

# Antiferromagnetic Heisenberg spin chain of a few cold atoms in a 1D trap

**Frank Deuretzbacher**<sup>1</sup>, Simon Murmann<sup>2</sup>, Gerhard Zürn<sup>2</sup>, Johannes Bjerlin<sup>3</sup>, Daniel Becker<sup>4</sup>, Stephanie Reimann<sup>3</sup>, Thomas Lompe<sup>2</sup>, Selim Jochim<sup>2</sup>, Luis Santos<sup>1</sup>

<sup>1</sup>Department of Theoretical Physics, Leibniz University Hanover <sup>2</sup>Institute of Physics at Heidelberg University <sup>3</sup>Mathematical Physics and NanoLund, LTH, Lund University, Sweden <sup>4</sup>1st Institute for Theoretical Physics, University of Hamburg

Girardeau's Bose-Fermi mapping

# • Girardeau's Bose-Fermi mapping

Mapping for particles with spin

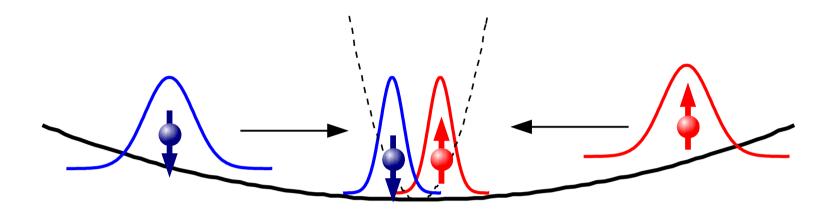
# Girardeau's Bose-Fermi mapping

- Mapping for particles with spin
- Spin chain without lattice

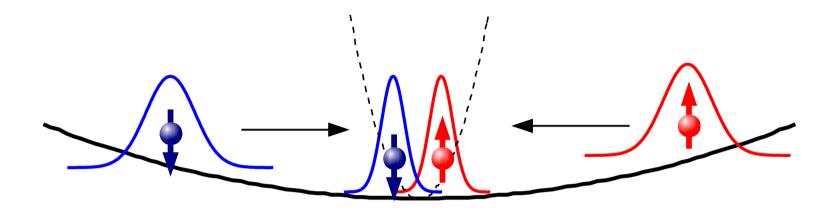
- Girardeau's Bose-Fermi mapping
- Mapping for particles with spin
- Spin chain without lattice
- Application to the experiment

- Girardeau's Bose-Fermi mapping
- Mapping for particles with spin
- Spin chain without lattice
- Application to the experiment
- Numerical methods





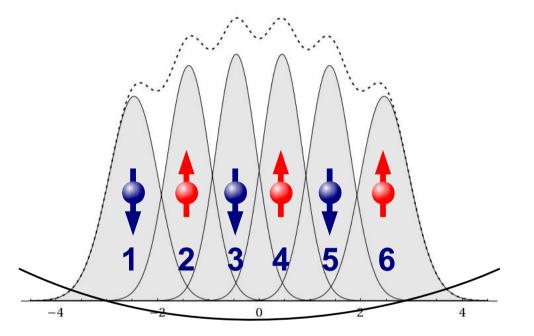
# **System**



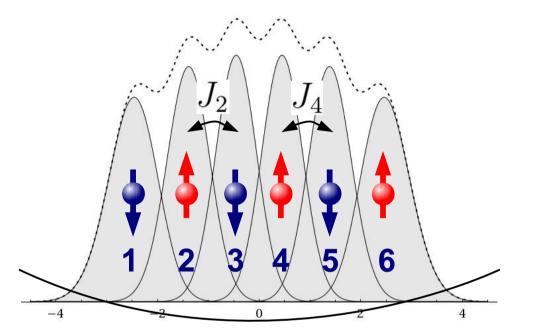
$$H = \sum_{i} \left[ -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial z_i^2} + V(z_i) \right] + g \sum_{i < j} \delta(z_i - z_j)$$

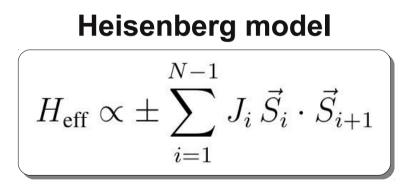
Experiments with cold atoms

- Experiments with cold atoms
- Simple exact solution for infinitely strong interactions

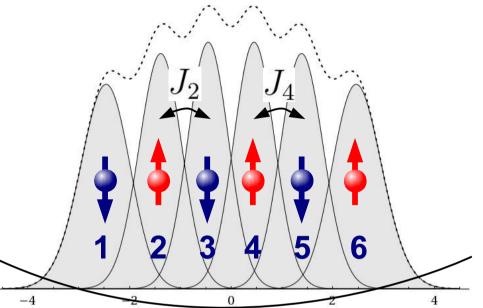


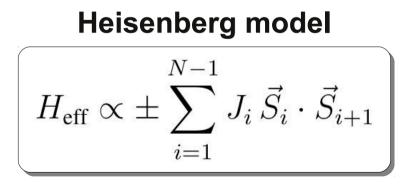
- Experiments with cold atoms
- Simple exact solution for infinitely strong interactions





- Experiments with cold atoms
- Simple exact solution for infinitely strong interactions
- Quantum magnetism without lattice





$$\psi_B = \left[\frac{1}{\sqrt{N!}} \det[\phi_i(z_j)]_{i,j=1,\dots,N}\right]$$

$$\psi_B = \left[\prod_{i < j} \operatorname{sgn}(z_i - z_j)\right] \left[\frac{1}{\sqrt{N!}} \operatorname{det}[\phi_i(z_j)]_{i,j=1,\dots,N}\right]$$

$$\psi_B = \left[\prod_{i < j} \operatorname{sgn}(z_i - z_j)\right] \left[\frac{1}{\sqrt{N!}} \operatorname{det}[\phi_i(z_j)]_{i,j=1,\dots,N}\right]$$

$$\psi_{B}^{(0)} = \left| \frac{1}{\sqrt{N!}} \det[\phi_{i}(z_{j})]_{i,j=1,...,N} \right|$$

$$\psi_B = \left[\prod_{i < j} \operatorname{sgn}(z_i - z_j)\right] \left[\frac{1}{\sqrt{N!}} \operatorname{det}[\phi_i(z_j)]_{i,j=1,\dots,N}\right]$$

$$\psi_B^{(0)} = \left| \frac{1}{\sqrt{N!}} \det[\phi_i(z_j)]_{i,j=1,...,N} \right|$$

$$\left|\psi_{B}^{(0)}\right|^{2} = \left|\psi_{F}^{(0)}\right|^{2}$$

$$\psi_{\mathrm{id}} = \left[\prod_{i=1}^{N-1} \theta(z_{i+1} - z_i)\right] |\psi_F^{(0)}|$$

$$\psi_{\mathrm{id}} = \left[\prod_{i=1}^{N-1} \theta(z_{i+1} - z_i)\right] |\psi_F^{(0)}|$$

particle ordering  $z_1 < z_2 < z_3 < \cdots < z_N$ 

$$\psi_{\rm id} = \sqrt{N!} \left[ \prod_{i=1}^{N-1} \theta(z_{i+1} - z_i) \right] \left| \psi_F^{(0)} \right|$$

particle ordering  $z_1 < z_2 < z_3 < \cdots < z_N$ 

$$\psi_{\mathrm{id}} = \sqrt{N!} \left[ \prod_{i=1}^{N-1} \theta(z_{i+1} - z_i) \right] \left| \psi_F^{(0)} \right|$$

particle ordering  $z_1 < z_2 < z_3 < \cdots < z_N$ 

$$\psi_P = \sqrt{N!} \left[ \prod_{i=1}^{N-1} \theta \left( z_{P(i+1)} - z_{P(i)} \right) \right] |\psi_F^{(0)}|$$

particle ordering  $z_{P(1)} < z_{P(2)} < z_{P(3)} < \cdots < z_{P(N)}$ 

$$\psi_{\mathrm{id}} = \sqrt{N!} \left[ \prod_{i=1}^{N-1} \theta(z_{i+1} - z_i) \right] \left| \psi_F^{(0)} \right|$$

particle ordering  $z_1 < z_2 < z_3 < \cdots < z_N$ 

$$\psi_P = \sqrt{N!} \left[ \prod_{i=1}^{N-1} \theta \left( z_{P(i+1)} - z_{P(i)} \right) \right] |\psi_F^{(0)}|$$

particle ordering  $z_{P(1)} < z_{P(2)} < z_{P(3)} < \cdots < z_{P(N)}$ 

useful properties of sector wave functions

$$\langle P|P'\rangle = \delta_{P,P'} \qquad \hat{P}|P'\rangle = |P \circ P'\rangle$$

$$|\psi_{m_1,\dots,m_N}\rangle = |\mathrm{id}\rangle|m_1,m_2,\dots,m_N\rangle$$

$$|\psi_{m_1,\dots,m_N}\rangle = \left(\frac{1}{\sqrt{N!}}\sum_P (\pm 1)^P \hat{P}\right) \left(|\mathrm{id}\rangle|m_1,m_2,\dots,m_N\rangle\right)$$

