ baryon the results are

 $m = [2881.9 \pm 0.1(\text{stat}) \pm 0.5(\text{syst})] \text{ MeV}/c^2$, $\Gamma = [5.8 \pm 1.5(\text{stat}) \pm 1.1(\text{syst})] \text{ MeV}.$

$$|\Lambda_{c}(2940)^{+}\rangle = \alpha |pD^{*0}\rangle + \beta |nD^{*+}\rangle$$

 $1^{\pm} / 2, 3^{\pm} / 2$

EFB23, Aug. 8-12, 2016@Aarhus_Denmark

Observation of $J\!/\psi\,p$ resonances consistent with pentaquark states in $\Lambda^0_b\to J/\psi K^-p~{\rm decays}$

The LHCb collaboration

Abstract

Observations of exotic structures in the $J/\psi\,p$ channel, that we refer to as pentaquark-charmonium states, in $\Lambda_b^0 \to J/\psi\,K^-p$ decays are presented. The data sample corresponds to an integrated luminosity of 3 $\,{\rm fb}^{-1}$ acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis is performed on the three-body final-state that reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\psi\,p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of $4380\pm8\pm29$ MeV and a width of $205\pm18\pm86$ MeV, while the second is narrower, with a mass of $4449.8\pm1.7\pm2.5$ MeV and a width of $39\pm5\pm19$ MeV. The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

d*(2380), six-quark (light quarks) INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS VOLUME 54 NUMBER 6

Experiments at the Jülich Cooler Synchrotron (COSY) have found compelling evidence for a new state in the two-baryon system, with a mass of 2380 MeV, width of 80 MeV and quantum numbers I(J^P) = 0(3⁺). The structure, containing six valence quarks, constitutes a dibaryon, and could be either an exotic compact particle or a hadronic molecule. The result answers the long-standing question of whether there are more eigenstates in the two-baryon system than just the deuteron ground-state. This fundamental question has been awaiting an answer since at least 1964, when first Freeman Dyson and later Robert Jaffe envisaged the possible existence of non-EXOTICS trivial six-quark configurations.

COSY's new evidence for a six-quark state

2016/8/10

EFB23, Aug. 8-12, 2016@Aarhus Denmark

Hadronic molecules

- Weekly bound state of two or three hadrons
- Typical examples: Nuclei and hyper-nuclei
- Baryon-baryon bound state: MH < M1 + M2

 The Molecule idea has a long history
 Voloshin, Okun (1976)
 De Rujula, George, and Glashow (1977)
 Long-range one-pion exchange (Tornqvist, ZPC1993)
 Meson-exchange models (Lohse, et al., 1990)
 Unitarized coupled channel models with chiral
 Lagrangians (Olier, et al., 1997; Jido et al., 2005, Gammermann et al., 08)+.....Chinese+ 2, Molecule scenario Of Two Pentaquark states Pc(4380)+, and Pc(4450)+

Observation of J/ψp resonances consistent with pentaquark states

Pentaquark states

 $P_{c}^{+}(4380): (M; \Gamma) = (4380 \pm 8 \pm 29;$ **205 \pm 18 \pm 86) MeV P_{c}^{+}(4450): (M; \Gamma) = (4449.8 \pm 1.7 \pm 2.5; 39 \pm 5 \pm 19) MeV**

Spin-parity:
$$(3/2^-, 5/2^+)$$
, $(3/2^+, 5/2^-)$, or $(5/2^+, 3/2^-)$.

Phys. Rev. Lett. 115, 072001 (2015).

EFB23, Aug. 8-12, 2016@Aarhus_Denmark

$$\begin{split} \mathcal{B}(\Lambda_b^0 \to P_c^+(4380)K^-)\mathcal{B}(P_c^+(4380) \to J/\psi p) \\ &= 2.56 \pm 0.22 \pm 1.28^{+0.46}_{-0.36} \times 10^{-5}, \end{split}$$

*coupled-channle unitary approach: A series of meson-baryon dynamically generators e.g. arXiv:PRL105,232001; PRC84,015202, PRD92,094003, etl.al...

Our Phenomenological approach:

Molecule scenario PRD77,094013+...

 $L_{XDD} = X_{\mu}J^{\mu}$

Thomas Gutsche, and V.E. Lyubovitskij

11

$$=\frac{g_x}{\sqrt{2}}X_{\mu}\int d^4y \Phi_x(y^2)[D(x+y/2)\overline{D}^{**}(x-y/2)+\overline{D}(x+y/2)D^{**}(x-y/2)]$$
Correlation
function
Two fields

Compositeness condition:

Bound state description of hadronic molecules in QFT based on compositeness condition: Weinberg, PR1963; Salam, Nuov.Cim. 1962 Heyashi et al., Fortsch. Phys. 1967

The coupling g is determined by the condition

$$Z_M = 1 - \Sigma'_M(m_M^2) = 0$$

Exp. input

with the derivative of the mass operator $E \times \Sigma'_M(m_M^2) = g_M^2 \Pi'_M(m_M^2) = g_M^2 \frac{d\Pi_M(p^2)}{dp^2} \Big|_{p^2 = m_M^2}$

with the mass operator
$$\hat{\Pi}(p^2)$$
 represented by:
 $X \xrightarrow{r}} \xrightarrow{r} \xrightarrow{r} X$
2016/8/10
EFB23, Aug. 8-12, 12
2016 @Aarhus Denmark

Vertex function

Characterize the finite size of the hadron the distributions in the hadron

Gaussian-type is chosen for the function

$$\Phi_M(y^2) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot y} \tilde{\Phi}(-k^2), \qquad \tilde{\Phi}(-k_E^2) = \exp\left(-k_E^2/\Lambda_M^2\right)$$

local limit $\Phi(y^2) \rightarrow \delta^{(4)}(y)$

Parameter: Gaussian with free size parameter Λ

Four-dimensional covariant calculation

EFB23, Aug. 8-12, 2016@Aarhus_Denmark

New resonance: X(3872)

Basics about X(3872)

first seen in

 $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ by BELLE (2003), also seen by CDF, D0 (2004) and BABAR (2005).

