
note8 [October 28, 2020]

Newtonian limit

In the Newtonian limit (the limit of weak fields and slow motions) General Relativity
reduces to Newtonian gravitation. That is, i) the Einstein’s field equation reduces to
Poisson equation for Newtonian gravitational potential; and ii) the geodesic equation
reduces to Newton’s equation of motion.

Newtonian gravitation

Newton’s law of universal gravitation

The Newton’s law of universal gravitation (published in 1687) states that two particles with masses
m and M , located at a relative distance r, attract each other with the force

F = G
mM

r2
, (1)

where G ≈ 6.674 × 10−11N ·m2kg−2 is the gravitational constant. The latter was first measured
by Henry Cavendish in 1798.

Potential formulation of Newtonian gravitation

The force (1) is conservative and allows potential formulation: the body M creates a gravitational
potential φ,

φ(~r) = −GM
r

, (2)

in which the particle m acquires a potential energy mφ with the corresponding force

~F = −m∇φ . (3)

The potential (2) satisfies the Poisson equation1

∇2φ(~r) = 4πGMδ(~r) . (4)

If instead of a single point-mass with mass density Mδ(~r) there is a distribution of masses
with density µ(~r), the gravitational potential created by this distribution of masses satisfies the
Poisson equation

∇2φ = 4πGµ . (5)

Metric in Newtonian limit

Equation (3) can be cast into a variational form with the action

S =

∫
dt

(
1

2
mv2 −mφ−mc2

)
= −mc

∫
dt

(
c− v2

2c
+
φ

c

)
. (6)

Comparing with S = −mc
∫
ds we get (squaring and dropping terms negligible in the limit c→∞)

ds2 =

(
1 +

2φ

c2

)
c2dt2 − d~r2 . (7)

Thus in the Newtonian limit the metric tensor can be approximated by gab = ηab +hab, where
ηab is the Minkowski metric tensor and hab is a small correction with the g00 component given as

g00 = 1 +
2φ

c2
, (8)

where φ satisfies the Poisson equation (5).

1 ∇2 1
r

= −4πδ(~r) .
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Newtonian limit of general relativity

For a distribution of (otherwise non-interacting) masses with mass density µ(~r) the stress-energy-
momentum tensor is

Tab = µc2uaub . (9)

In the Newtonian limit, where all fields are weak and all velocities are small, ua = {1, 0, 0, 0},
only the 00 component of the stress-energy-momentum tensor is non-vanishing,

T00 = µc2 (10)

Therefore we shall only consider the 00 component of the Einstein’s equation,

R00 = κ(T00 −
1

2
g00T ) =

1

2
κµc2 . (11)

In the slow-weak limit all second order terms and temporal derivatives must be neglected
altogether. The 00 component of the Ricci tensor then reduces to

R00 $ Ra0a0 = Γα00,α (12)

where the Greek symbols run over 1, 2, 3.
Assuming g00 = 1 + 2φ/c2, where φ/c2 is a small correction, and dropping the temporal

derivatives, the Christoffel symbols become

Γα00 = − 1

c2
φ,α , (13)

The Ricci tensor in the same limit is given as

R00 = − 1

c2
ηαβφ,αβ ≡

1

c2
∇2φ , (14)

The Einstein equation thus turns into the Poisson’s equation

∇2φ =
1

2
κc4µ , (15)

which is equivalent to the Newtonian theory if we put

κ =
8πG

c4
. (16)

Gravitational waves

The Einstein equation predicts gravitational waves—the solutions in the form f(ct −
x)—which propagate with the speed of light and carry energy and momentum.

Weak gravitational waves in vacuum

In a weak gravitational field the space-time is almost flat and the metric tensor gab equals the flat
metric ηab plus a small correction hab � 1,

gab = ηab + hab . (17)

The Riemann tensor to the lowest order in hab is

Rabcd =
1

2
(had,bc + hbc,ad − hac,bd − hbd,ac) . (18)
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The Ricci tensor to the lowest order,

Rbd = ηacRabcd =
1

2

(
h̄ab,ad + h̄ad,ab − h

,a
bd,a

)
, (19)

where

h̄ab $ hab −
1

2
hηab , (20)

and h $ haa.
If we choose our coordinates such that (see the exercise)

h̄ab,a = 0 , (21)

(which is simetimes called the Lorentz gauge) the Ricci tensor becomes

Rab = −1

2
h,cab,c , (22)

and the vacuum Einstein’s equation, Rab = 0, turns into the ordinary wave equation,(
∂2

∂t2
−∇2

)
hab = 0 .