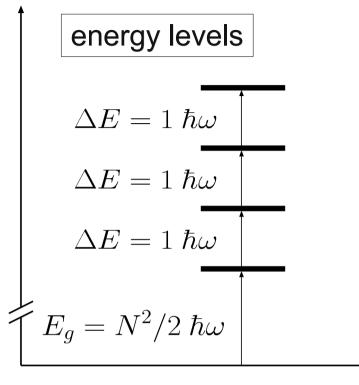
$$\left| \psi_{m_1,\dots,m_N} \right\rangle = \left( \frac{1}{\sqrt{N!}} \sum_P (\pm 1)^P \hat{P} \right) \left( |\mathrm{id}\rangle | m_1, m_2, \dots, m_N \rangle \right)$$

$$\underbrace{\left|\psi_{\chi}\right\rangle = \left(\frac{1}{\sqrt{N!}}\sum_{P}(\pm 1)^{P}\hat{P}\right)\left[\left|\mathrm{id}\right\rangle\left(\sum_{m_{1},\ldots,m_{N}}c_{m_{1},\ldots,m_{N}}|m_{1},\ldots,m_{N}\right\rangle\right)\right]}_{\left|\chi\right\rangle}$$

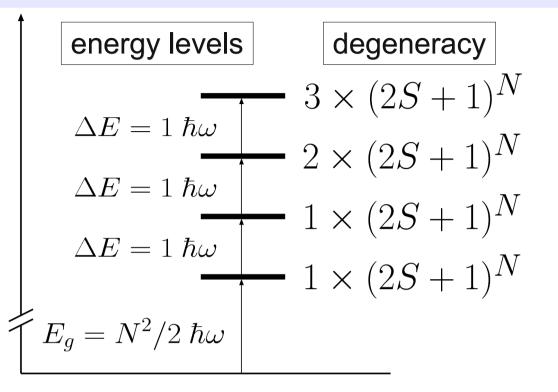
$$\left( |\psi_{m_1,\dots,m_N}\rangle = \left(\frac{1}{\sqrt{N!}}\sum_P (\pm 1)^P \hat{P}\right) \left( |\mathrm{id}\rangle | m_1, m_2,\dots,m_N\rangle \right)$$

$$\begin{bmatrix} |\psi_{\chi}\rangle = \left(\frac{1}{\sqrt{N!}} \sum_{P} (\pm 1)^{P} \hat{P}\right) \begin{bmatrix} |\mathrm{id}\rangle \left(\sum_{m_{1},...,m_{N}} c_{m_{1},...,m_{N}} |m_{1},\ldots,m_{N}\rangle \right) \end{bmatrix} \\ |\chi\rangle$$
fermionization + spin chain