- $\int \Gamma_X \approx 3 \text{ MeV}$
- quantum numbers:
 - C=+ from $X(3872) \rightarrow \gamma J/\psi$, I=0 no signal in $X \rightarrow \pi \pi^0 J/\psi$
 - $J^{PC} = 1^{++}$ or $J^{PC} = 2^{-+}$ from $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ helicity amplitude analysis
- X(3872.2 ± 0.8) close to D⁰D^{•0} threshold with m_{thr} = 3871.81 ± 0.36 MeV;
- S-wave $D^0 \bar{D}^{*0}$ hadron molecule favors $J^{PC} = 1^{++}$
- charmonium interpretation disfavored, 1++(23P1) too low in mass compared to $m(2^{3}P_{2}) \approx m(Z(3930))$

гнср

Discovery of X(3872)

- Very narrow resonance (Γ<1.2 MeV) close to D⁰D⁰* threshold
- Nature unclear: conventional charmonium state, exotic state (D0D0* molecule, tetraquark), or a mixture

PRL 110, 222001 (2013).

Determination of J^{PC} important

Belle 2003, Phys. Rev. Lett. 91, 2620 \mathcal{B} (0.005 GeV) 3.82 3.84 3.86 3.88 3.9 3.92

 $\mathcal{B}(B^0 \to X(3872)(K^+\pi^-)_{NR}) \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) = (8.1 \pm 2.0^{+1.1}_{-1.4}) \times 10^{-6}$

Decay modes

Basics about X (3872), Decay Modes

- $\Gamma(X \to J/\psi \pi^{+} \pi^{-} \pi^{0})/\Gamma(X \to J/\psi \pi^{+} \pi^{-}) = 1.0 \pm 0.4 (\text{stat}) \pm 0.3 (\text{syst})$ BELLE (hep-ex/0505037) isospin violating decay modes decays dominated by subthreshold decays of $\omega J/\psi$ and $\rho J/\psi$
- \blacksquare Γ(X → J/ψγ)/Γ(X → J/ψπ⁺π⁻) = 0.14 ± 0.05 (Belle); 0.33 ± 0.12 (BABAR) BELLE (hep-ex/0505037), BABAR PRL 102 (2009) large radiative decay mode !!
- $\Gamma(\mathbf{X} \to \psi(\mathbf{2S})\gamma)/\Gamma(\mathbf{X} \to \mathbf{J}/\psi\gamma) = 3.5 \pm 1.4$ BABAR, PRL 102, (2009) possible evidence for charmonium component?

PR D 92, 011102 (2015). Update: w/o assumption on L B⁺→X(3872)K⁺ w/ X(3872)→J/ψππ \rightarrow J^{PC} = 1⁺⁺ , J^{PC} = 2⁻⁺ rejected w/ >8 σ Confirms J^{PC} = 1⁺⁺ (analysis assumed lowest possible L)

M(J/ψ ππ) (GeV)

Strong decay

FIG. 1: H_1H_2 hadron-loop diagrams contributing to the mass operator of the X(3872) meson.

PRD79,094013

D•0

D⁰

(@@

D•0

D.0

Xei

2009

D*0

D

1⁰

 D^0

χø

Radiative decay

 $X(3872) \to J/\psi, \psi(2S) + \gamma$

200.6/8/algoans contributing to the hadronic transitions $X(3872) \rightarrow \chi_{eI} + \pi^0$.

EFB23, Aug. 8-12, 2016@Aarhus_Denmark

Strong decay (two-body, three-body)

$$\begin{aligned} X(3872)\rangle &= \frac{Z_{D^0 D^{*0}}^{1/2}}{\sqrt{2}} (|D^0 \bar{D}^{*0}\rangle + |D^{*0} \bar{D}^0\rangle) \\ &+ \frac{Z_{D^{\pm} D^{*\mp}}^{1/2}}{\sqrt{2}} (|D^+ D^{*-}\rangle + |D^- D^{*+}\rangle) \\ &+ Z_{J_{\psi} \omega}^{1/2} |J_{\psi} \omega\rangle + Z_{J_{\psi} \rho}^{1/2} |J_{\psi} \rho\rangle, \end{aligned}$$

$$\frac{\Gamma(X \to J/\psi \,\pi^+ \,\pi^- \,\pi^0)}{\Gamma(X \to J/\psi \,\pi^+ \,\pi^-)} = 1.0 \pm 0.4 \text{(stat)} \pm 0.3 \text{(syst)}$$

and

$$\frac{\Gamma(X \to J/\psi \gamma)}{\Gamma(X \to J/\psi \pi^+ \pi^-)} = 0.14 \pm 0.05 \text{(Belle)};$$
$$0.33 \pm 0.12 (BABAR).$$

TABLE III. Properties of $X \to J_{\psi} + h$ decays. The numbers in brackets and for the ratios R_1 , R_2 from explicit values for $Z_{J_{\psi}\rho}$, $Z_{J_{\psi}\omega}$ and $\sigma = (Z_{J_{\psi}\rho}/Z_{J_{\psi}\omega})^{1/2}$ of Eq. (34).

