
note5 [16. december 2015]

The principle of stationary action

Action is an attribute of the dynamics of a physical system. It is a functional which takes the
trajectory of the system (also called path or history) as its argument and returns a covariant real
scalar as the result1. Generally, the action takes different values for different paths.

Classical mechanics postulates that

The path actually followed by a physical system is that for which the action is statio-
nary, that is, its variation vanishes,

δS = 0 . (2)

Vanishing variation means the action has an extremum on the actual trajectory. The postulate is
called the principle of stationary action or the variational principle.

The classical equations of motion can be derived from the variational principle.

Motion of a charged body in gravitational and electromagnetic fields

In special relativity the action of a body with mass m and charge e, moving in a given electro-
magnetic field Aa, is given (in the units c = 1) as

S = −m

∫
ds− e

∫
dxaAa , (3)

where the integrals are taken along the trajectory of the body. In this form the action is generally
covariant and can be directly used in general relativity. One only has to remember that the metric
tensor is not constant throughout the curved space.

We have to calculate the variation of this action under a small variation of the trajectory of
the body,

xa → xa + δxa . (4)

The variation of the first term in (3) has already been calculated in the section about geodesics,

δ

(
−m

∫
ds

)
=

∫
dsδxam

(
dua

ds
− 1

2
gbc,aubuc

)
. (5)

The variation of the term dxaAa is given as

δ(dxaAa) = δdxaAa + uadsAa,bδx
b = δdxaAa + ubdsAb,aδxa . (6)

As usual the term δdxaAa is integrated by parts,

δdxaAa = d(δxaAa)− δxadAa = d(δxaAa)− δxaAa,bu
bds . (7)

Inserting this into (6) leads to

δ(dxaAa) = d(δxaAa) + (−Aa,b + Ab,a)ubdsδxa . (8)

The expression in parentheses is called the electromagnetic tensor,

Fab
.= −Aa,b + Ab,a . (9)

1If the action is represented as an integral over time, taken along the path of the system between the initial time
and the final time of the development of the system,

S =

Z
Ldt , (1)

the integrand L is called the Lagrangian.
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It is apparently antisymmetric, Fab = −Fba. Although it contains non-covariant derivatives it is
actually a tensor since in a torsion free space it can be also written through covariant derivatives,

Fab = −Aa;b + Ab;a . (10)

The full differentials in (8) as usual does not contribute to the variation since δxa is zero at
the end-points of the trajectory. The variation of the action (3 then becomes

δS =
∫

dsδxa

(
m

dua

ds
−m

1
2
gbc,aubuc − eFabu

b

)
. (11)

Since the variation δxa is arbitrary, δS = 0 means the expression in parentheses has to vanish
identically on physical trajectories, giving the the equation of motion of a charged body in both
gravitational and electro-magnetic fields (the generalization of the Lorentz force equation),

m
dua

ds
−m

1
2
gbc,aubuc = eFabu

b . (12)

It can also be written as
m

dua

ds
−mΓbcaubuc = eFabu

b , (13)

or as
m

Dua

ds
= eFabu

b . (14)

Maxwell equations in curved spaces

In this section we shall derive the generally covariant equations for the electomagnetic field – the
Maxwell equations in curved spaces.

The homogeneous Maxwell equation

The generally covariant form of the homogeneous Maxwell equation can be deduced from its form
in Minkowski space,

F(ab,c) = Fab,c + Fbc,a + Fca,b = 0 , (15)

(parentheses denote cyclic permutaion of the included indices) where

Fab
.= −Aa,b + Ab,a (16)

is the electromagnetic tensor. Actually, due to the symmetry of Christoffel symbols Γa
bc = Γa

cb (and
asymmetry of the electromagnetic tensor) both the electromagnetic tensor and the homogeneous
Maxwell equation are already generally covariant and thus preserve their form in curved spaces
since

−A{a,b} = −A{a;b} , (17)

and
F(ab,c) = F(ab;c) . (18)

The inhomogeneous Maxwell equation

For the inhomogeneous Maxwell equation we shall first deduce the generally covariant action of
the electromagnetic field, and then derive the equation from the stationary action principle.

In Minkowski space the action of the electromagnetic field is given as an integral over the whole
space-time,

S =
∫

dΩ
(
− 1

16π
F abFab −Aaja

)
. (19)
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Covariant volume element The infinitesimal volume element,

dΩ .= d4x , (20)

in this action is not invariant under a general coordinate transformation and has to be substituted
with the generally covariant volume element,

dΩ →
√
−gdΩ , (21)

where g is the determinant of the metric tensor gab (g < 0). Indeed, the metric tensor transforms
as

gab =
∂x′c

∂xa

∂x′d

∂xb
g′cd . (22)

Taking determinant of both sides gives g = J ′2g′, or
√
−g = J ′

√
−g′ , (23)

where J ′ =
∣∣∣∂x′a

∂xb

∣∣∣ is the Jacobian determinant of the transformation. The 4-volume transforms as

dΩ =
∣∣∣∣ ∂xa

∂x′b

∣∣∣∣ dΩ′ =
1
J ′

dΩ′. (24)