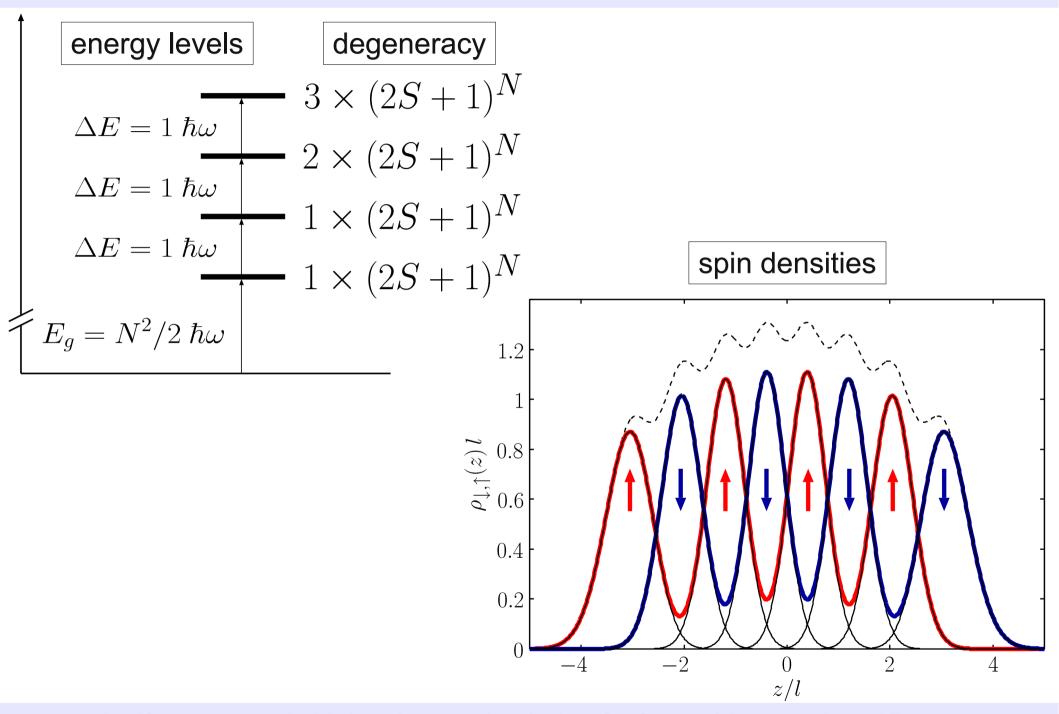
## **Fermionization + spin chain**

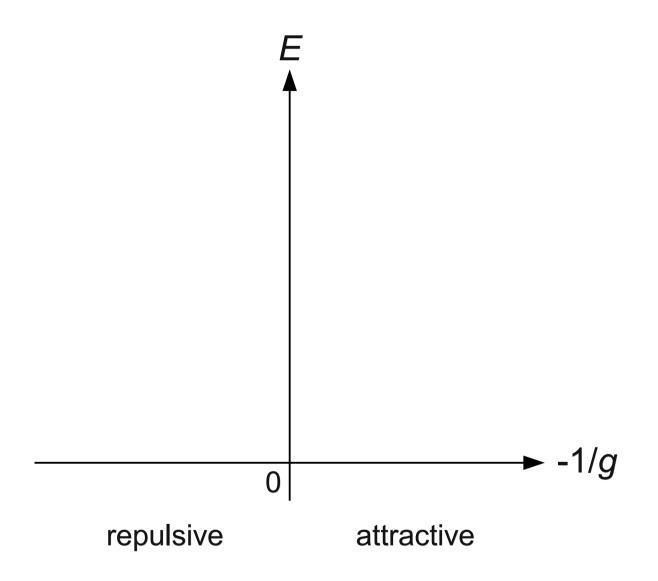


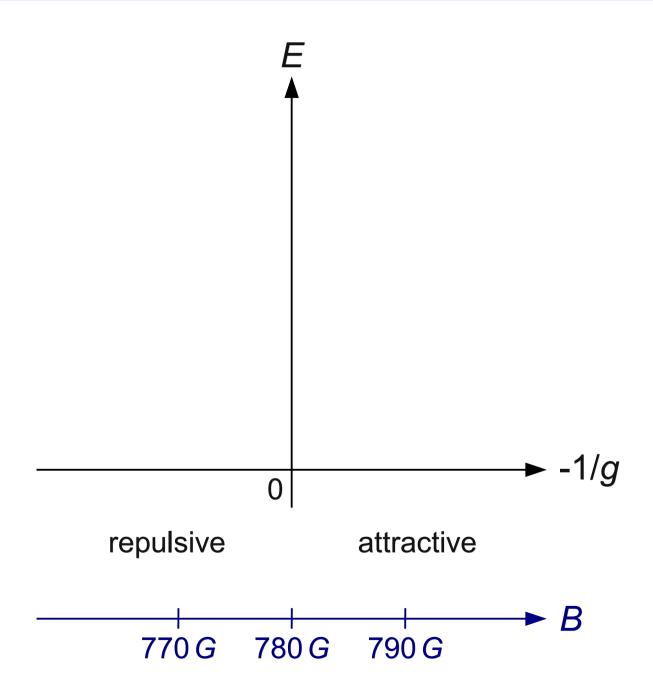
## **Fermionization + spin chain**

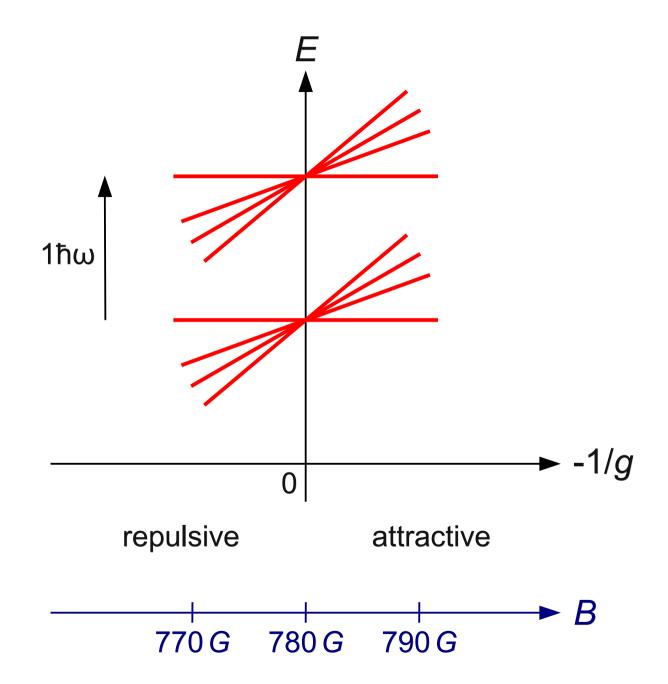


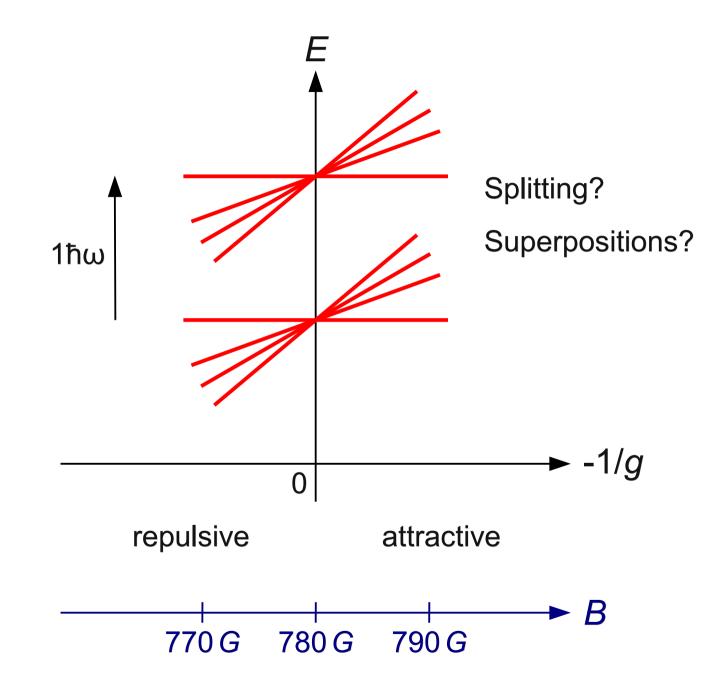
## **Fermionization + spin chain**

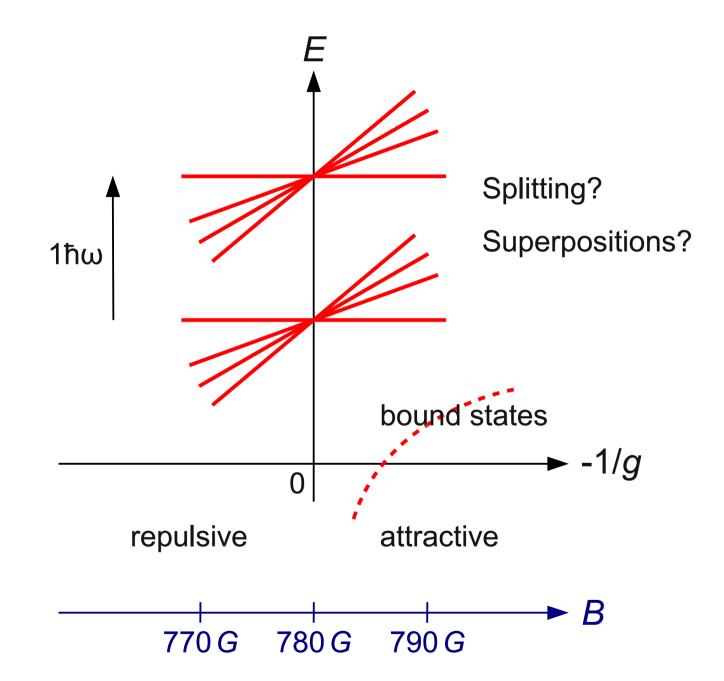








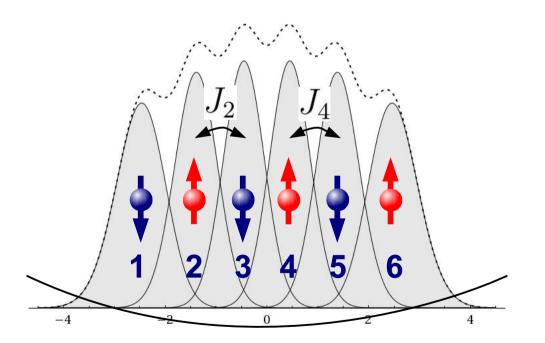




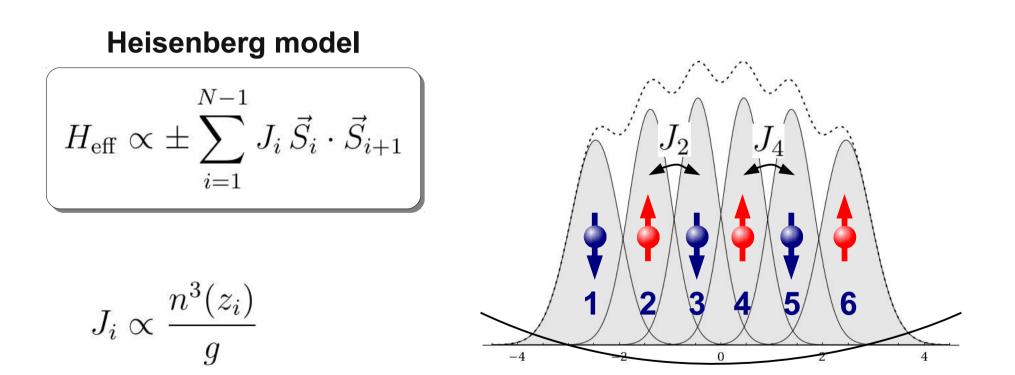
## Perturbative calculation around 1/g = 0



$$H_{\rm eff} \propto \pm \sum_{i=1}^{N-1} J_i \, \vec{S}_i \cdot \vec{S}_{i+1}$$



## Perturbative calculation around 1/g = 0



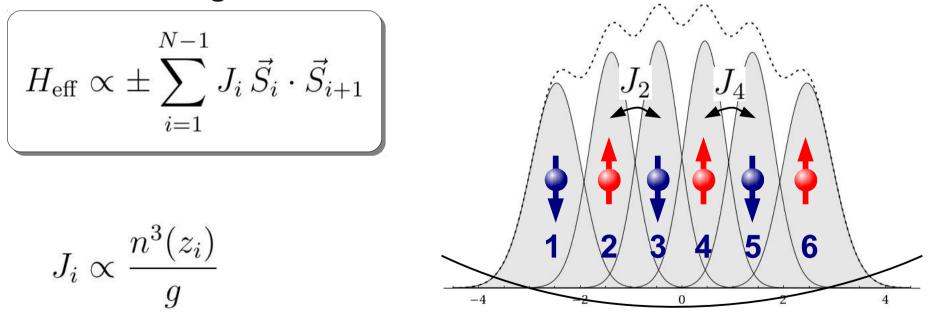
## Perturbative calculation around 1/g = 0

effective spin-chain Hamiltonian

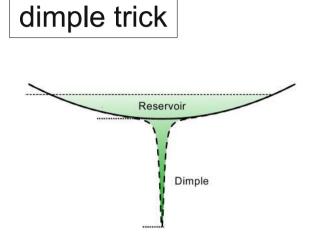
$$H_{\text{eff}} = \left( E_F - \sum_{i=1}^{N-1} J_i \right) \mathbb{1} \pm \sum_{i=1}^{N-1} J_i \hat{P}_{i,i+1}$$