Quantity	Local case	Nonlocal case
$\Gamma(X \rightarrow J/\psi \pi^+ \pi^-)$, keV	$7.5 \times 10^3 Z_{J_{\mu}\rho}(45.0)$	$9.0 \times 10^3 Z_{J_{\#}\rho}(54.0)$
$\Gamma(X \to J/\psi \pi^+ \pi^- \pi^0)$, keV	$1.92 \times 10^3 Z_{J_{\pm}\omega}^{(78.9)}$	$1.38 \times 10^3 Z_{J_{\pm}\omega}^{(56.6)}$
$\Gamma(X \to J/\psi \pi^0 \gamma)$, keV	$0.32 \times 10^3 Z_{J_{\pm}\omega}^{*}(13.2)$	$0.23 \times 10^{3} Z_{J_{\pm}\omega}^{*}(9.4)$
$\Gamma(X \to J/\psi \gamma)$, keV	$49.18Z_{J_{\pm}\omega}(1+1.94\sigma)^2(6.1)$	$35.19Z_{J_{,t}\omega}(1+2.51\sigma)^2(5.5)$
R_1	1.75	1.05
<i>R</i> ₂	0.14	0.10

Including of CC

Diagrams contributing to the radiative transitions $X(3872) \rightarrow J/\psi + \gamma$ and $X(3872) \rightarrow \psi(2S) + \gamma$.

17

Results (including CC

YBD, Faessler, Gutsche & Lyubovitskij, J. Phys. G38, 015001

Quantity

$$c\bar{c}$$
 DD^*
 $J/\psi V$
 $DD^* + J/\psi V$
 Total

 $\Gamma_{J_{\psi}}$, keV
 45
 3.6
 1.5
 8
 1.94

 Γ_{ψ} , keV
 64
 0.01
 0
 0.01
 6.8

 R
 1.1
 3.3 × 10⁻³
 0
 1.5 × 10⁻³
 3.5 ($\theta = -20.2^{0}$)

 $|X(3872)\rangle = \cos \theta \left[\frac{Z_{J_{\psi}D}^{1/2}}{\sqrt{2}} (|D^0 \bar{D}^{*0}\rangle + |D^{*0} \bar{D}^0\rangle) + \frac{Z_{D^{\pm}D^{*\mp}}^{1/2}}{\sqrt{2}} (|D^+ D^{*-}\rangle + |D^- D^{*+})) + Z_{J_{\psi}\omega}^{1/2} |J_{\psi}\omega\rangle + Z_{J_{\psi}\rho}^{1/2} |J_{\psi}\rho\rangle \right] + \sin \theta |c\bar{c}\rangle.$
 BABAR

 Interference
 effect, by the admixture θ , plays crucial role to understand the measured ratio
 $R = \frac{\mathcal{B}(X(3872) \rightarrow \psi(2S)\gamma)}{\mathcal{B}(X(3872) \rightarrow J/\psi\gamma)} = 3.5 \pm 1.4.$
 $\bar{R}_{\psi\gamma} = 2.46 \pm 0.64 \pm 0.29, \cdot$
 LHCb

 EFB23, Aug. 8-12, 2016@Aartus_Denmark
 18

- 1), Hadronic molecules: old expectations-
- renewed interest in heavy mesons
- 2), Effective approach is applied
- to the states (Compositeness)
- 3), Hadronic loop is considered
- 4), Decay modes: some c\bar{c}
 - +dominate hadronic picture
- 1), Open charmed mesons: Ds(2317)

Other applications:

2), Y-type: Y(4260), Y(3940); Z-type: Z(4430), Zc(3900); Zb(10610), Zb(10650) 3), Λ_c (2940), Σ_c (2800)

Applications to the two $\Pr(\Sigma_c \overline{D}^*)$ (PRD93,074020)

$$\begin{split} \mathcal{L}_{P_c\Sigma_c\bar{D}^*}^{3/2^{\pm}}(x) &= -ig_{P_c\Sigma_c\bar{D}^*} \int d^4 y \Phi(y^2) \bar{\Sigma}_c(x+\omega_{\bar{D}^*}y) \Gamma^{(\pm)} \\ &\times \bar{D}_{\mu}^*(x-\omega_{\Sigma_c}y) P_c^{\mu}(x) + \text{H.c.}, \end{split}$$

$$\begin{split} \mathcal{L}_{P_c\Sigma_c\bar{D}^*}^{5/2^{\pm}}(x) &= g_{P_c\Sigma_c\bar{D}^*} \int d^4 y \Phi(y^2) \bar{\Sigma}_c(x + \omega_{\bar{D}^*} y) \Gamma^{(\mp)} \\ &\times \partial_{\mu} \bar{D}_{\nu}^*(x - \omega_{\Sigma_c} y) P_c^{\mu\nu}(x) + \text{H.c.}, \end{split}$$

where $\omega_{\bar{D}^*} = m_{\bar{D}^*}/(m_{\Sigma_c} + m_{\bar{D}^*})$ and $\omega_{\Sigma_c} = m_{\Sigma_c}/(m_{\Sigma_c} + m_{\bar{D}^*})$. The vertex $\Gamma^{(\pm)}$ matrix is defined as $\Gamma^+ = \gamma_5$ and $\Gamma^- = 1$. The effective correlation function $\Phi(y^2)$ is chosen to describe the distribution of Σ_c and \bar{D}^* in P_c

FIG. 1. The mass operator of P_c^+ states.

