Introduction	Fit and results	N3LO	Summary
O	0000000	00000000	00

State-of-the-art N3LO chiral interactions

Boris D. Carlsson¹

¹Chalmers University of Technology, Gothenburg, Sweden

EFB23, 2016-08-10

Introduction	Fit and results	N3LO	Summary

Acknowledgements

UiO : University of Oslo

Andreas Ekström Christian Forssén Dag Fahlin Strömberg Gustav R. Jansen Oskar Lilja Mattias Lindby Björn A. Mattsson Kyle A. Wendt Gaute Hagen Kai Hebeler Morten Hjorth-Jensen Witold Nazarewicz Thomas Papenbrock

Phys. Rev. X 6, 011019 (2016)

Introduction	Fit and results	N3LO	Summary
O		00000000	00
Outline			

Introduction	Fit and results	N3LO	Summary
•	0000000	00000000	00

χ EFT

Controlled approximations

- Low-energy expansion based on QCD.
- It can be improved order-by-order.
- Links several **low-energy** nuclear physics processes.

Introduction	Fit and results	N3LO	Summary
•			

χ EFT

Expectations on χEFT

- Simultaneously give a good description of πN, NN and many-nucleon observables.
- Be able to estimate the **systematical error** in the model.
- Be able to propagate statistical uncertainties from fit of LECs.
- Fits and predictions should improve with increased order in the expansion.

Introd	

Fit and results •000000

N3LO 00000000

Fit and results

Introduction	Fit and results	N3LO	Summary
O	o●ooooo	00000000	00
Experimental da	ta		

$\pi N \text{ data}$

• Scattering data in the range $\mathcal{T}_{lab}\approx 10-70\,\mathrm{MeV},$ from the WI08 database.

Experimental data

$\pi \mathrm{N}~\mathrm{data}$

• Scattering data in the range $T_{\text{lab}} \approx 10-70 \, \mathrm{MeV}$, from the WI08 database.

NN data

• Scattering data in the range $T_{lab} \approx 0.4 - 290 \,\mathrm{MeV}$, from the SM99/GR15 database.

• ²H properties – E_{gs} , r_{ch} , Q.

Experimental data

$\pi {\sf N}$ data

• Scattering data in the range $T_{\text{lab}} \approx 10-70 \, \mathrm{MeV}$, from the WI08 database.

NN data

• Scattering data in the range $T_{lab} \approx 0.4 - 290 \,\mathrm{MeV}$, from the SM99/GR15 database.

• ²H properties – E_{gs} , r_{ch} , Q.

NNN data

- ³H properties E_{gs} , r_{ch} , $T_{1/2}$.
- ³He properties E_{gs} , r_{ch} .

Experimental data

$\pi {\sf N}$ data

• Scattering data in the range $T_{\text{lab}} \approx 10-70 \, \mathrm{MeV}$, from the WI08 database.

NN data

• Scattering data in the range $T_{lab} \approx 0.4 - 290 \,\mathrm{MeV}$, from the SM99/GR15 database.

• ²H properties – E_{gs} , r_{ch} , Q.

NNN data

- ³H properties E_{gs} , r_{ch} , $T_{1/2}$.
- ³He properties E_{gs} , r_{ch} .

Goal

One model (χEFT) for all data, with error estimates.

Fit and results	N3LO	Summary
000000		
	Fit and results 00€0000	Fit and results N3LO 0000000 0000000

Fit to experimental data

The χ^2 function

LECs must be determined from a fit to experimental data:

$$\chi^{2}(\mathbf{p}) \equiv \sum_{i} \left(\frac{O_{i}^{\text{theo}}(\mathbf{p}) - O_{i}^{\text{expr}}}{\sigma_{\text{tot},i}} \right)^{2} \equiv \sum_{i} r_{i}^{2}(\mathbf{p})$$

Use all available data to constrain the model: πN , NN, NNN.

Introduction	Fit and results	N3LO	Summary
	000000		

Fit to experimental data

The χ^2 function

LECs must be determined from a fit to experimental data:

$$\chi^{2}(\mathbf{p}) \equiv \sum_{i} \left(\frac{O_{i}^{\text{theo}}(\mathbf{p}) - O_{i}^{\text{expr}}}{\sigma_{\text{tot},i}} \right)^{2} \equiv \sum_{i} r_{i}^{2}(\mathbf{p})$$

Use all available data to constrain the model: πN , NN, NNN.

Error budget

The total uncertainty σ_{tot} can be decomposed into:

$$\sigma_{\rm tot}^2 = \sigma_{\rm exp}^2 + \sigma_{\rm method}^2 + \sigma_{\rm num}^2 + \sigma_{\rm model}^2$$

Introduction	Fit and results	N3LO	Summary
O		00000000	00
Error budget			

The total uncertainty $\sigma_{\rm tot}$ can be decomposed into:

$$\sigma_{\rm tot}^2 = \sigma_{\rm exp}^2 + \sigma_{\rm method}^2 + \sigma_{\rm num}^2 + \sigma_{\rm model}^2$$

Introduction	Fit and results	N3LO	Summary
O		00000000	00
Error budget			

The total uncertainty σ_{tot} can be decomposed into:

$$\sigma_{\rm tot}^2 = \boxed{\sigma_{\rm exp}^2} + \sigma_{\rm method}^2 + \sigma_{\rm num}^2 + \sigma_{\rm mode}^2$$

Exp. error

Provided by the **experimentalist**.