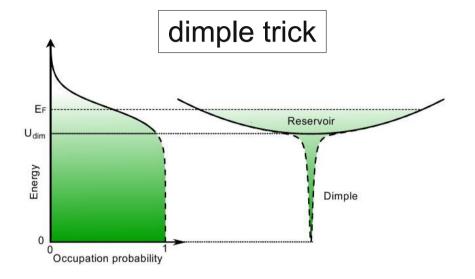
## SU(*N*) Sutherland model

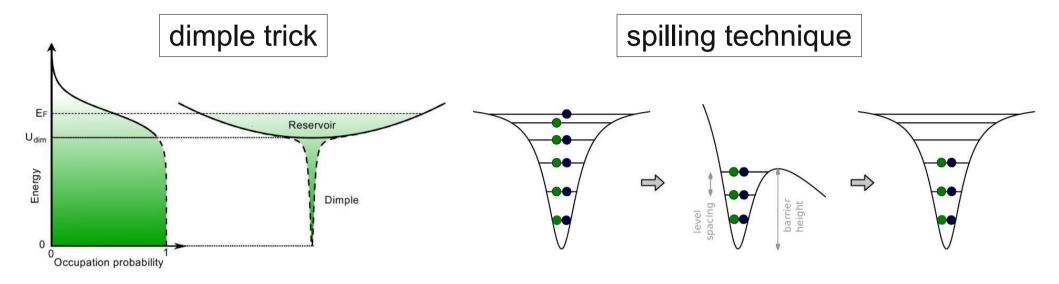
#### Heisenberg model

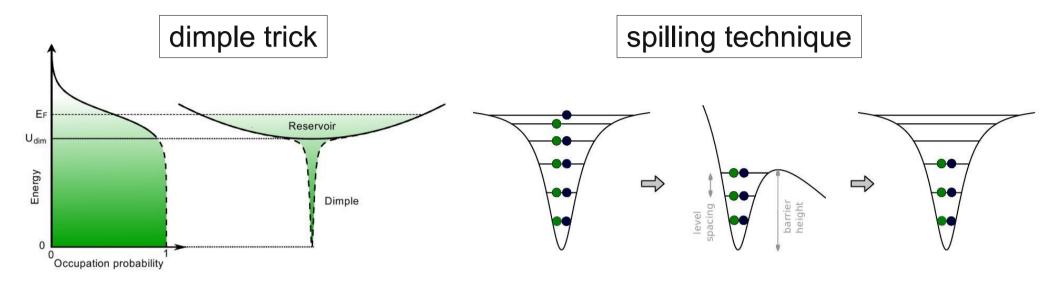


# **Application to the experiment**

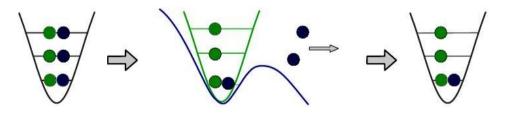


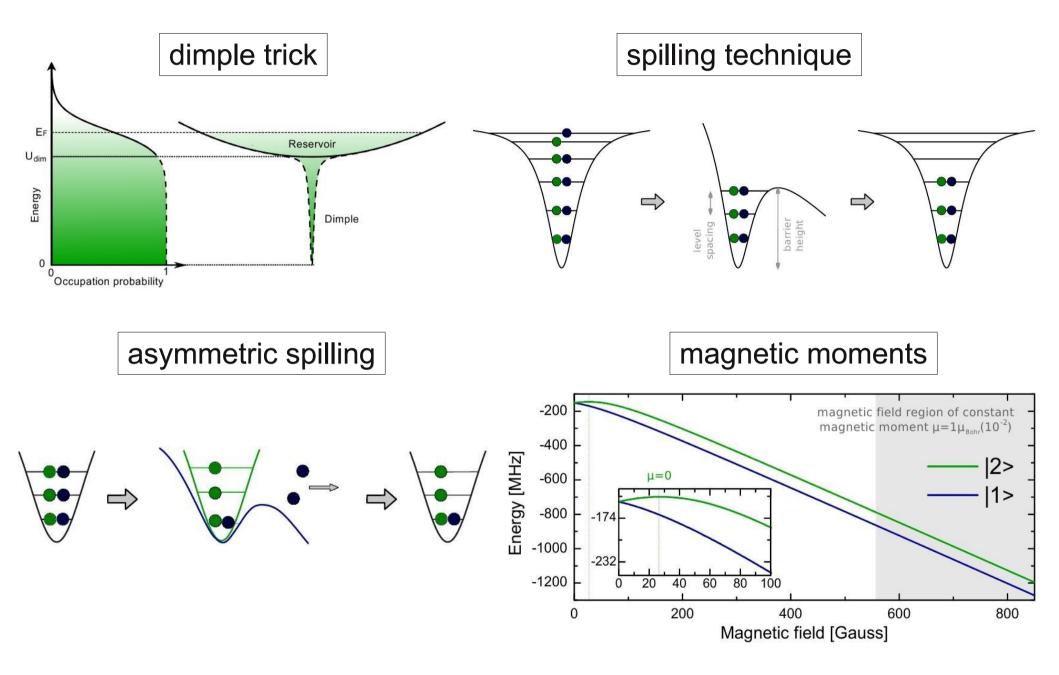






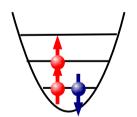
### asymmetric spilling



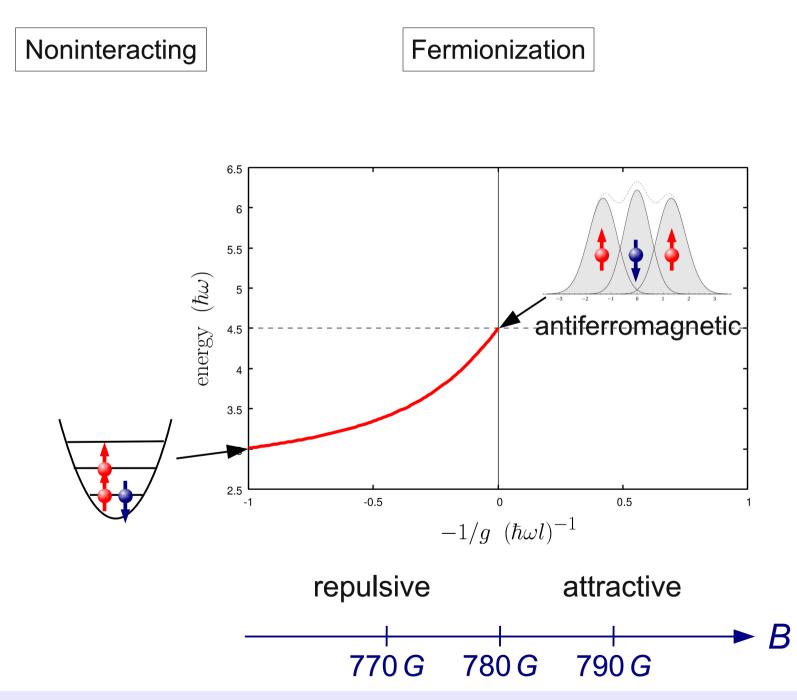


# **Preparation of antiferromagnetic spin chain**

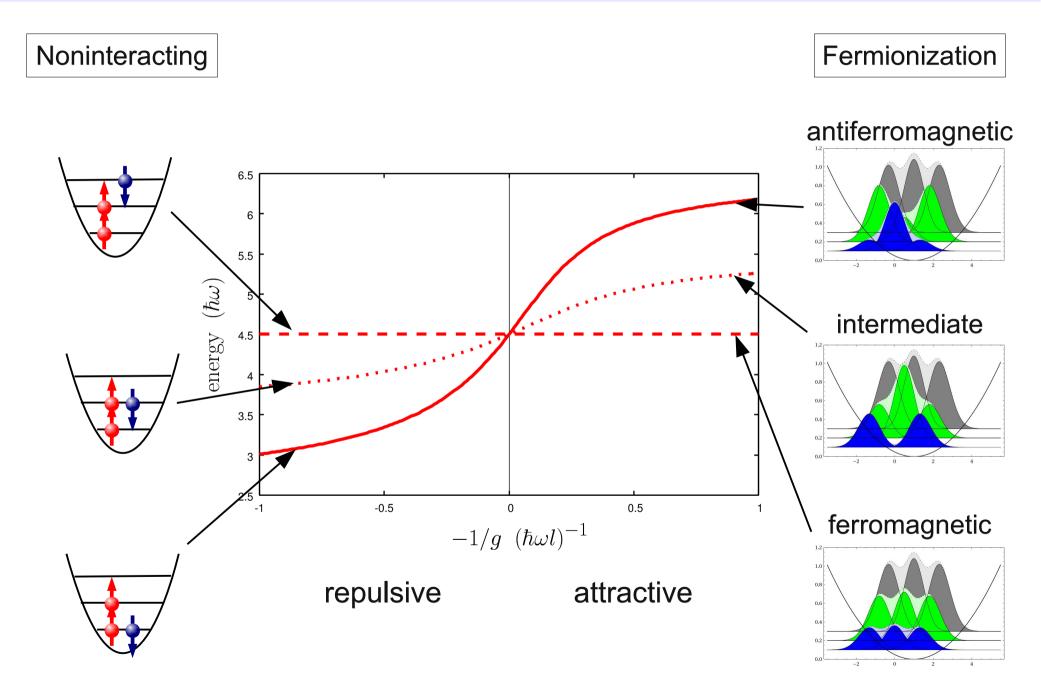
Noninteracting



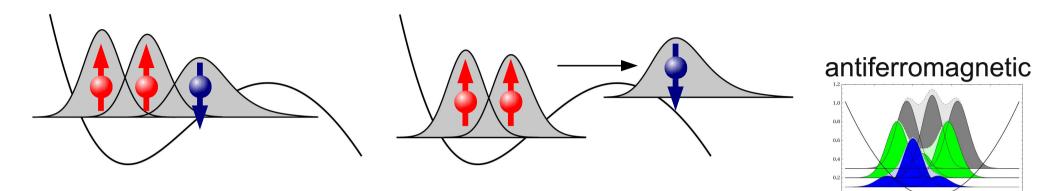
# Preparation of antiferromagnetic spin chain



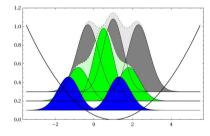
# **Multiplet structure**



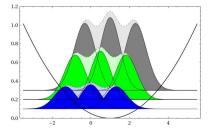
# **Measure orientation of rightmost spin**