2016/8/10 $M_{\Sigma_c \overline{D}^*} \sim 4465 \quad MeV \to (1^+ / 2; 1^-)$ Parity ~ $(-1)^{1+l}$

Compositeness condition

For the generic hadronic molecule $H = (M_1M_2)$, the compositeness condition is:

$$Z_H = 1 - \Sigma'_H(m_H^2) = 0$$

where $\Sigma'_H(m_H^2)$ is the derivative of the mass operator, and m_H is the mass of the hadronic molecule.

S. Weinberg, Phys. Rev. 130, 776 (1963).A. Salam, Nuovo Cimento 25, 224 (1962).

$$Z_{P_c} = 1 - \frac{\partial \Sigma_{P_c}^{T(\pm)}(p)}{\partial \not p} \bigg|_{\not p' = m_{P_c}} \equiv 0,$$

where the $\Sigma_{P_c}^{T(\pm)}(p)$ is the transverse part of the mass operator $\Sigma_{P_c}^{\mu\nu(\pm)}(p)$ with the $J^P = 3/2^{\pm}$ assumption and $\Sigma_{P_c}^{\mu\nu\alpha\beta(\pm)}(p)$ with the $J^P = 5/2^{\pm}$ assumption of the molecule P_c states, The relation between the transverse part and the corresponding mass operator can be defined as

$$\Sigma_{P_c}^{\mu\nu(\pm)}(p) = g_{\perp}^{\mu\nu} \Sigma_{P_c}^{T(\pm)}(p) + \frac{p^{\mu}p^{\nu}}{p^2} \Sigma_{P_c}^{L(\pm)}(p),$$

$$\Sigma_{P_c}^{\mu\nu\alpha\beta(\pm)}(p) = \frac{1}{2} (g_{\perp}^{\mu\alpha} g_{\perp}^{\nu\beta} + g_{\perp}^{\mu\beta} g_{\perp}^{\nu\alpha}) \Sigma_{P_c}^{T(\pm)}(p) + \cdots,$$

The diagram describing the mass operator of the P_c states is presented in Fig. 1. From the effective Lagrangian, we can obtain the concrete forms of $\Sigma_{P_c}^{\mu\nu(\pm)}(p)$ and $\Sigma_{P_c}^{\mu\nu\alpha\beta(\pm)}(p)$,

$$\begin{split} \Sigma_{P_c}^{\mu\nu(\pm)}(p) &= \pm g_{P_c\Sigma_c\bar{D}^*}^2 \int \frac{d^4q}{(2\pi)^4 i} \tilde{\Phi}^2(q - \omega_{\bar{D}^*}p) \Gamma^{(\pm)} \frac{1}{q' - m_{\Sigma_c}} \\ &\times \Gamma^{(\pm)} \frac{-g^{\mu\nu} + (p - q)^{\mu}(p - q)^{\nu}/m_{\bar{D}^*}^2}{(p - q)^2 - m_{D^*}^2}, \end{split}$$

$$\begin{split} \Sigma_{P_c}^{\mu\nu\alpha\beta(\pm)}(p) &= \pm g_{P_c\Sigma_c\bar{D}^*}^2 \int \frac{d^4q}{(2\pi)^4 i} \tilde{\Phi}^2(q - \omega_{\bar{D}^*}p) \Gamma^{(\mp)} \\ &\times \frac{1}{q - m_{\Sigma_c}} \Gamma^{(\mp)}(p - q)^{\alpha}(p - q)^{\mu} \\ &\times \frac{-g^{\beta\nu} + (p - q)^{\beta}(p - q)^{\nu}/m_{\bar{D}^*}^2}{(p - q)^2 - m_{\bar{D}^*}^2}, \end{split}$$

where q is the 4-momentum of Σ_c baryon.

$$\begin{split} \mathcal{L}_{\psi D^{(*)}D^{(*)}} &= -ig_{\psi DD}\psi_{\mu}(\partial^{\mu}DD^{\dagger} - D\partial^{\mu}D^{\dagger}) \\ &+ g_{\psi D^{*}D}\varepsilon^{\mu\nu\alpha\beta}\partial_{\mu}\psi_{\nu}(D^{*}_{\alpha}\overset{\leftrightarrow}{\partial}_{\beta}D^{\dagger} - D\overset{\leftrightarrow}{\partial}_{\beta}D^{*\dagger}_{\alpha}) \\ &+ ig_{\psi D^{*}D^{*}}\psi^{\mu}(D^{*}_{\nu}\partial^{\nu}D^{*\dagger}_{\mu} - \partial^{\nu}D^{*}_{\mu}D^{*\dagger}_{\nu} \\ &- D^{*}_{\nu}\overset{\leftrightarrow}{\partial}_{\mu}D^{*\nu\dagger}), \end{split}$$

$$\begin{split} \mathcal{L}_{\Sigma_c ND^*} &= g_{\Sigma_c ND^*} \bar{N} \gamma_{\mu} \vec{\tau} \cdot \vec{\Sigma}_c D^{*\mu} + \text{H.c.}, \\ \mathcal{L}_{\Sigma_c ND} &= -i g_{\Sigma_c ND} \bar{N} \gamma_5 \vec{\tau} \cdot \vec{\Sigma}_c D + \text{H.c.}, \\ \mathcal{L}_{\Sigma_c \Sigma_c \psi} &= g_{\Sigma_c \Sigma_c \psi} \bar{\Sigma}_c \gamma_{\mu} \Sigma_c \psi^{\mu}. \\ g_{\psi DD} &= 2 g_2 \sqrt{m_{\psi}} m_D, \\ g_{\psi D^*D} &= 2 g_2 \sqrt{m_{\psi}} m_{D^*}, \\ g_{\psi D^*D^*} &= 2 g_2 \sqrt{m_{\psi}} m_{D^*}, \end{split}$$

Feynman diagrams for the $P_c^+ \rightarrow J/\psi p$ decay process.