Apparently the combination
√
−gdΩ transforms as

√
−gdΩ = J ′

√
−g′

1
J ′

dΩ′ =
√
−g′dΩ′, (25)

and is thus generally invariant.
The generally covariant action of the electromagnetic field is thus given as

S =
∫ √

−gdΩ
(
− 1

16π
F abFab −Aaja

)
. (26)

Variation of the action and the inhomogeneous Maxwell equation The variation of the
electromagnetic field, Aa → Aa + δAa, in the second term of the action produces

−δ

∫ √
−gdΩAaja = −

∫
dΩ
√
−gjaδAa . (27)

The first term gives

− 1
16π

δ

∫ √
−gdΩF abFab = +

1
4π

∫
dΩ
√
−gF ab(δAa),b = − 1

4π

∫
dΩ

(√
−gF ab

)
,b

δAa (28)

Combining the two terms gives the variation of the electromagnetic action,

δS =
∫

dΩδAa

(
− 1

4π

(√
−gF ab

)
,b
−
√
−gja

)
, (29)

from which directly follows the sought inhomogeneous Maxwell equation in a curved space,(√
−gF ab

)
,a

= 4π
√
−gjb . (30)

It can also be written in an explicitely covariant form,

F ab
;a = 4πjb , (31)

using the identity √
−gV a

;a = (
√
−gV a),a . (32)
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To prove that, we shall first need the formula for the variation δg of the determinat g of the
metric tensor (the Jacobi’s formula). Suppose we vary one element, say g23, of the metric tensor.
The contribution of this element to the determinant of the metric tensor, g, is given as

g23C23 = g23gg23 , (33)

where C23 is the cofactor of the element g23, and g23 is the element of the inverse metric tensor.
Then, apparently2,

δg = gδgabg
ab = −ggabδg

ab . (34)

Now let us consider the covariant divergence of the electromagnetic tensor,

F ab
;a = F ab

,a + Γa
daF db . (35)

The contraction Γa
da of the Christoffel symbol is given as

Γa
da =

1
2
gabgab,d =

1
2g

g,d . (36)

The divergence then becomes

F ab
;a = F ab

,a +
1
2g

g,dF
db =

1√
−g

(√
−gF ab

)
,a

, (37)

which concludes the proof.

Exercises

1. Argue that in Minkowski space the electromagnetic field satisfies the homogeneous Maxwell
equation,

F(ab,c)
.= Fab,c + Fbc,a + Fca,b = 0 ,

where
Fab = −Aa,b + Ab,c .

2. Argue that in a curved space the electromagneric field satisfies the generally covariant form
of this equation,

F(ab;c) = 0 ,

where
Fab = −Aa;b + Ab;a = −Aa,b + Ab,a .

3. Derive the second Maxwell equation in a curved space,(√
−gF ab

)
,a

= 4π
√
−gjb ,

from the action

S =
∫ (

− 1
16π

F abFab −Aaja

)√
−gdΩ .

Show that the equation can also be written as

F ab
;a = 4πjb .

Hints:

(a) show that Γa
ba = 1

2g g,b = (ln
√
−g),b

(b) show that F ab
;a = 1√

−g
(
√
−gF ab),a

2In matrix calculus This formula is called the Jacobi’s formula
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Show that from this equation it follows, that(√
−gja

)
,a

= 0 = ja
;a .

4. Argue that the electromagnatic tensor is actually a tensor by proving that

Fab
.= −Aa,b + Ab,a = −Aa;b + Ab;a . (38)

5. Argue that
dua

ds
− 1

2
gbc,aubuc =

dua

ds
− Γbcaubuc . (39)

6. Derive the Lorentz force equation from the action S = −m
∫

ds−e
∫

dxaAa in the Minkowski
space of special relativity. Rewrite this equation in 3-notation where

Aa = {φ, ~A} , ~E = −~∇φ− ∂ ~A

∂t
, ~H = curl ~A ≡ ~∇× ~A .

7. In Minkowski space of special relativity from the action

S = − 1
8π

∫
d4xAa,bA

a,b −
∫

d4xAaja

derive3 the Maxwell equations with sources,

Ab,a
,a = 4πjb .

Show that with the Lorenz condition,

Aa
,a = 0 ,

it is equivalent to
F ab

,a = 4πjb .

Write down the latter in 3-notation.

3For the fields the usual “ingtegration by parts” is done using the Gauss theorem in Minkowski space,Z
Ω

d4x
∂Ba

∂xa
=

I
∂Ω

BadSa ,

where dSa is an infinitesimal element of the hyper-surface ∂Ω of the 4-volume Ω. In Eucledean 3D space it has a
more familiar form, Z

V
dV

“
~∇ · ~B

”
=

Z
∂V

dS
“

~B · ~n
”

.
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