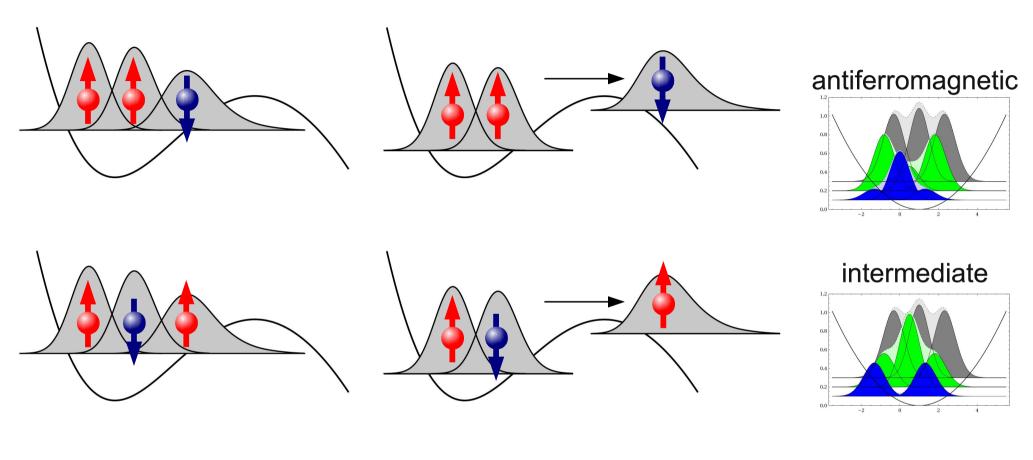
intermediate



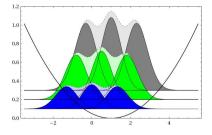
ferromagnetic



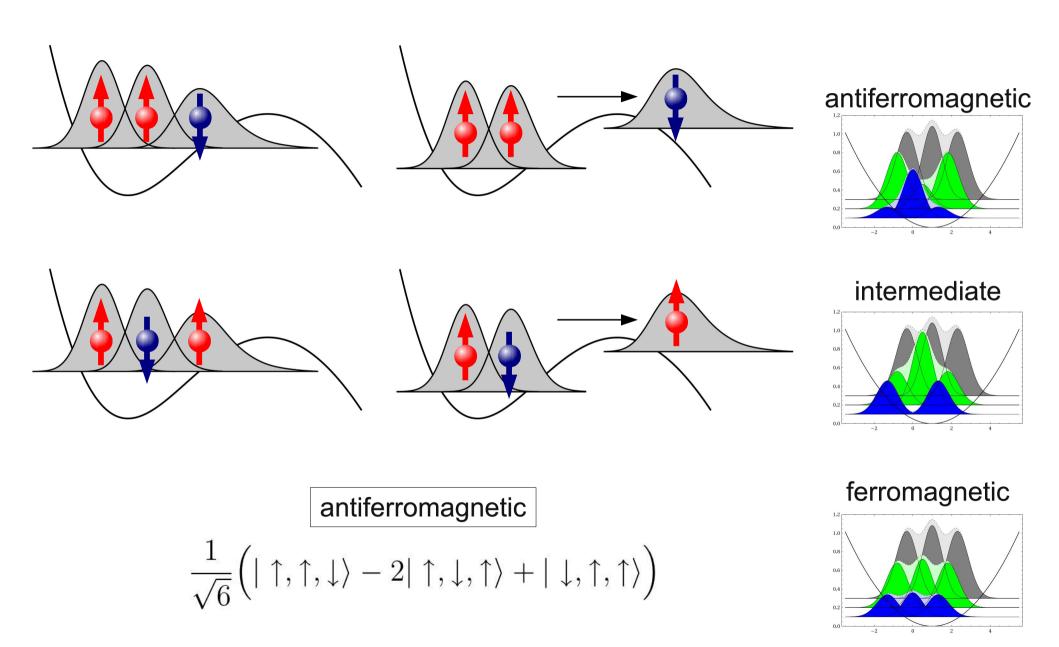
# **Measure orientation of rightmost spin**

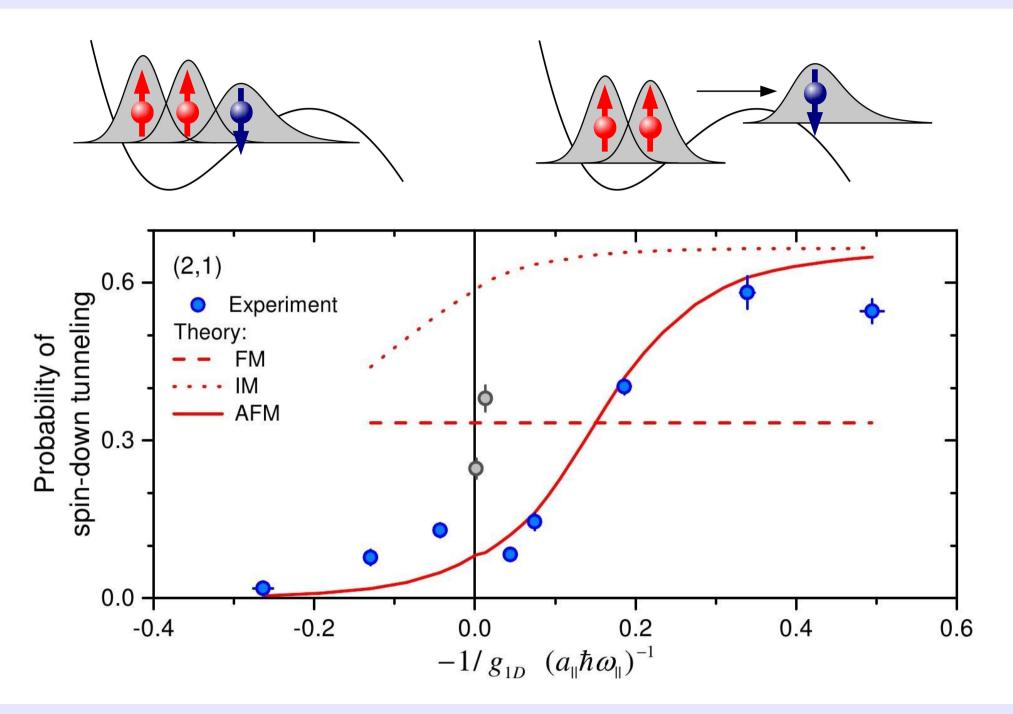


ferromagnetic



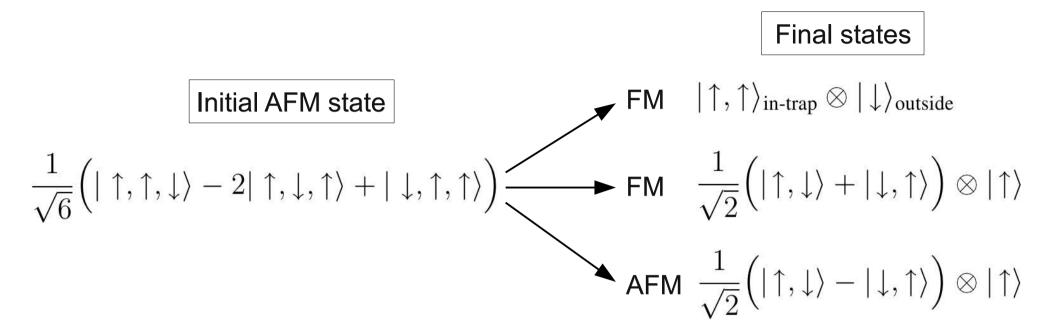
# **Measure orientation of rightmost spin**

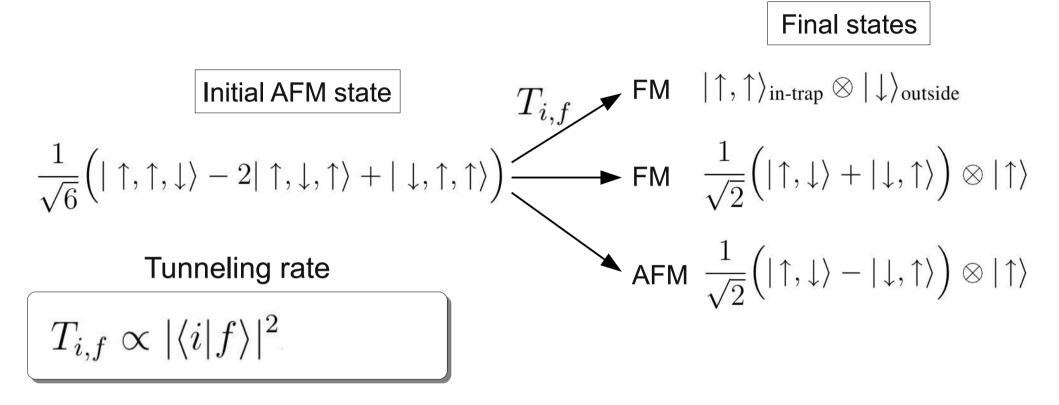


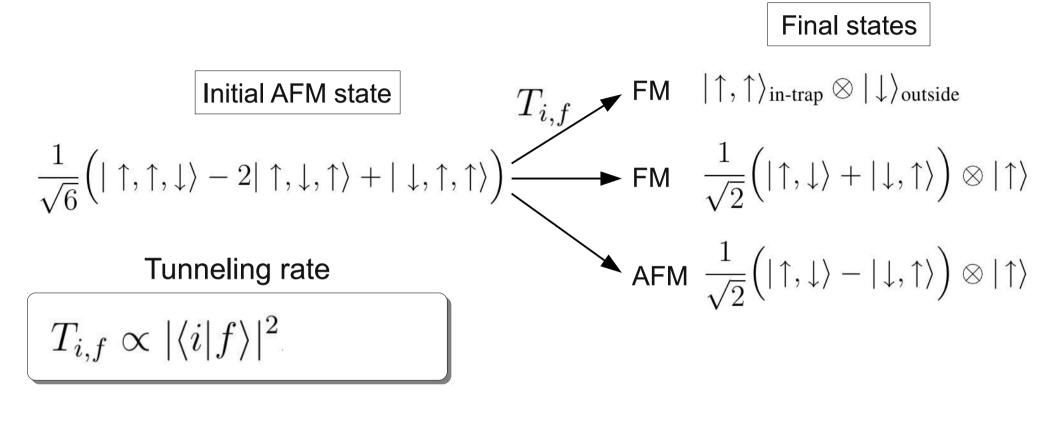


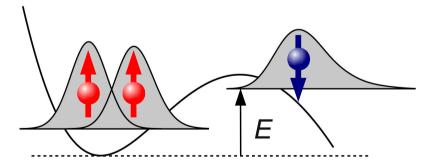
Initial AFM state

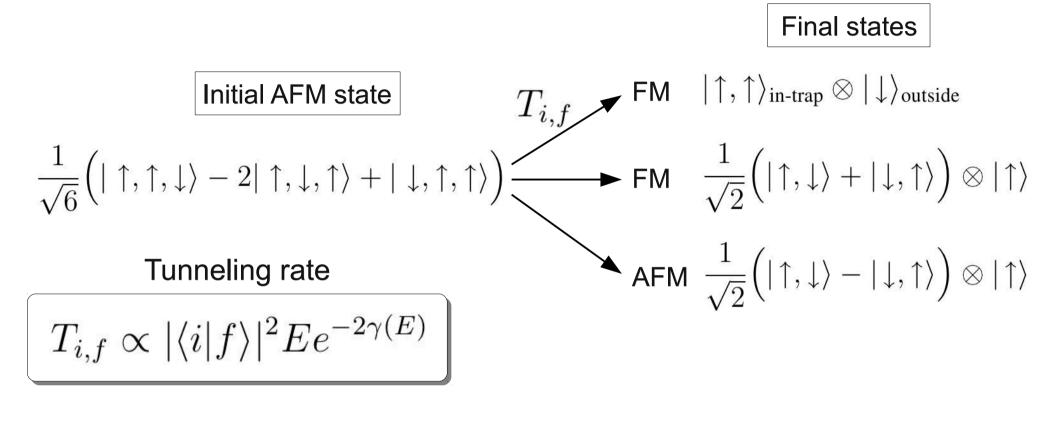
$$\frac{1}{\sqrt{6}} \Big( |\uparrow,\uparrow,\downarrow\rangle - 2|\uparrow,\downarrow,\uparrow\rangle + |\downarrow,\uparrow,\uparrow\rangle \Big)$$