100

80

60

40

20

0

25

20

15

10

5

0

0.8

0.9

1.0

1.1

 $g_{P_c\Sigma_c}\tilde{p}(\text{GeV}^1)$

 $\mathcal{B}_{P_c\Sigma_c}D^*$

(a) $P_c(4380)$ with $J^P 32^{\pm}$

(c) $P_c(4380)$ with $J^P 52^{\pm}$

Feynman diagrams for the $P_c^+ \rightarrow J/\psi p$ decay process.

Then, the total amplitudes of the $P_c^+ \rightarrow J/\psi p$ process are

$$\mathcal{M} = \mathcal{M}_a + \mathcal{M}_b + \mathcal{M}_c.$$

TABLE I. Coupling constants of $P_c \Sigma_c \bar{D}^*$ with different J^P assignments with $\Lambda = 1$ GeV.

FIG. 3. The coupling constants of P_c states with different J^P assignments depending on the parameter Λ . The red solid line stands for P = +, and the green dashed line corresponds to P = - cases.

1.2 0.8

Λ(GeV)

FIG. 6. The individual contributions of the D^* , D, and Σ_c exchanges for the $P_c^+(4380) \rightarrow J/\psi p$ with different J^P assignments. The red solid, green dotted, blue dotted-dashed, and pink short dotted lines stand for the total, D^* , D, and Σ_c contributions, respectively.

FIG. 4. The partial decay widths of the $P_c^+(4380) \rightarrow J/\psi p$ with different J^P assignments depending on the parameter Λ . The red dashed, green dotted, pink short dotted, and blue dotteddashed lines stand for the $J^P = 3/2^+, 3/2^-, 5/2^+$ and $5/2^$ cases, respectively. The black solid line and blue error band correspond to the total width observed by experiment.

FIG. 5. The same as Fig. 4, but for the $P_c^+(4450) \rightarrow J/\psi p$. The partial decay width of the $J^P = 3/2^+$ case is much larger than the experimental data and neglected here.

 3/2+
 3/2-
 5/2+
 5/2-

EFB23, Aug. 8-12, 2016@Aarhus_Denmark

Discussions (1)

- Individual contributions of the D*, D and Σc For S and P waves, D* plays dominated role and the interferences are still sizeable
- 2), Λ =0.8~ 1.2 GeV, Γ increases with Λ for $J^{p} = 3^{\pm} / 2$ decreases with Λ for $J^{p} = 5^{\pm} / 2$
- 3), Pc(4380), the obtained in all four cases are small than the data; $J^{p} = 5^{-} / 2 \rightarrow D$ -wave (is disfavored by LHCb)

4), Pc(4450),
$$J^{p} = 3^{+} / 2$$
 is excluded (Exp.+ Γ (large))
 $J^{p} = 5^{+} / 2$ is excluded (Γ (large))
 $J^{p} = 5^{-} / 2$ (D-wave) TABLE II. Partial decay

With various spin-parity assignments, the partial decay widths of P_c states are significantly different. All the P wave $\Sigma_c \bar{D}^*$ assignments are excluded, while S-wave $\Sigma_c \bar{D}^*$ pictures for $P_c(4380)$ and $P_c(4450)$ are both possible.

TABLE II. Partial decay widths of $P_c^+ \rightarrow J/\psi p$ with different J^p assignments with $\Lambda = 1$ GeV. The unit is in MeV.

State	3/2+	3/2-	5/2+	5/2-
$P_c(4380) P_c(4450)$	× 173.12	38.12	× 169.51	× 4.96
	× 369.82	25.00	× 76.15	3.39

 $P_{c}^{+}(4380): (M;\Gamma) = (4380 \pm 8 \pm 29; 205 \pm 18 \pm 86) MeV$ $P_{c}^{+}(4450): (M;\Gamma) = (4449.8 \pm 1.7 \pm 2.5; 39 \pm 5 \pm 19) MeV$

2016/8/10

24

Discussions (2)

We consider $\Sigma_c \overline{D} *$, Other scenarios of $\Sigma_c^* \overline{D}, \Sigma_c^* \overline{D}^*$

