Spherically symmetric static solution

Schwarzschild metric

Schwarzschild metric describes the gravitational field outside a non-rotating spherical body like a star, planet, or black hole. It is a static, spherically symmetric solution of the vacuum Einstein equation $\left(R_{a b}=0\right)$.

The spherically symmetric static metric can be assumed to have the following form,

$$
\begin{equation*}
d s^{2}=A(r) d t^{2}-B(r) d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right), \tag{1}
\end{equation*}
$$

where A and B are some yet unknown functions of radius r.
The following Maxima script,

```
derivabbrev:true; /* a better notation for derivatives */
load(ctensor); /* load the package to deal with tensors */
ct_coords:[t,r,o,p]; /* our coordiantes: t r theta phi */
depends([A,B],[r]); /* the functions A and B depend on r */
lg:ident(4); /* set up a 4x4 identity matrix */
lg[1,1]: A; /* g_{tt} = A */
lg[2,2]:-B; /* g_{rr} = -B */
lg[3,3]:-r^2; /* g_{00} = */
lg[4,4]:-r^2*sin(o)^2; /* g_{\phi\phi} */
cmetric(); /* compute the prerequisites for further calculations */
christof(mcs); /* calculates Christoffel symbols, mcs_{bca}=\Gamma^a_{bc} */
ricci(true); /* calculates the covariant symmetric Ricci tensor */
```

calculates analytically the Christoffel symbols ${ }^{1}$ and the Ricci tensor ${ }^{2}$ for this metric. Now, integrating ${ }^{3}$ the vacuum Einstein equations, $R_{a b}=0$, gives the famous Schwarzschild metric,

$$
\begin{equation*}
d s^{2}=\left(1-\frac{r_{g}}{r}\right) d t^{2}-\frac{d r^{2}}{1-\frac{r_{g}}{r}}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) . \tag{2}
\end{equation*}
$$

The integration constant r_{g} is determined from the Newtonian limit ${ }^{4}, r_{g}=2 G M / c^{2}$, where M is the mass of the central body $\left(r_{g}=2 M\right.$ in the units $\left.G=c=1\right)$. It is called gravitational or Schwarzschild radius. The gravitational radius for the Earth is about 9mm, for the Sun - about 3 km .

Motion in the Schwarzschild metric

Massive bodies Massive bodies move along geodesics, described by the geodesic equation

$$
\begin{equation*}
\frac{d}{d s}\left(g_{a b} u^{b}\right)=\frac{1}{2} g_{b c, a} u^{b} u^{c} . \tag{3}
\end{equation*}
$$

[^0]For $a=t, \theta, \phi$ the corresponding equations in the Schwarzschild metric (2) are

$$
\begin{gather*}
\frac{d}{d s}\left[\left(1-\frac{2 M}{r}\right) \frac{d t}{d s}\right]=0 \tag{4}\\
\frac{d}{d s}\left[r^{2} \frac{d \theta}{d s}\right]=r^{2} \sin \theta \cos \theta\left(\frac{d \phi}{d s}\right)^{2} \tag{5}\\
\frac{d}{d s}\left[r^{2} \sin ^{2} \theta \frac{d \phi}{d s}\right]=0 \tag{6}
\end{gather*}
$$

The r-equation can be conveniently obtained by dividing the Schwarzschild metric (2) by $d s^{2}$,

$$
\begin{equation*}
1=\left(1-\frac{2 M}{r}\right)\left(\frac{d t}{d s}\right)^{2}-\left(1-\frac{2 M}{r}\right)^{-1}\left(\frac{d r}{d s}\right)^{2}-r^{2}\left[\left(\frac{d \theta}{d s}\right)^{2}+\sin ^{2} \theta\left(\frac{d \phi}{d s}\right)^{2}\right] \tag{7}
\end{equation*}
$$

Considering equatorial motion, the first three equations can be integrated as

$$
\begin{equation*}
\theta=\frac{\pi}{2}, \quad r^{2} \frac{d \phi}{d s}=J, \quad\left(1-\frac{2 M}{r}\right) \frac{d t}{d s}=E \tag{8}
\end{equation*}
$$

where J and E are constants. The fourth equation then becomes

$$
\begin{equation*}
1=\frac{E^{2}}{1-\frac{2 M}{r}}-\frac{\frac{J^{2}}{r^{4}} r^{\prime 2}}{1-\frac{2 M}{r}}-\frac{J^{2}}{r^{2}} \tag{9}
\end{equation*}
$$

where $r^{\prime} \equiv \frac{d r}{d \phi}$. Traditionally one makes a variable substitution $r=1 / u$,

$$
\begin{equation*}
(1-2 M u)=E^{2}-J^{2} u^{\prime 2}-J^{2} u^{2}(1-2 M u) \tag{10}
\end{equation*}
$$

and then differentiates the equation once. This gives

$$
\begin{equation*}
u^{\prime \prime}+u=\frac{M}{J^{2}}+3 M u^{2} \tag{11}
\end{equation*}
$$