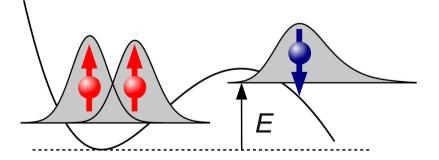


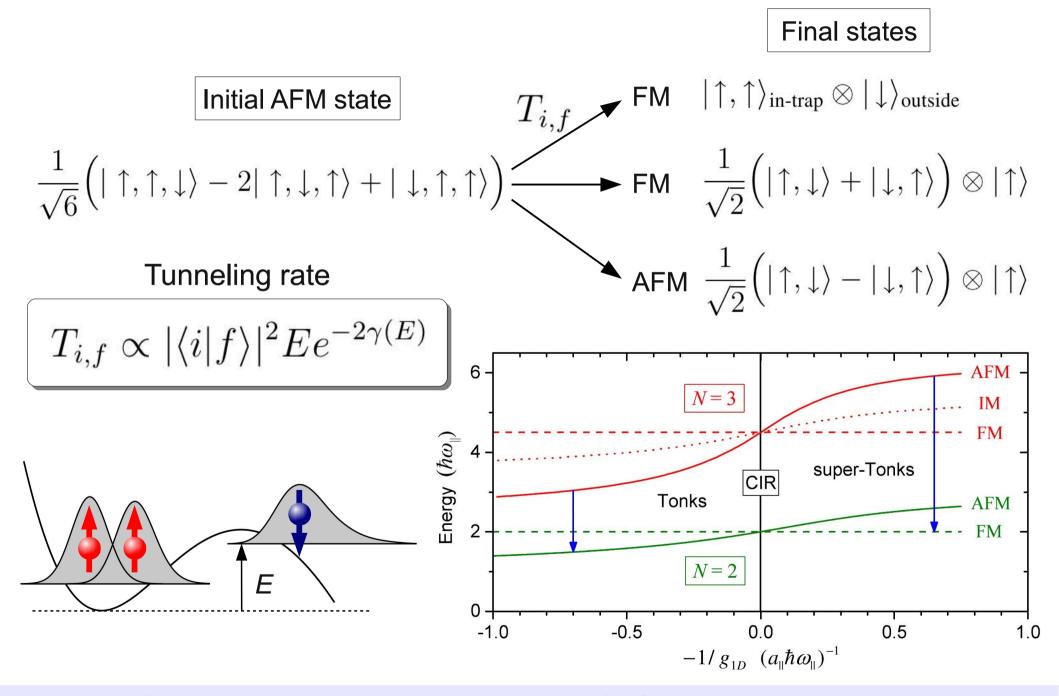


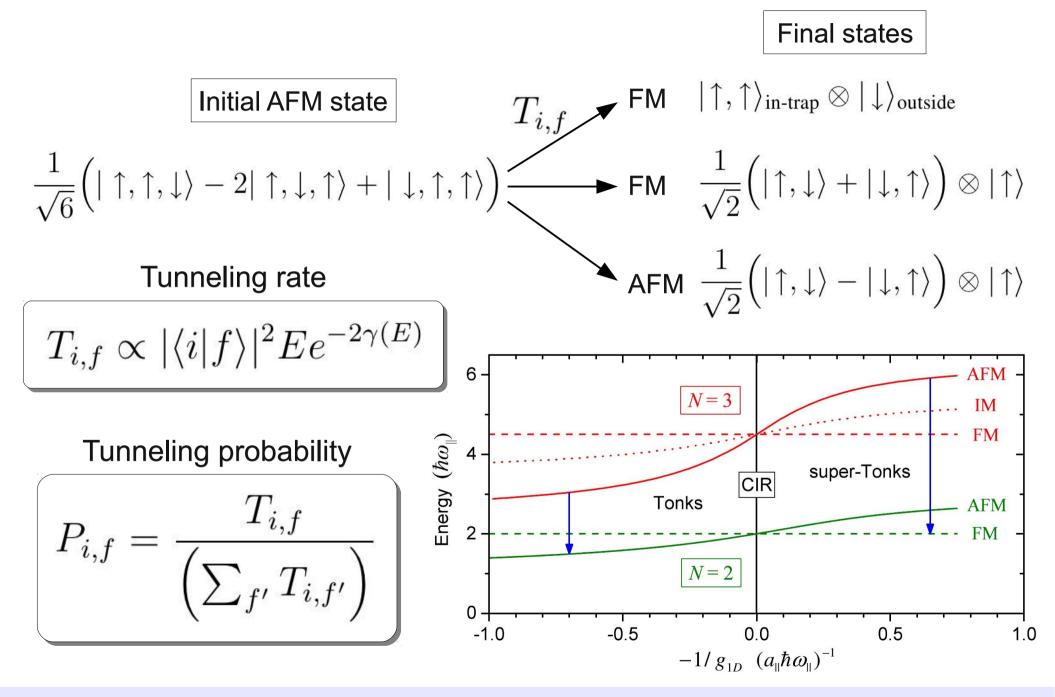


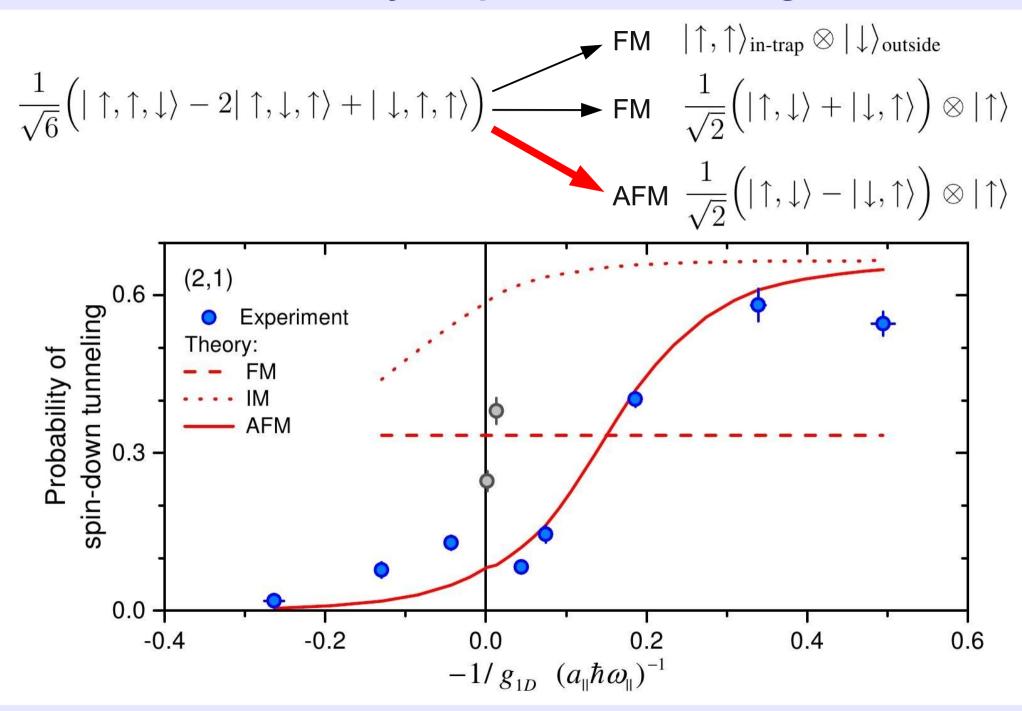


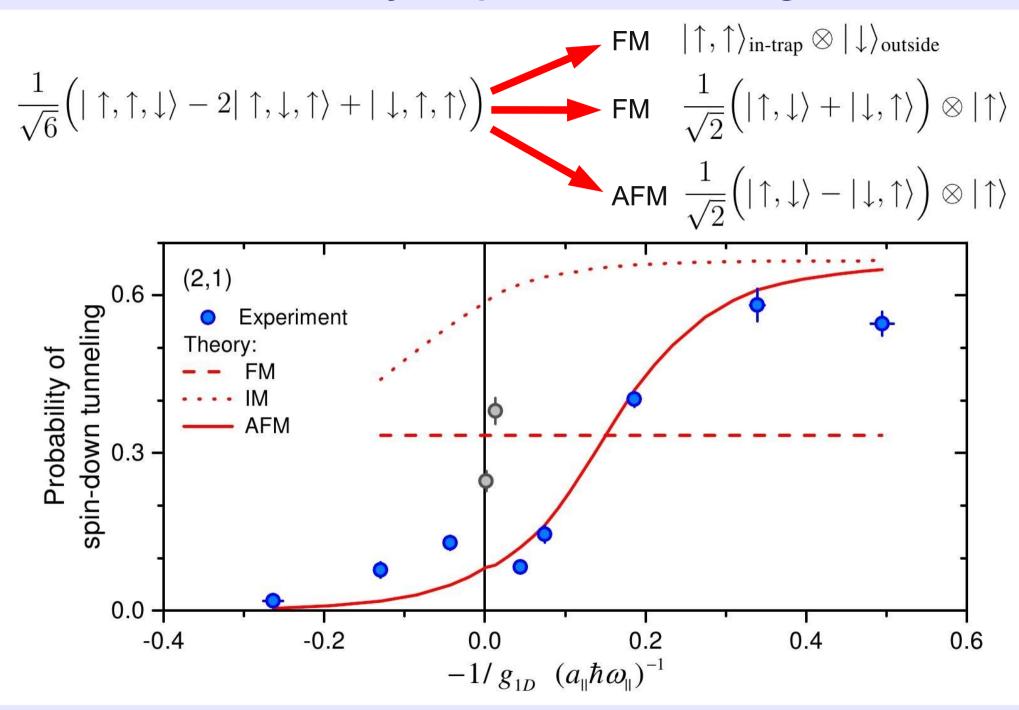


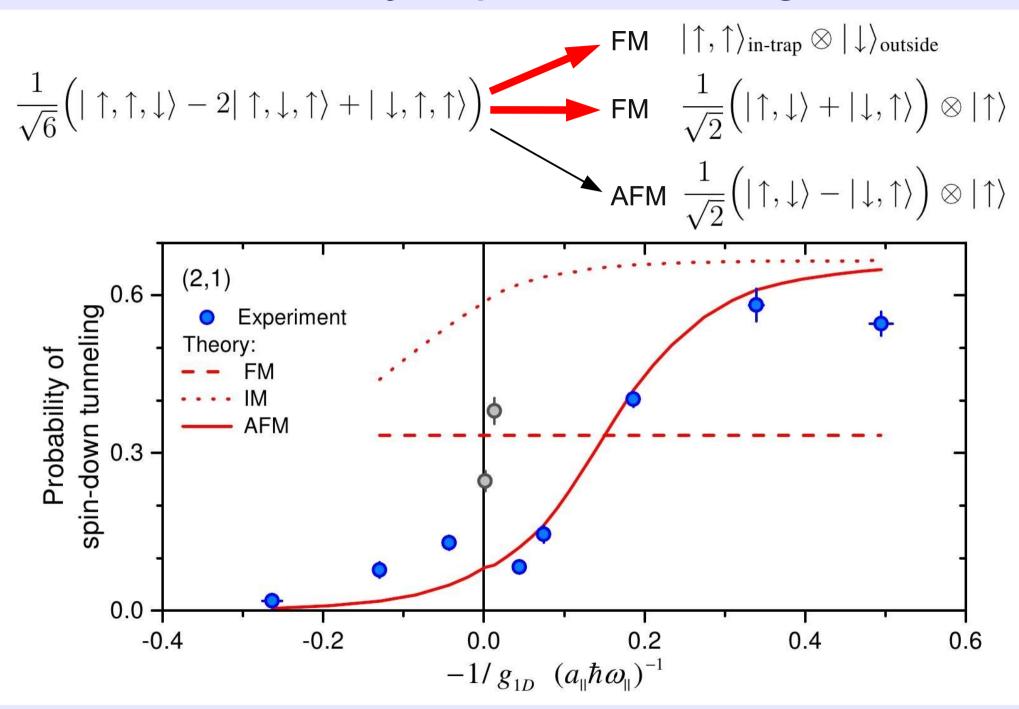