Heavy quark sym. Spin rearrangement

PRD93, **034031**: In the heavy quark limit, the *S*-wave *D* and *D*^{*} mesons can be categorized into a doublet as well as the heavy baryons Σ_c and Σ_c^* . With the heavy quark symmetry and spin rearrangement scheme, there is an interesting work studying the ratios of partial decay widths in different molecular scenarios The model-

independent result shows that for the three *S*-wave $\Sigma_c \bar{D}^*$, $\Sigma_c^* \bar{D}$, and $\Sigma_c^* \bar{D}^*$ molecules with $J^P = 3/2^-$ the ratios of their $J/\psi p$ decay widths satisfy $\Gamma[(\Sigma_c \bar{D}^*)]:\Gamma[(\Sigma_c^* \bar{D})]:$ $\Gamma[(\Sigma_c^* \bar{D}^*)] = 1.0:2.7:5.4$. Simply employing those ratios

$$\begin{split} & \Gamma_{P_c^+(4380)\to J/\psi p}^{3/2^-}[(\Sigma_c^*\bar{D})] = 102.92 \text{ MeV}, \\ & \Gamma_{P_c^+(4380)\to J/\psi p}^{3/2^-}[(\Sigma_c^*\bar{D}^*)] = 205.85 \text{ MeV}, \\ & \Gamma_{P_c^+(4450)\to J/\psi p}^{3/2^-}[(\Sigma_c^*\bar{D})] = 67.50 \text{ MeV}, \\ & \Gamma_{P_c^+(4450)\to J/\psi p}^{3/2^-}[(\Sigma_c^*\bar{D}^*)] = 135.00 \text{ MeV}. \end{split}$$

The much larger partial decay width $\Gamma_{P_c^+(4450) \rightarrow J/\psi p}^{3/2^-} \times [(\Sigma_c^* \bar{D}^*)]$ excludes the possibility of $P_c(4450)$ as an *S*-wave $J^P = 3/2^- \Sigma_c^* \bar{D}^*$ molecule. Also, the $P_c(4450)$ as the $\Sigma_c^* \bar{D}$ system is not favored due to its higher mass over the threshold and a slightly large partial decay width. The above discussion shows that if the $P_c(4450)$ state has the spin parity $J^P = 3/2^-$ only the $\Sigma_c \bar{D}^*$ system of the three molecular scenarios is allowed. This result is consistent with the interpretations of Ref. [26], in which the $P_c(4450)$ is a $J^P = 3/2^- \Sigma_c \bar{D}^*$ resonance and $P_c(4380)$ may not be a genuine state.

$$M_{\Sigma_{c}^{*}\overline{D}} \sim 4390 MeV \rightarrow (3^{+} / 2, 0^{-})$$
$$M_{\Sigma_{c}^{*}\overline{D}^{*}} \sim 4530 MeV \rightarrow (3^{+} / 2, 1^{-})$$

PRD93, 034031: The $J^P = 3/2^- \Sigma_c^* \overline{D}$ and $\Sigma_c^* \overline{D}^*$ molecular pictures are also discussed in heavy quark limit, and only $\Sigma_c^* \overline{D}$ for $P_c(4380)$ is allowed.

3, Production of neutral Pc states

- b quark decay process: $\Lambda_b^0 \to J/\psi p K^-$, and $\Upsilon(1S) \to J/\psi p \bar{p}$. @LHCb
- ② Photon and electron production: $\gamma p \rightarrow J/\psi p$, and $ep \rightarrow epJ/\psi$. **⊘**Jlab.
- Hadron induced production: $\pi^- p \to J/\psi n$, $pp \to ppJ/\psi$, and $p\bar{p} \to p\bar{p}J/\psi$. @PANDA
 Here, we focus on $\pi^- p \to J/\psi n$ reaction.
 - **@J-PARC**

Neutral states production via $\pi^- p \to J/\psi n$ reaction

Feynman diagrams for $\pi^- p \to J/\psi n$ reaction.

PRD93,034009

Effective Lagrangians

The effective Lagrangians for $P_c NJ/\psi$ couplings can be written as

$$\begin{split} \mathcal{L}_{P_{c}NJ/\psi}^{3/2^{\pm}} &= -\frac{ig_{1}}{2M_{N}} \overline{N} \Gamma_{\nu}^{(\pm)} \psi^{\mu\nu} P_{c\mu} \\ &\quad -\frac{g_{2}}{(2M_{N})^{2}} \partial_{\nu} \overline{N} \Gamma^{(\pm)} \psi^{\mu\nu} P_{c\mu} \\ &\quad +\frac{g_{3}}{(2M_{N})^{2}} \overline{N} \Gamma^{(\pm)} \partial_{\nu} \psi^{\mu\nu} P_{c\mu} + \text{H.c.}, \end{split}$$

$$\begin{split} \mathcal{L}_{P_{c}NJ/\psi}^{5/2^{\pm}} &= \frac{g_{1}}{(2M_{N})^{2}} \overline{N} \Gamma_{\nu}^{(\mp)} \partial^{\alpha} \psi^{\mu\nu} P_{c\mu\alpha} \\ &\quad -\frac{ig_{2}}{(2M_{N})^{3}} \partial_{\nu} \overline{N} \Gamma^{(\mp)} \partial^{\alpha} \psi^{\mu\nu} P_{c\mu\alpha} \\ &\quad +\frac{ig_{3}}{(2M_{N})^{3}} \overline{N} \Gamma^{(\mp)} \partial^{\alpha} \partial_{\nu} \psi^{\mu\nu} P_{c\mu\alpha} + \text{H.c.}, \end{split}$$

where the vertex Γ matrix is defined as

$$\Gamma_{\mu}^{(\pm)} \equiv \begin{pmatrix} \gamma_{\mu} \gamma_5 \\ \gamma_{\mu} \end{pmatrix},$$

$$\mathcal{L}_{P_c N \pi}^{3/2^+} = \frac{g_{P_c N \pi}}{m_{\pi}} \overline{N} \, \vec{\tau} \cdot \partial_{\mu} \vec{\pi} P_c^{\mu} + \text{H.c.},$$