Introduction	Fit and results	N3LO	Summary
O		00000000	00
Error budget			

The total uncertainty σ_{tot} can be decomposed into:

$$\sigma_{\rm tot}^2 = \sigma_{\rm exp}^2 + \boxed{\sigma_{\rm method}^2} + \sigma_{\rm num}^2 + \sigma_{\rm model}^2$$

Method error

Relevant for the $\mathbf{A} = \mathbf{3}$ **bound-state** observables, due to limited model space and the isoscalar approximation.

Introduction	Fit and results	N3LO	Summary
O	000●000	00000000	00
Error budget			

The total uncertainty σ_{tot} can be decomposed into:

$$\sigma_{\rm tot}^2 = \sigma_{\rm exp}^2 + \sigma_{\rm method}^2 + \boxed{\sigma_{\rm num}^2} + \sigma_{\rm mode}^2$$

Num. error

Relevant for the **deuteron binding energy**, set to 0.01% of the experimental value.

Introduction	Fit and results	N3LO	Summary
O	000●000	00000000	00
Error budget			

The total uncertainty σ_{tot} can be decomposed into:

$$\sigma_{\rm tot}^2 = \sigma_{\rm exp}^2 + \sigma_{\rm method}^2 + \sigma_{\rm num}^2 + \boxed{\sigma_{\rm model}^2}$$

Model error

Applied to scattering data.

$$\sigma_{
m model}^{
m (amp)} = \mathit{C}_{
m x} \left(\mathit{q}_{
m cm} / \Lambda_{\chi}
ight)^{
u+1}$$

Bound states

No model error for **bound state** data.

Total neutron-proton cross section with model errors

Results from Phys. Rev. X 6, 011019 (2016)

Introduction	Fit and results	N3LO	Summary
0	00000●0	00000000	00
Error budget			

The total uncertainty σ_{tot} can be decomposed into:

$$\sigma_{\rm tot}^2 = \sigma_{\rm exp}^2 + \sigma_{\rm method}^2 + \sigma_{\rm num}^2 + \sigma_{\rm model}^2$$

Model error

Estimate model error from **family of 42 potentials**. Uncertainty given by spread in predictions.

$$T_{\rm lab}^{\rm max} = 125 \dots 290 \, {
m MeV}$$

$$\Lambda_{\chi} = 450 \dots 600 \,\mathrm{MeV}$$

Introduction	Fit and results	N3LO	Summary
O	000000●	00000000	00

Helium 4 binding energy

Results from Phys. Rev. X 6, 011019 (2016)

Introduction	Fit and results	N3LO	Summary
	0000000	0000000	

N3LO

Introduction	Fit and results	N3LO	Summary
O	0000000	0000000	00
Moving on to	N3LO		

N3LO

- A total of 41 LECs.
- Full interaction except 4N used in calculations. (3N: PRC 91, 044001 (2015))

Introduction	Fit and results	N3LO	Summary
O	0000000	0000000	00

Moving on to N3LO

N3LO

- A total of 41 LECs.
- Full interaction except 4N used in calculations. (3N: PRC 91, 044001 (2015))

Complications

- Possible to find at least **over 100 minima** with good description of *A* = 2, 3 data.
- Could be due to a lack of included data in the fit.

Introduction	Fit and results	N3LO	Summary
O		00●00000	00

N3LO minima

Introduction	Fit and results	N3LO	Summary
O		0000000	00

Introduction	Fit and results	N3LO	Summary
O		0000000	00

Introduction	Fit and results	N3LO	Summary
O	0000000	000●0000	00

Moving on to N3LO

Preliminary results

- We choose a minimum that looks promising.
- Construct a family of 42 potentials as for the lower orders.
- Results in the πN and NN sector looks promising.

 $T_{\rm lab}^{max} = 125 \dots 290 \, {\rm MeV}$

$$\Lambda_{\chi} = 450 \dots 600 \, {\rm MeV}$$

Introduction	Fit and results	N3LO	Summary
O	0000000	0000●000	00

Total neutron-proton cross section with model errors

Introduction	Fit and results	N3LO	Summary
0	0000000	00000●00	00

Neutron-proton scattering length

Introduction	Fit and results	N3LO	Summary
O		000000€0	00

Moving on to N3LO

Preliminary results

- We choose a minimum that looks promising.
- Construct a **family of 42 potentials** as for the lower orders.
- Results in the πN and NN sector looks promising.

 ${\cal T}_{\rm lab}^{max}=125\dots 290\,{\rm MeV}$

$$\Lambda_{\chi} = 450 \dots 600 \, {\rm MeV}$$

Introduction	Fit and results	N3LO	Summary
O	0000000	000000●0	00

Moving on to N3LO

Preliminary results

- We choose a minimum that looks promising.
- Construct a family of 42 potentials as for the lower orders.
- Results in the πN and NN sector looks promising.

Few-body results

- Large uncertainty already at *A* = 4
- Removing high-energy scattering data from the fit makes the fit poorly constrained.

 $T_{
m lab}^{
m max}=290\,{
m MeV}$

$$\Lambda_{\chi} = 450 \dots 575 \,\mathrm{MeV}$$

Introduction	Fit and results	N3LO	Summary
O		0000000	00

Helium 4 binding energy

Summary

Introduction	Fit and results	N3LO	Summary
O	0000000	0000000	⊙●
Summary			

- First common statistical regression analysis of ab initio few-body physics and χEFT.
- Simultaneous optimization to πN-, NN- and NNN-data improves the model and is crucial in order to get small statistical errors.
- Complications at N3LO to be solved.