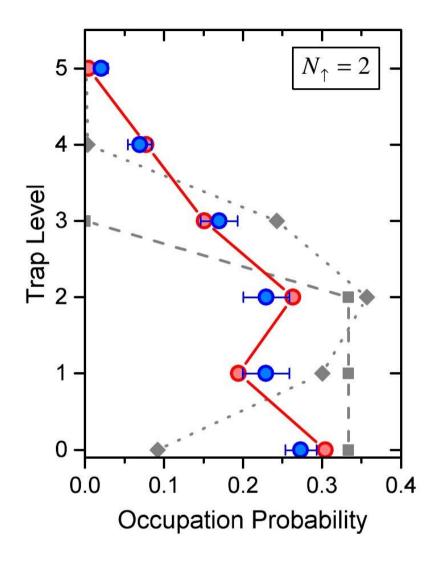




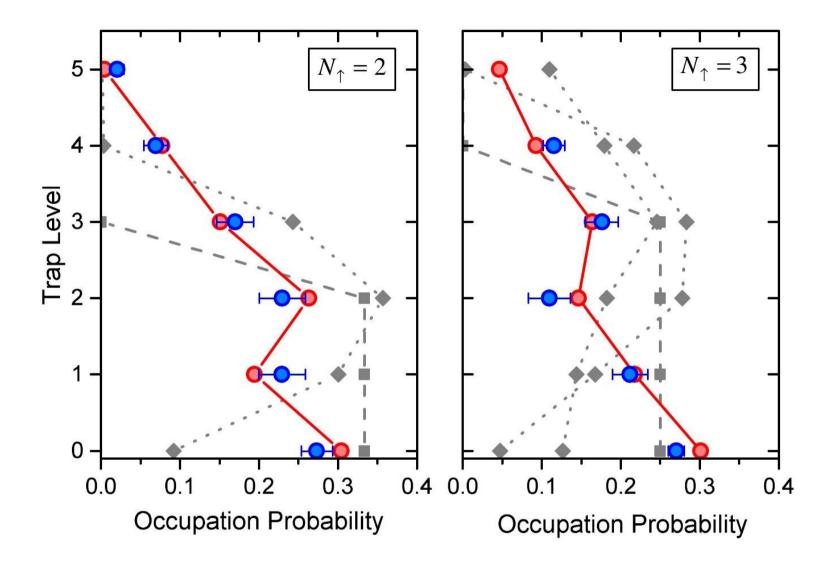




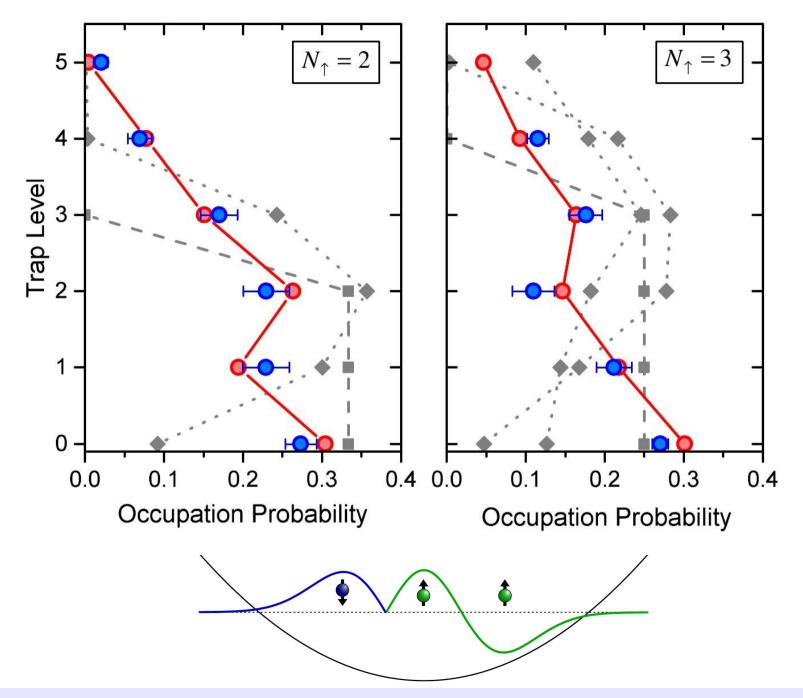
# Level occupation of spin-down particle



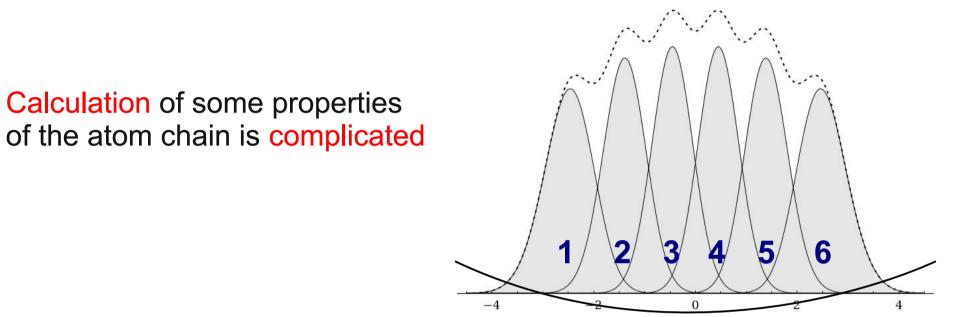
### Level occupation of spin-down particle