In this form the last term is a relativistic correction to the otherwise non-relativistic equation.
Light rays. The rays of light travel along the null-geodesics where $d s^{2}=0$. Consequently instead of $d s$ one needs to use some parameter $d \lambda$ in the geodesic equations $\frac{D k^{a}}{d \lambda}=0$, where $k^{a}=\frac{d x^{a}}{d \lambda}$ and also the unity in the left-hand side of equation (7) has to be substituted with zero. This immediately leads to the equation

$$
\begin{equation*}
u^{\prime \prime}+u=3 M u^{2} \tag{12}
\end{equation*}
$$

which describes the trajectory of a ray of light in the Schwarzschild metric.
In the absence of the central body, $M=0$ the space becomes flat, and equation (12) turns into equation for a straight line.

Exercises

1. Consider a non-relativistic equatorial $(\theta=\pi / 2)$ motion of a planet with mass m around a star with mass M described by a Lagrangian ${ }^{5}$

$$
\mathcal{L}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)+\frac{m M}{r}
$$

Write down the Euler-Lagrange equations,

$$
\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial \dot{q}}=\frac{\partial \mathcal{L}}{\partial q}
$$

for $q=r$ and ϕ. Using the first integral $r^{2} \dot{\phi}=J$ rewrite the r-equation as an equation for the function $u(\phi)$, where $u=1 / r$, and compare with (11).

[^1]2. Show that in Newtonian mechanics an equatorial $(\theta=\pi / 2)$ trajectory of a light ray is described by the equation
$$
u^{\prime \prime}+u=0
$$
where $u \doteq \frac{1}{r}$ and $u^{\prime} \doteq \frac{d u}{d \phi}$.
3. Show that a light ray can travel around a massive star in a circular orbit much like a planet. Calculate the radius (in Schwarzschild coordinates) of this orbit. Answer: $r=\frac{3}{2}(2 M)$.
4. Show, that in the Newtonian limit, $g_{00}=1+2 \phi / c^{2}$, the geodesic equation,
$$
\frac{d u^{a}}{d s}=-\Gamma_{b c}^{a} u^{b} u^{c}
$$
is consistent with the Newton's equation of motion,
$$
\ddot{\vec{r}}=-\vec{\nabla} \phi .
$$

[^0]: ${ }^{1} \Gamma_{r r}^{r}=\frac{1}{2} \frac{B^{\prime}}{B}, \Gamma_{t r}^{t}=\frac{1}{2} \frac{A^{\prime}}{A}, \Gamma_{t t}^{r}=\frac{1}{2} \frac{A^{\prime}}{B}, \Gamma_{\theta r}^{\theta}=\frac{1}{r}, \Gamma_{\theta \theta}^{r}=-\frac{r}{B}, \Gamma_{\phi r}^{\phi}=\frac{1}{r}, \Gamma_{\phi \phi}^{r}=-\frac{r \sin ^{2} \theta}{B}, \Gamma_{\phi \theta}^{\phi}=\cot \theta, \Gamma_{\phi \phi}^{\theta}=$ $-\sin \theta \cos \theta$.

 $$
 \begin{aligned}
 R_{t t} & =\frac{A^{\prime \prime}}{2 B}+\frac{A^{\prime}}{B}\left(\frac{1}{r}-\frac{B^{\prime}}{4 B}-\frac{A^{\prime}}{4 A}\right), \\
 R_{\theta \theta} & =1-\left(\frac{r}{B}\right)^{\prime}-\frac{1}{2}\left(\frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}\right) \frac{r}{B}, \\
 R_{r r} & =-\frac{A^{\prime \prime}}{2 A}+\frac{A^{\prime} B^{\prime}}{4 A B}+\frac{A^{\prime 2}}{4 A^{2}}+\frac{B^{\prime}}{r B} .
 \end{aligned}
 $$

 3 Making a linear combination $B R_{t t}+A R_{r r}=0$ gives $A^{\prime} B+A B^{\prime}=0 \Rightarrow A B=1 \Rightarrow \frac{A^{\prime}}{A}+\frac{B^{\prime}}{B}=0$. Then $R_{\theta \theta}=0$ gives $B=\frac{1}{1-\frac{r_{g}}{r}}, A=1-\frac{r_{g}}{r}$, where r_{g} is an integration constant.
 ${ }^{4} g_{00} \xrightarrow{r \rightarrow \infty} 1+2 \phi=1-2 \frac{G M}{r}$

[^1]: ${ }^{5}$ where the dot denotes the temporal derivative, $\dot{r} \equiv \frac{d r}{d t}$.