$$\mathcal{L}_{P_c N \pi}^{3/2^-} = \frac{g_{P_c N \pi}}{m_{\pi}^2} \overline{N} \gamma_5 \gamma_{\mu} \vec{\tau} \cdot \partial^{\mu} \partial_{\nu} \vec{\pi} P_c^{\nu} + \text{H.c.},$$

$$\mathcal{L}_{P_c N \pi}^{5/2^+} = \frac{g_{P_c N \pi}}{m_{\pi}^3} \overline{N} \gamma_5 \gamma_{\mu} \vec{\tau} \cdot \partial^{\mu} \partial_{\nu} \partial_{\lambda} \vec{\pi} P_c^{\nu \lambda} + \text{H.c.},$$

$$\mathcal{L}_{P_c N \pi}^{5/2^-} = \frac{g_{P_c N \pi}}{m_{\pi}^2} \overline{N} \vec{\tau} \cdot \partial_{\mu} \partial_{\nu} \vec{\pi} P_c^{\mu\nu} + \text{H.c.}$$

$$\mathcal{L}_{J/\psi\pi\pi} = -ig_{J/\psi\pi\pi}(\partial^{\mu}\pi^{-}\pi^{+} - \partial^{\mu}\pi^{+}\pi^{-})\psi_{\mu},$$

$$\mathcal{L}_{J/\psi\pi
ho} = -rac{g_{J/\psi\pi
ho}}{m_{J/\psi}} e^{\mu
ulphaeta} \partial_{\mu}
ho_{
u} \partial_{lpha}\psi_{eta}\pi,$$

$$\mathcal{L}_{\pi NN} = -\frac{g_{\pi NN}}{2M_N} \overline{N} \gamma_5 \gamma_\mu \vec{\tau} \cdot \partial^\mu \vec{\pi} N,$$

$$\mathcal{L}_{\rho NN} = -g_{\rho NN}\overline{N}\left(\gamma_{\mu} + \frac{\kappa}{2M_{N}}\sigma_{\mu\nu}\partial^{\nu}\right)\vec{\tau}\cdot\partial^{\mu}\vec{\rho}N.$$

 $(g_1, g_{P_cN\pi})$ unknown

 $\Gamma^{(\pm)} \equiv \binom{\gamma_5}{1}$, The higher partial wave terms are neglected

for positive and negative parities.

28

The propagators for exchanged π and ρ mesons

$$G_{\pi}(q) = \frac{i}{q^2 - m_{\pi}^2},$$

$$G_{\rho}^{\mu\nu}(q) = i \frac{-g^{\mu\nu} + q^{\mu}q^{\nu}/m_{\rho}^2}{q^2 - m_{\rho}^2}.$$

For the propagator of spin-3/2 fermion, we use

$$G^{etalpha}(q)=rac{i(q^{\prime}+M)P^{etalpha}(q)}{q^2-M^2+iM\Gamma},$$

with

$$P^{\beta\alpha}(q) = -g^{\beta\alpha} + \frac{1}{3}\gamma^{\beta}\gamma^{\alpha} + \frac{1}{3M}(\gamma^{\beta}q^{\alpha} - \gamma^{\alpha}q^{\beta}) + \frac{2}{3M^{2}}q^{\beta}q^{\alpha},$$

and for the propagator of the spin-5/2 fermion, it

$$G^{
ho\sigmalphaeta}(q)=rac{i(q^{
ho}+M)P^{
ho\sigmalphaeta}(q)}{q^2-M^2+iM\Gamma},$$

with

$$\begin{split} P^{\rho\sigma\alpha\beta}(q) &= \frac{1}{2} (\tilde{g}^{\rho\alpha}\tilde{g}^{\sigma\beta} + \tilde{g}^{\rho\beta}\tilde{g}^{\sigma\alpha}) - \frac{1}{5}\tilde{g}^{\rho\sigma}\tilde{g}^{\alpha\beta} \\ &- \frac{1}{10} (\tilde{\gamma}^{\rho}\tilde{\gamma}^{\alpha}\tilde{g}^{\sigma\beta} + \tilde{\gamma}^{\rho}\tilde{\gamma}^{\beta}\tilde{g}^{\sigma\alpha} \\ &+ \tilde{\gamma}^{\sigma}\tilde{\gamma}^{\alpha}\tilde{g}^{\rho\beta} + \tilde{\gamma}^{\sigma}\tilde{\gamma}^{\beta}\tilde{g}^{\rho\alpha}), \end{split}$$

where

$$\tilde{g}^{\alpha\beta} = g^{\alpha\beta} - \frac{p^{\alpha}p^{\beta}}{M^2}$$

and

$$\tilde{\gamma}^{\alpha} = \gamma^{\alpha} - \frac{p^{\alpha}}{M^2} p'.$$

In our calculations, phenomenological form factors are needed since the hadrons are not pointlike particles. The form factors $F(q^2)$, $F_M^{NN}(q_M^2)$, and $F_M^{J/\psi\pi}(q_M^2)$ can be expressed as

$$\begin{split} F(q^2) &= \frac{\Lambda_{P_c}^4}{\Lambda_{P_c}^4 + (q^2 - M_{P_c}^2)^2}, \\ F_M^{J/\psi\pi}(q_M^2) &= \frac{\Lambda_M^{*2} - m_M^2}{\Lambda_M^{*2} - q_M^2}, \\ F_M^{NN}(q_M^2) &= \left(\frac{\Lambda_M^2 - m_M^2}{\Lambda_M^2 - q_M^2}\right)^n, \end{split}$$

with n = 1 for the π meson and n = 2 for the ρ meson [49]. We use the cutoff parameters $\Lambda_{P_c} = 0.5$ GeV for P_c states [35,55], and $\Lambda_{\rho}^* = \Lambda_{\pi}^* = 1.3$ GeV, $\Lambda_{\rho} = 1.6$ GeV, and $\Lambda_{\pi} = 1.3$ GeV for mesons [49].