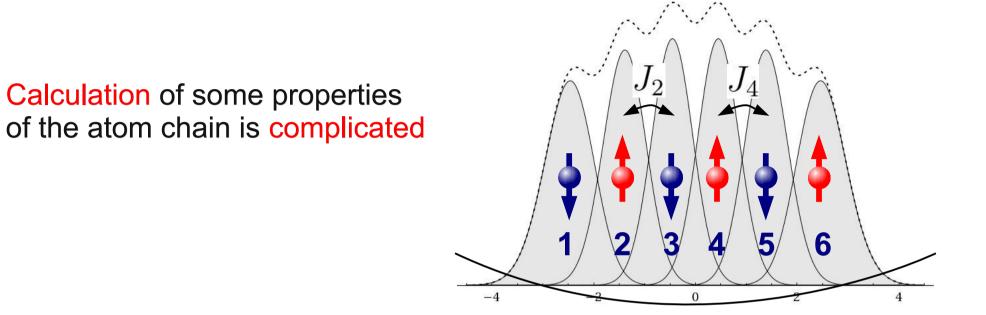
# Level occupation of spin-down particle



 Calculation of some properties of the atom chain is complicated



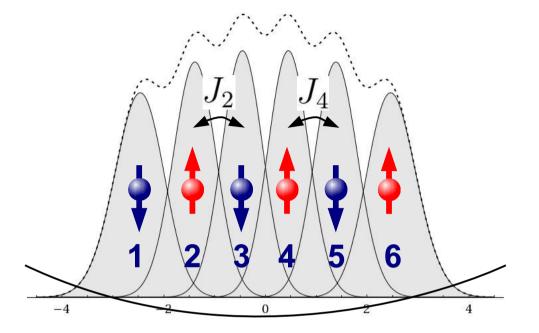
$$\rho^{(i)}(z) = N! \int_{z_1 < \cdots < z_{i-1} < z < z_{i+1} < \cdots < z_N} dz_1 \cdots dz_{i-1} dz_{i+1} \cdots dz_N \left| \psi_F(z_1, \dots, z_{i-1}, z, z_{i+1}, \dots, z_N) \right|^2$$



$$\rho^{(i)}(z) = N! \int_{z_1 < \cdots < z_{i-1} < z < z_{i+1} < \cdots < z_N} dz_1 \cdots dz_{i-1} dz_{i+1} \cdots dz_N \left| \psi_F(z_1, \dots, z_{i-1}, z, z_{i+1}, \dots, z_N) \right|^2$$

$$J_{i} = \frac{N!\hbar^{4}}{m^{2}g} \int_{z_{1} < \dots < z_{i-1} < z_{i+1} < z_{i+2} < \dots < z_{N}} dz_{N} \left| \frac{\partial \psi_{F}}{\partial z_{i}} \right|_{z_{i} = z_{i+1}}^{2}$$

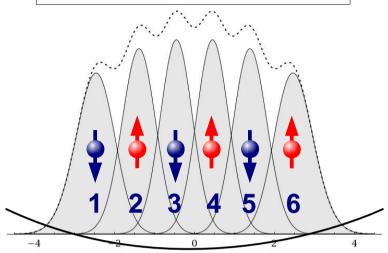
- Calculation of some properties of the atom chain is complicated
- Mathematica script available

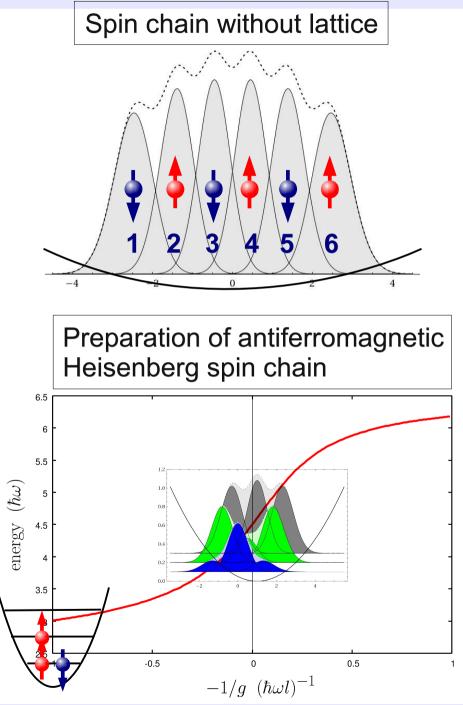


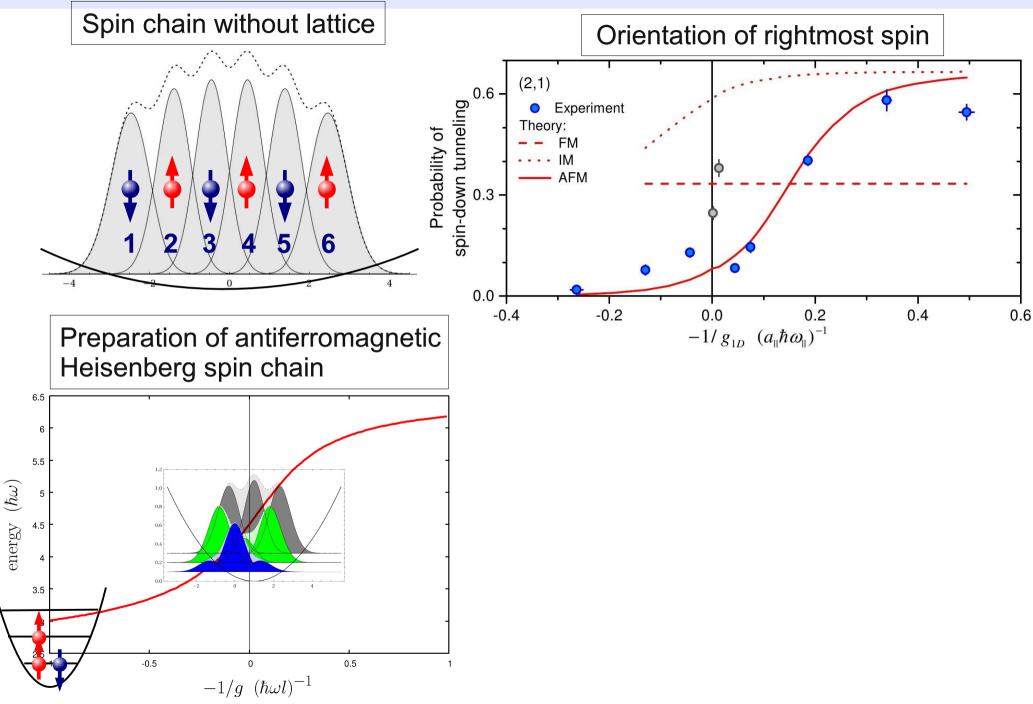
$$\rho^{(i)}(z) = N! \int_{z_1 < \cdots < z_{i-1} < z < z_{i+1} < \cdots < z_N} dz_1 \cdots dz_{i-1} dz_{i+1} \cdots dz_N \left| \psi_F(z_1, \dots, z_{i-1}, z, z_{i+1}, \dots, z_N) \right|^2$$

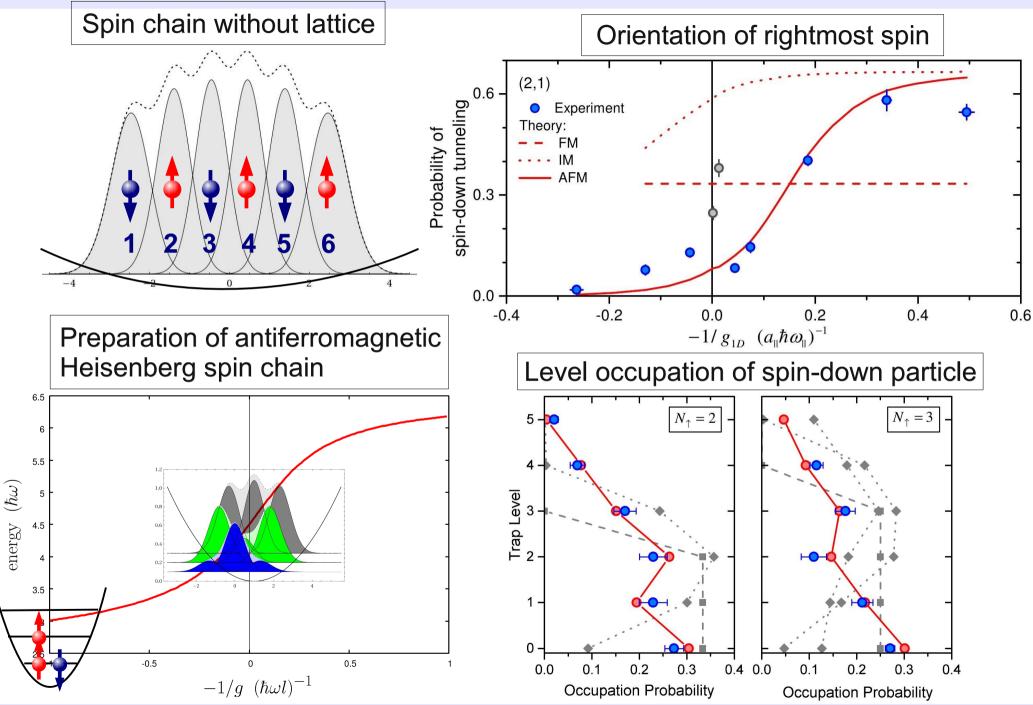
$$J_{i} = \frac{N!\hbar^{4}}{m^{2}g} \int_{z_{1} < \dots < z_{i-1} < z_{i+1} < z_{i+2} < \dots < z_{N}} dz_{N} \left| \frac{\partial \psi_{F}}{\partial z_{i}} \right|_{z_{i} = z_{i+1}}^{2}$$











# Thank you for your attention!



### Daniel

### Johannes