Detection of gravitational waves

The intensity of gravitational radiation by a system of slowly moving bodies is determined by its
quadrupole moment Dαβ ,

−dE
dt

=
G

45c5
(
...
Dαβ)2 . (23)

This is a rather weak intensity, and even the waves from the most potent sources—mergers of black
holes or neutron stars—have a very small amplitude (10−21) when they reach Earth. Nevertheless
the interferometer-type detector LIGO managed in 2015 to detect a gravitational wave from a
merger of two black holes about a billion light-years away.

The interferometer-type detectors work like this: consider a gravitational wave moving in the
x-direction and having the hyz-form (see the exercise),

hab6=yz,zy = 0 , hyz = f(t− x) , (24)

and consider an interferometer in the yz-plane with its legs stretching from the origin to the
points (−dy, dz) and (dy, dz). The lengths of its legs, dl21 and dl22, will be modified2 by a passing
gravitational wave as

dl21 = dy2 + dz2 + 2hyzdydz , (25)

dl22 = dy2 + dz2 − 2hyzdydz . (26)

If the legs are long enough and the interferometer is sensitive enough (and the merging black holes
are big enough) these minuscule changes can be (and have been) detected.

Exercises

1. Argue that ∇2 1
r = −4πδ(~r).

Hints:

(a) argue that ∇2 1
r = 0 everywhere except for the origin;

2We tacitly assume that the effect of the gravitational wave on the wavelengt of the laser beam in the interfer-
ometer is of the second order.
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(b) using the divergence theorem,∫
V

(~∇~f)dV =

∮
∂V

(~f · ~n)dS ,

establish the factor 4π.

2. Consider the metric in newtonian limit,

ds2 =

(
1 +

2φ

c2

)
c2dt2 − d~r2 .

Show that the geodesic equation, Dua = 0, is equivalent to the Newton’s equation of motion,
d~v/dt = −∇φ.

3. Assume that the graviational field is weak and that the metric tensor gab equals the Minkowski
metric tensor ηab plus a small correction hab where |hab| � 1,

gab = ηab + hab .

(a) Calculate the Riemann tensor and the Ricci tensor in the lowest order in hab.

(b) Write down the Einstein equation in vacuum in the same order (the linearized Einstein
equation in vacuum).

4. Show that in the weak field limit, gab = ηab+hab, it is always possible to find an infinitesimal
coordinate transformation

xa → x′a = xa + εa

such that

(h′ab −
1

2
h′δab ),a = 0 .

You might need to show first that under this infinitesimal transformation

δgab = −εa;b − εb;a .

5. In the (second) Nordström’s theory of gravitation the metric tensor is given as gab = e2φ/c
2

ηab
where the function φ is determined by the field equation R = κT (where R = gabRab and
T = gabT

ab).

(a) Argue that in the Newtonian limit this theory reproduces Newtonian gravitation (with
the appropriate choice of the constant κ).

(b) Argue that this theory predicts gravitational waves.

6. In the weak field limit show that the metric tensor in the form gab = ηab + hab, where
hab6=yz,zy = 0, hyz = f(t−x), and f is an arbitrary function, satisfies the linearized Einstein
equation in vacuum.

7. In the weak field limit show that the metric tensor in the form gab = ηab + hab, where
hyz = A sinω(t − x), htt = 2f(t − x), htx = −f(t − x), all other hab = 0, f is an arbitrary
function, satisfies the linearized Einstein equation in vacuum.

8. (Not for exam?) Consider the metric in newtonian limit in the gravitational potential at
the surface of the Earth in the Earth’s frame. Make a coordinate transformation to the
frame where the Christoffel symbols are zero. Argue that it is a free falling frame. Hint: the
general transformation to a locally-inertial frame at the origin is given as

x′a = xa +
1

2
Γabc(0)xbxc .
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9. (Not for exam?) Consider dust (non-interacting incoherent matter) – a good approximation
for our universe just at the moment. Argue, that its stress-energy-momentum tensor is given
as

T ab = µuaub ,

where µ is the mass density of the dust measured by a co-moving observer, and ua = dxa/ds.
Use the following strategy:

(a) Argue, that it is a generally covariant tensor.

(b) Argue that in special relativity T 00 is the energy density.

(c) Argue that in special relativity this tensor satisfies the equations,

T ab,b = 0 ,

by arguing that the 0-component, T 0b
,b = 0, represents the energy conservation law,

∂ε

∂t
+ ~∇ · (ε~v) = 0 ,

and that the spatial components, Tαb,b = 0, where α = 1, 2, 3 represent the Navier-
Stokes equation for the dust motion,

∂~v

∂t
+ (~v · ~∇)~v = 0 .
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