Not point-like particle Two assumptions: P_c from $J/\psi N$ $B(P_c \rightarrow J/\psi N) \sim 10\%$ πN OZI - allowed $B(P_c \rightarrow \pi N) \sim 1\%$ $c\overline{c}$ componentsuppression $\sim (m_u / m_c)^2$

TABLE I. Coupling constants of $P_c N J/\psi$ and $P_c N \pi$ different J^P assignments by assuming the branching ratios are 10% and 1%, respectively.

State	Channel	3/2+	3/2-	5/2+	5/2-
<i>P_c</i> (4380)	$J/\psi N$ πN	1.09 8.56 × 10 ⁻³	0.49 3.43×10^{-4}	2.17 3.59×10^{-5}	5.13 8.95 × 10 ⁻⁴
<i>P_c</i> (4450)	$J/\psi N \pi N$	0.41 3.65×10^{-3}	0.20 1.43×10^{-4}	0.80 1.47×10^{-5}	1.75 3.75×10^{-4}

 $P_{c}^{+}(4380): (M; \Gamma) = (4380 \pm 8 \pm 29; 205 \pm 18 \pm 86) MeV$ $P_{c}^{+}(4450): (M; \Gamma) = (4449.8 \pm 1.7 \pm 2.5; 39 \pm 5 \pm 19) MeV$

Total Cross Sections

The total cross sections for the $\pi^- p \rightarrow J/\psi n$ reaction with different J^P assumptions versus c.m. energy. The green dashed, blue dot-dashed, and pink short dotted lines stand for $P_c^0(4380)$, $P_c^0(4450)$, and background contributions, respectively. The thin red solid bands are total cross sections with the consideration of the interferences. Panels (a–d) correspond to $(3/2^+, 5/2^-)$, $(3/2^-, 5/2^+)$, $(5/2^+, 3/2^-)$, $(5/2^-, 3/2^+)$ assumptions for $[P_c^0(4380), P_c^0(4450)]$, respectively. background is sizeable
 interference is small
 one can hadrly see
 the differences among
 the total cross sections

Differential Cross Sections (1)

FIG. 3. The differential cross sections for the $\pi^- p \rightarrow J/\psi n$ reaction at the c.m energies W = 4.15 GeV, 4.38 GeV, 4.45 GeV, and 4.45 GeV. The $[P_c^0(4380), P_c^0(4450)]$ corresponds to the (3/2⁺, 5/2⁻) assumption. The red solid, green dashed, blue dotdashed, and pink short dotted lines stand for total, $P_c^0(4380)$, $P_c^0(4450)$, and background contributions, respectively.

$$\frac{d\sigma}{d\cos\theta} = \frac{M_N^2}{16\pi s} \frac{|\vec{p}_3^{\rm c.m.}|}{|\vec{p}_1^{\rm c.m.}|} |\mathcal{M}_{\pi^- p \to J/\psi n}|^2,$$

FIG. 4. The caption is the same as that of Fig. 3, but the $[P_c^0(4380), P_c^0(4450)]$ corresponds to the $(3/2^-, 5/2^+)$ assumption. Total P(4380) W(c.m.)GeV: P(4450) (4.15, 4.38, 4.45, 4.5)Background EFB23, Aug. 8-12, 2016@Aarhus Denmark

Differential Cross Sections (2)

 $(5/2^+;3/2^-)$

FIG. 5. The caption is the same as that of Fig. 3, but the $[P_c^0(4380), P_c^0(4450)]$ corresponds to the $(5/2^+, 3/2^-)$ assumption.

$$\frac{d\sigma}{d\cos\theta} = \frac{M_N^2}{16\pi s} \frac{|\vec{p}_3^{\text{c.m.}}|}{|\vec{p}_1^{\text{c.m.}}|} |\mathcal{M}_{\pi^- p \to J/\psi n}|^2$$

EFB23, Aug. 8-12, 2016@Aarhus_Denmark

FIG. 6. The caption is the same as that of Fig. 3, but the $[P_c^0(4380), P_c^0(4450)]$ corresponds to the $(5/2^-, 3/2^+)$ assumption.

Total
P(4380)
P(4450)
Background

For production

- 1, t-channel meson exchanges provide forward contribution
- 2, two Pc states contribute mainly for the differential cross sections at c.m. energy W=4.38GeV and W=4.45GeV,respectively
- 3, angular distributions of the two Pc resonances are obviously different than the forward background contribution
- angular distributions display significantly different behaviors with different spin-parities assignments
- 5, it is expected those specific features can be tested by future J-PARC experiment with high luminosity

4, Summary

- 1, Production of the neutral Pc states are discussed Pc are cosidered as the point-particles with two assumptions for JPARC $B(P_c \rightarrow J/\psi N) \sim 10\%$
 - $B(P_c \to \pi N) \sim 1\%$
- 2, Molecular scenario of $P_c(\Sigma_c \overline{D}^*)$ are employed to estimate their strong decay modes (J/ ψ +P)

3, Our calculations show $3^{-}/2$ assignment for the two Pc

4, Other possible interpretations are also needed.

Thank you for your attention!

EFB23, Aug. 8-12, 2016@Aarhus_Denmark